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Abstract

Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing
of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the
astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their
18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are
highly differentiated in their protein coding sequences.

Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence.
Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between
organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this
relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially
low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too
conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which
suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding
sequences.

Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their
nature are highly conserved and underestimate the true number of species, and using genes that give a better description
of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between
unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate
that biodiversity of microbial eukaryotic species is underestimated and that numerous ‘‘cryptic species’’ will become
discernable with the future acquisition of genomic and metagenomic sequences.
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Introduction

Our understanding of the evolution of eukaryotes was

revolutionized when it became possible to compare sequenced

marker genes, notably the ribosomal genes, among many

organisms [1]. In practice, ribosomal genes are often the only

markers available for estimating the diversity of unicellular

eukaryotes, especially in the Chromalveolates, Excavata and

Rhizaria group which have few sequenced representatives. They

are also the only markers used in the analysis of environmental or

metagenomic DNA sequence datasets [2,3]. It is thus becoming

crucially important to know how well these signatures represent

the extent of diversity in the exploding body of data that will

become available over the next ten years as revolutionary

sequencing technology are used in panoceanic metagenomic

campaigns [4,5]. Marine metagenomics studies rely on a

pragmatic species concept; sequences are declared as being from

separate species or genera based upon an arbitrary level of

sequence divergence at a marker locus, typically the 18S rDNA

ribosomal gene [6]. In this study, we analysed how genome

divergence, estimated from amino-acid changes in protein coding

genes, compares with 18S ribosomal divergence, the universal

marker for planktonic eukaryotes biodiversity.

Methods

Whole genome predicted proteins data was downloaded from

GenBank, JGI, Genolevure, Ensembl [7], PLAZA [8] and

organisms’ dedicated databases (Table 1). Complete 18S rDNA

sequences were downloaded from GenBank or extracted from the

whole genome sequence by screening the complete genome with

complete 18S rDNA sequence from a closely related species. For

the primate data, 18S rDNA sequenced were reassembled from

the GenBank Trace archive (Table 1).

Twenty six phylogenetic independent comparisons were

inferred from couple of species with less than 5% 18S rDNA

divergences (all species pairs, number of genes and phylogenies

within each lineage are available in Figure S1).
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Table 1. Genome data and 18S rDNA data used for analysis.

Species Database URL Release Gene 18S rDNA sequence

DIPTERA

Aedes aegypti VectorBase http://aaegypti.vectorbase.org/ AaegL1.1 16789 from genome assembly

Culex pipiens VectorBase http://cpipiens.vectorbase.org/ CpipJ1.2 18883 from genome assembly

Drosophila ananassae flybase ftp://ftp.flybase.net/genomes/ r1.3 15070 from genome assembly

Drosophila melanogaster flybase ftp://ftp.flybase.net/genomes/ r5.9 21064 M21017.1

Drosophila erecta flybase ftp://ftp.flybase.net/genomes/ r1.3 15048 from genome assembly

Drosophila yakuba flybase ftp://ftp.flybase.net/genomes/ r1.3 16082 from genome assembly

Drosophila grimshawi flybase ftp://ftp.flybase.net/genomes/ r1.3 14986 from genome assembly

Drosophila willistoni flybase ftp://ftp.flybase.net/genomes/ r1.3 15513 from genome assembly

Drosophila persimilis flybase ftp://ftp.flybase.net/genomes/ r1.3 16878 from genome assembly

Drosophila pseudoobscura flybase ftp://ftp.flybase.net/genomes/ r2.3 16071 AY03717

Drosophila sechellia flybase ftp://ftp.flybase.net/genomes/ r1.3 16471 from genome assembly

Drosophila simulans flybase ftp://ftp.flybase.net/genomes/ r1.3 15415 AY037174.1

VERTEBRATA

Homo sapiens Ensembl http://archive.ensembl.org/ v54 47509 M10098

Pan troglodytes Ensembl http://archive.ensembl.org/ v54 34142 rebuilt from Trace

Mus musculus Ensembl http://archive.ensembl.org/ v38 31986 X00686.1

Rattus norvegicus Ensembl http://archive.ensembl.org/ v54 32948 X01117

Macaca Mulatta Ensembl http://archive.ensembl.org/ v54 36384 rebuilt from Trace

Pongo pygmaeus Ensembl http://archive.ensembl.org/ v54 23533 rebuilt from Trace

Bos Taurus Ensembl http://archive.ensembl.org/ v54 26977 DQ222453.1

Equus caballus Ensembl http://archive.ensembl.org/ v54 22641 AJ311673.1

Gallus gallus Ensembl http://archive.ensembl.org/ v47 22195 AF173612

Xenopus tropicalis Ensembl http://archive.ensembl.org/ v54 27710 from genome assembly

STREPTOPHYTA

Oryza sativa Rice http://rice.plantbiology.msu.edu/ v6 67393 from genome assembly

Sorghum bicolor JGI http://genome.jgi-psf.org/Sorbi1/Sorbi1.download.ftp.html Sbi1_4 34496 from genome assembly

Populus trichocharpa JGI http://genome.jgi-psf.org/ v1.1 45555 from genome assembly

Medicago truncatula Medicago http://www.medicago.org/ 44830 AF093506.1

Arabidopsis thaliana TAIR http://www.arabidopsis.org/index.jsp 27855 X16077.1

Arabidopsis lyrata JGI http://www.jgi.doe.gov/genome-projects/ 32670 from genome assembly

Carica papaya Carica asgpb.mhpcc.hawaii.edu/papaya/ 24782 from genome assembly

Vitis vinifera Genoscope http://www.genoscope.cns.fr/ 30434 from genome assembly

CHLOROPHYTA

Micromonas pusilla CCMP1545 JGI http://www.jgi.doe.gov/genome-projects/ V2 10242 from genome assembly

Micromonas pusilla RCC299 JGI http://www.jgi.doe.gov/genome-projects/ V3 10109 from genome assembly

Ostreococcus lucimarinus JGI http://www.jgi.doe.gov/genome-projects/ v2 7651 from genome assembly

Ostreococcus RCC809 JGI http://www.jgi.doe.gov/genome-projects/ v1 7773 from genome assembly

Bathycoccus prasinos Genoscope http://bioinformatics.psb.ugent.be/ V1 8747 from genome assembly

Ostreococcus tauri Bogas http://bioinformatics.psb.ugent.be/ v2 7725 from genome assembly

SACCHAROMYCETACEAE

Saccharomyces cerevisiae SGD http://www.yeastgenome.org/ 5914 Z75578

Saccharomyces paradoxus MIT http://www.broad.mit.edu/annotation/ 4774 X97806

Saccharomyces mikatae Broad http://fungal.genome.duke.edu/ 5884 AB040998

Saccharomyces kudriavzevi WUSTL http://fungal.genome.duke.edu/ 6371 AACI02000378.1

Saccharomyces bayanus MIT http://www.broad.mit.edu/annotation/ 4492 X97777

Saccharomyces castellii WUSTL http://fungal.genome.duke.edu/ 5864 AACF01000230.1

Lachancea waltii Genolevure http://fungal.genome.duke.edu/ 5350 AADM01000401.1

Lachancea thermotolerans Genolevure http://fungal.genome.duke.edu/ 5092 X89526.1

doi:10.1371/journal.pone.0016342.t001

Barcodes, Population Sizes and Microbial Diversity

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16342



All orthologous gene pairs between species were inferred by

reciprocal best hit (e-value 1023). We retrieved the common set of

orthologous genes within each lineage by extracting the

orthologous genes present in all pairwise species comparisons.

We thus obtained 2151 common gene pairs in Chlorophyta, 5051

in Diptera, 2925 in Saccharomyceta, 4160 in Streptophyta and

5949 in Vertebrata. Protein sequences were aligned with the

Needleman Wunsch algorithm [9] and processed with custom C

codes to compute amino-acid identities over the concatenated

alignments. Substitution rates dAA were estimated via maximum

likelihood with the PAML package (Jones [10] substitution

matrix) [11].

We manually inspected multiple sequence alignments to identify

common sites of the 18S rDNA : large insertions occurring in some

sequences were excluded from the alignment to get consistent

divergence estimate across pairwise comparions. All 18S rDNA

pairs were aligned with the Needleman Wunsch algorithm to

estimate pairwise differences, The nucleotide substitution rates of

the 18S rDNA were estimates with the PAML package (HKY85

substitution model).

Figure 1. 18S rDNA versus proteome divergence in unicellular and multicellular lineages. A. Average proteome (amino-acid) and 18S
rDNA differences (%) for 21 unicellular and 26 multicellular pairwise comparisons. The first class of 18S rDNA sequence differences limit, 0.5%, is the
smallest threshold used to delineate Operational Taxonomic Units (OTU) in planktonic eukaryotes [26]. B. Selected examples of pairwise comparisons
in each 18S rDNA divergence class: percent of amino-acid divergence (percent of 18S rDNA differences).
doi:10.1371/journal.pone.0016342.g001
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Statistical analyses were performed with the R software.

Results

The rate of 18S rDNA and protein evolution
Recent genome and metagenomic projects have highlighted the

surprising discrepancy between 18S rDNA divergence and whole

genome divergence in some phytoplanktonic species

[12,13,14,15], that are keystone players in the global carbon

cycling [16]. Here we investigated the generality of this

observation among both unicellular and muticellular eukaryotes.

We compared the 18S rDNA and the proteome divergence across

all available eukaryotic genomes in 2 unicellular (Baker’s yeast and

green alga) and 3 multicellular lineages (Vertebrates, Diptera and

Land plants). We found that for a given level of rDNA divergence,

unicellular eukaryotes had substantially greater proteome diver-

gence than multicellular eukaryotes (Figure 1A). This can be more

formally tested using an analysis of covariance of proteome versus

rDNA divergence, forcing the regression lines through the origin

and testing for equality of slopes : the test is highly significantly

different (p,0.0001) (Figure 1A). Identical 18S rDNA sequences

between two unicellular species may correspond to proteome

divergences of the same order as those observed between Xenopus

and Chicken or the Poplar tree and the grass Medicago

(Figure 1B). Amino-acid divergences between orthologous genes

are only one of the many hallmarks of evolutionary divergence

after speciation. A genomic species definition for protists based on

proteome divergence is stringent, because genomic rearrange-

ments, the acquisition of new genes via duplication or even a few

mutations within a subset of genes may be sufficient to delineate

two species [17,18]. To reduce possible effects of amino-acid

content, base composition and non-independency of observations,

we computed the substitution rates on a common set of orthologs

within each lineage across all independent pairwise comparisons.

Consistent with the raw number of difference estimates, the

evolution rate of the 18S rDNA relative to the proteome is much

lower in unicellular species (analysis of covariance unicellulars

versus multicellulars p = 0.048) (Figure 2).

Discussion

A population genetic explanation
What could be the cause of this decoupling between 18S rDNA

and proteome divergence in unicellar versus multicellular species?

There are two general explanations; first, the proportion of

mutations that are strongly deleterious is higher in 18S rDNA,

when compared to protein sequences, in unicells compared to

multicells. One could argue that the 18S rDNA may be under

Figure 2. 18s rDNA evolution rates versus Amino-acid evolution rates for all common orthologous genes within lineages for
independent pairs of species. Yellow: Vertebrates, Green: Streptophytes, Light blue: Diptera, Light green: Chlorophyta, Red: Saccharomyceta.
doi:10.1371/journal.pone.0016342.g002
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much more stronger selection in unicells, where fitness may

depend more directly from transcription efficiency than in

multicellular species. Second, the rate of adaptive evolution could

be higher in protein sequences in unicells compared to multicells.

It is difficult to differentiate between these possibilities. However,

unicells and multicells are likely to differ in their effective

population sizes and this suggests a simple explanation; that the

proportion of effectively neutral mutations changes more in

response to differences in the effective population size in the 18S

rDNA than in the proteome. This can be formalised as follows. Let

us assume that all mutations are deleterious (or effectively neutral)

and that the distribution of fitness effects is a gamma distribution.

Under a gamma distribution it can be shown that the rate of

evolution, R, is a function of the mutation rate, m, divergence time,

t, and the Distribution of Fitness effects of new mutations, fully

described by the shape parameters, ß, and the effective population

size, Ne [19,20,21].

R&mtNe
{b

We can thus express the relative ratio between the rate of

evolution of the 18S rDNA, Rr, and the rate of evolution of the

proteome, Rp, in one lineage as a function of three parameters,

where Ne is the average effective population size within a lineage:

Rr

Rp

&Ne
bp{br

This ratio can be estimated from our observations (Figure 2) by

taking the linear regression coefficient for each lineage

(slope = 0.017 for unicellulars and slope = 0.059 for multicellular

organims).

If we assume that unicells have an effective population size, Ne,

that is 1000 to 1,000,000 times larger than in multicells, then ßr2ßp

would be between 20.2 and 20.1 to explain the differences in the

regression slopes. So quite modest differences in the distribution of

fitness effects, and effective population sizes can lead to substantial

differences in the relative rates at which the 18S rDNA and

protein coding sequences evolve. Recent estimates of ßp for

nuclear genes in Humans and Drosophila are 0.2 and 0.35

respectively [22] [23]and we thus expect ßr to take values smaller

than 0.25.

Large effective population sizes of unicellular eukaryotes may

thus provide an explanation for the surprising low divergence of

18S rDNA relative to the genome divergence. More generally, this

conclusion applies to any barcoding gene sufficiently constrained

to provide a large phylogenetic spread over the eukaryotic tree of

life, suggesting that biodiversity studies have to make a trade-off

between phylogenetic spread and phylogenetic depth for a given

barcoding gene. Given the present diversity estimates of eukaryotic

unicells from conserved barcoding genes like the 18S rDNA

[24,25], we thus anticipate that future eukaryotic planktonic

metagenomic and genomic analysis will lead to an increase in the

number of species.

Supporting Information

Figure S1 Phylogenetic relationships and number of genes used

for independent comparison.
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