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Abstract

Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological
impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate
Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak
time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray
reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of
blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in
the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented
species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow
lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for
any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated,
with Chao Mh ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence
intervals ranging from 289–1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number
of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal
(Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks.
Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological
impacts of shark culling.
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Introduction

Sharks were historically one of the most abundant top predators in

coral reef ecosystems but their numbers have declined in recent

decades due to overfishing and habitat degradation [1,2]. With the

continuing deterioration of coral reefs worldwide, the few remaining

pristine coral reef ecosystems provide a valuable opportunity to

obtain baseline information on shark ecology useful for evaluating

human impacts on exploited coral reef systems. The Papahānaumo-

kuākea Marine National Monument (PMNM) consists of a series of

rocky pinnacles, atolls, reefs and submerged banks extending 1,930

km northwest of the Main Hawaiian Islands (MHI), and represents

one of the few remaining near-pristine coral reef ecosystems. Sites

within the monument are uninhabited, off limits to fishing and

characterized by high predator (mainly sharks and jacks) abundance

[3]. These ecosystems are minimally affected by human impacts and

are thought to represent the natural state of coral reef ecosystem

structure [1,3,4]. In comparison, diver visual surveys suggest coral

reef ecosystems of the populated MHI are dominated by herbivorous

fishes and lower trophic level carnivores, with apex predators

representing a minor component of the total fish biomass [3,5–7].

The PMNM is therefore an ideal location to study the assemblage

structure and habitat use of coral reef associated sharks in a minimally

impacted environment. Empirical data of this type are needed to

better understand the ecology of Hawaiian atolls, and to guide

management decisions at these remote locations.

Detailed information on shark assemblages at remote atolls is

scarce because of the logistical challenges associated with accessing

these locations. Previous research quantifying shark abundance

and species composition in the PMNM has consisted of short-term

sampling periods (a few days at each island or atoll) over the course

of one to several years [3,8,9]. Methods used by these studies have

been aimed at maximizing spatial coverage of a broad range of

genera (i.e. sharks and teleosts), yet each method contains inherent

sampling bias. The primary method of estimating abundance has

been underwater visual surveys (UVS; belt transects and towed

diver surveys). The advantage of visual methods is the ability to

survey large areas in a relatively short amount of time, yet there

are inherent limitations associated with these techniques. Limita-

tions include interspecific variability in behavioral responses to

divers (some species flee, others approach divers), limited visual

field of divers, inaccurate species identification of morphometri-
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cally similar species, and a limited survey depth range (,30 m).

These limitations can create bias in diversity, abundance and size

estimates [10–12] and can be especially problematic for large

mobile species such as sharks [13]. In order to examine the validity

of underwater visual techniques for estimating shark abundance,

comparison with alternative sampling methods is required.

We conducted 3 months of intensive longline sampling to

quantify the abundance, type and habitat use patterns of sharks at

French Frigate Shoals (FFS) atoll. Our specific objectives were to

(1) determine the diversity and relative abundance of shark species;

(2) determine how abundance varies with habitat; (3) examine the

size and sex structure of dominant species; (4) compare results

between our longline and previous underwater visual surveys in

estimating abundance, species composition and habitat use of

sharks, and (5) calculate a mark-recapture based estimate of

Galapagos shark (Carcharhinus galapagensis) population size at FFS.

Methods

Study site
French Frigate Shoals (N23u 459 W166u 109) is located in the

middle of the Hawaiian archipelago (Fig. 1). The atoll consists of a

34 km long oval platform bounded on the east side by a 50 km

long crescent-shaped barrier reef (Fig. 1). Habitat outside the

barrier reef consists of classical spur and groove formations

running from the reef crest down to depths of 20–30 m. The

western half of the atoll is open to the ocean and shelves gradually

from depths of 20 to 100 m over a distance of 18 km, before

descending more steeply to .1000 m depth. The eastern half of

the atoll consists of a shallow (,1 to 10 m deep) lagoon enclosed

between the outer barrier and an inner crescent shaped reef, and is

12 km wide at its midpoint. Lagoonal habitats include reticulate

and patch reefs, submerged sand and coral rubble, and small

sandy islets. Total coral reef area of the shoals is .940 km2 and

total land area of the sandy islets is 0.25 km2.

Fishing and Tagging
Capture and tagging of sharks during this study was approved

and performed according to the Institutional Animal Care and

Use Committee of the University of Hawai‘i Permit # 05-053-4

and Papahānaumokuākea Marine National Monument Research

Permit # PMNM-2009-037. Shark surveys were conducted

between May and August 2009, overlapping seasonally with

previous UVS in the PMNM [3,9]. Fishing gear consisted of 10

hook polypropylene longlines (440 m length) [14], set on the

bottom in depths of 3 to 60 m. Branch lines consisted of 3 m of

Figure 1. Map of Study Area. French Frigate Shoals atoll within the Papahānaumokuākea Marine National Monument (shaded area inset).
doi:10.1371/journal.pone.0016962.g001
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polypropylene rope connected via a large swivel to 1.5 m of

braided stainless-steel cable leader terminating in a 20/0 gauge

MustadTM circle hook. Branch lines were connected to the

mainline with a snap clip at intervals of 40 m and baited with large

tuna heads and fish scraps. Fishing gear was standardized for all

sets during the duration of the study. A few sets towards the end of

the study consisted of smaller fish and squid baits. These sets were

not included in calculation of relative abundances, but sharks

captured during these sets were included in overall assessments of

species composition. Longline sets were conducted during daylight

hours. Sets began approximately one half hour after sunrise and

were either reset in the afternoon or checked every few hours

throughout the day. Fishing location was highly dependent on

daily weather conditions, preventing complete randomization of

stations, but stations within accessible locations were randomly

selected. Captured sharks were brought alongside a 6 m skiff,

where they were tail-roped and inverted to initiate tonic

immobility. Sharks remained docile in this position while they

were measured, sexed and tagged with an external identification

tag (HallprintTM stainless steel dart ‘wire through’ tags). Clasper

length and degree of calcification was measured as an indicator of

sexual maturity in males. The hook was then removed and the

shark released. The entire handling process for each shark took less

than 10 minutes.

Data analyses
The statistical measure of abundance was catch per unit effort

(CPUE), defined as the number of sharks caught per 10 hook

hours. Fishing effort was stratified into 3 sub habitats: (1) shallow

lagoon; 0–10 m depth with focus on habitat in proximity to

islands, (2) deep lagoon; 11–30 m depth up to several km away

from islands but still within the lagoon, and (3) outer reef; 30–60 m

depth. CPUE data were non-normally distributed thus Kruskal-

Wallis nonparametric tests were used to evaluate the effects of set

time (morning vs. afternoon) and habitat on CPUE. Habitat effects

were evaluated for all sharks combined and individually for

common species. Significant habitat effects were evaluated post hoc

with Dunn’s pairwise comparisons. Sex ratios were tested for a

departure from equality with x2 tests for goodness of fit. Analysis of

Variance (ANOVA) was used to test for significant differences in

size structure of individual species between habitats.

Recaptures of marked Galapagos sharks allowed for estimates of

population size. Estimates were made with the program

CAPTURE [15–17] run as a subroutine within program MARK

[18]. Several closed population models were used to generate

abundance estimates [19]. The first model (Mo) assumed constant

probability of capture. Three additional models which relax the

assumption of equal probability of capture were also considered:

(1) variability in individual capture probability using the Chao and

Jackknife Mh estimators [20,21], (2) time-varying capture

probability using the Chao and Darroch Mt estimators

[17,22,23], and (3) behavioral response to capture using the

Zippin Mb estimator [24]. A model selection routine within the

CAPTURE program was used to rank each of the potential

models. Model selection was based on seven goodness of fit tests

used to evaluate the assumptions associated with each model.

Ranks were derived from a multivariate discriminant function

analysis based on results from the goodness of fit tests [19].

Results

Relative abundance and habitat use
Between May and August 2009, longlines were set on 189

occasions, totaling 6,862 hook hours of soak time. A total of 221

sharks from 7 species were captured (Table 1). Although fishing

was conducted throughout the entire atoll, the majority of effort

was restricted to the northern half due to logistical limitations of

operating from the Tern Island field station (Figs. 1, 2). The

number of sets varied by month for both the deep lagoon and

outside the barrier reef, due to weather restrictions on access to

fishing locations. There was no significant difference in the

number of monthly sets in the more protected and accessible

shallow lagoon sites. The average duration of longline sets was

longer in the shallow lagoon (6.262.7 h) than deep lagoon

(4.060.8 h) and outer reef (4.061.2 h) sites. However, longer

shallow lagoon sets were checked after approximately 4 h. There

were no significant differences in CPUE between morning sets and

afternoon sets for individual shark species or all species combined

(P.0.05). Galapagos (36.2%), gray reef (Carcharhinus amblyrhynchos,

25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were the

numerically dominant species accounting for 82% of all sharks

captured (Table 1). Sandbar (Carcharhinus plumbeus) and blacktip

(Carcharhinus limbatus) sharks were captured less frequently,

representing 10.4% and 4.1% of total shark catch respectively

(Table 1). Species rarely encountered included scalloped ham-

merhead (Sphyrna lewini, N = 2, ,1%) and whitetip reef sharks

(Triaenodon obesus, N = 5, 2.3%) (Table 1).

Overall CPUE (all sharks combined) varied significantly by

habitat (Kruskal-Wallis, H = 11.0, P = 0.004) (Fig. 3). Within

habitats, CPUE in shallow lagoon areas (mean CPUE =

0.1560.25) was significantly lower (P,0.01) than other locations,

but there were no significant differences between deep lagoon

areas (mean CPUE = 0.3960.35) and outside the barrier reef

(mean CPUE = 0.3760.39). Galapagos, tiger and gray reef sharks

were captured in all three habitats, whereas sandbar sharks were

not captured in the shallow lagoon and blacktip sharks were not

Table 1. Summary of longline fishing data.

Habitat Hook Hours Galapagos Tiger Gray Reef Sandbar Blacktip Other* All Sharks

OB* 2533 45 (46.9) 16 (16.7) 18 (18.8) 15 (15.6) 0 2 (2.1) 96

DL* 2470 27 (28.1) 22 (22.9) 31 (32.3) 8 (8.3) 7 (7.3) 1 (1.0) 96

SL* 1859 8 (27.6) 7 (24.1) 8 (27.6) 0 2 (6.9) 4 (13.8) 29

Total 6862 80 (36.2) 45 (20.4) 57 (25.8) 23 (10.4) 9 (4.1) 7 (3.2) 221

Shark numbers indicate the sum of all sharks caught combined and by habitat. Values in parentheses are row percentages of all sharks.
*Other species include scalloped hammerhead and whitetip reef sharks,
*OB: Outside Barrier Reef,
*DL: Deep Lagoon,
*SL: Shallow Lagoon.
doi:10.1371/journal.pone.0016962.t001

Shark Assemblage at French Frigate Shoals Atoll

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e16962



captured outside the barrier reef (Fig. 2, 3). Both of the scalloped

hammerhead sharks were captured outside the barrier reef and 4

of 5 whitetip reef sharks were captured in the shallow lagoon. Of

the three numerically dominant species, only catch rates of

Galapagos sharks varied significantly among habitats (H = 7.13,

P = 0.028). Catch per unit effort outside the barrier reef (mean

CPUE = 0.1760.28) was significantly higher (P = 0.012) than

shallow lagoon areas (mean CPUE = 0.0460.12), but there were

no significant differences between deep (mean CPUE =

0.1060.19) and shallow lagoon, or between deep lagoon and

outside the barrier reef.

Size, sex ratios and maturity
The size distribution of all species captured was skewed towards

larger animals (Fig. 4). This is likely an effect of gear selectivity, as

large hooks and baits were used specifically to minimize teleost

bycatch. However, a wide size range of sharks were captured,

including juveniles of the dominant species (Fig. 4). The majority

of species showed no significant difference in size between habitats,

but sandbar sharks were significantly larger in the deep lagoon

(mean PCL = 137.968.1 cm) compared to outside the barrier reef

(mean PCL = 128.4610.6 cm) (ANOVA, F = 4.78, df = 1, 20,

P = 0.041). Sex ratios were significantly skewed towards females for

Galapagos (1.7:1), tiger (3.8:1) and sandbar (2.7:1) sharks, and

towards males for gray reef (8.5:1) sharks (Table 2). No bias in the

observed sex ratio was evident for blacktip (1.3:1) sharks (Table 2).

Four (5.4%) of the 73 tagged Galapagos sharks were recaptured,

yielding closed-system population size estimates ranging from 104

to 695 sharks (Table 3). The individual variability in capture

probability model (Mh) was ranked highest by the model selection

procedure (Table 3). Two different estimators of individual

variability (Mh) were modeled, Jackknife Mh and Chao Mh. The

population estimate for the Jackknife Mh estimator was lower than

the Chao Mh estimator (371 vs. 668 respectively) and had a

Figure 2. Spatial distribution of longline Catch Per Unit Effort (CPUE). In all panels, scaled circles indicate CPUE .0, crosses indicate CPUE
= 0. CPUE = sharks per 10 hook hours.
doi:10.1371/journal.pone.0016962.g002
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narrower confidence interval (289–484 vs. 289–1720 respectively)

(Table 3). The constant capture probability model (Mo) was also

ranked highly with a population estimate (695) and confidence

interval (314–2180) similar to the Chao Mh model (Table 3). The

behavioral response model (Mb) had less support with the lowest

population estimate (104) and narrowest confidence interval (83–

172) (Table 3). No support was found for the time-varying capture

probability model (Mt).

Discussion

Comparison of our results with those of previous UVS studies

conducted during summer within the PMNM (e.g. [3,9]) suggests

both methods introduce sampling bias but longline surveys provide

a far more comprehensive picture of shark assemblage composi-

tion. Thus although both UVS and longline sampling found

Galapagos sharks to be the most abundant shark species at FFS,

UVS drastically underestimates the abundance of tiger, sandbar

and blacktip sharks, whereas only whitetip reef sharks were

underrepresented in longline catches (Fig. 5). Only a single tiger

shark was recorded by UVS methods throughout the NWHI [9],

whereas we captured 45 tiger sharks (20% of all sharks caught) at

FFS and previous longline surveys also found high abundances of

tiger sharks at this location [25]. UVS methods recorded no

sandbar sharks anywhere in the NWHI, yet this species accounted

for 10% of all sharks captured on our longlines at FFS (Fig. 5).

Whitetip reef sharks were the second most abundant shark

documented with UVS (Fig. 5, [3,9]) yet were rarely caught by our

longlines. Cumulatively, our results suggest UVS may not be a

reliable method for estimating abundance of large sharks, and

UVS studies which find low shark abundances may be

fundamentally flawed.

Differences in estimates from UVS and longline methods may

be behaviorally mediated, with some species (e.g. tiger sharks)

actively avoiding divers, while sedentary daytime behavior of

others (e.g. whitetip reef sharks, [26]) makes them highly

susceptible to visual survey methods and less vulnerable to daytime

longline fishing. Low whitetip reef shark abundances in our

longline survey may also be due to gear selectivity (we used large

hooks and baits not well-suited to catching whitetip reef sharks).

Figure 3. Mean Catch Per Unit Effort (CPUE) for shark species
within habitats and overall. Shaded bars represent CPUE within
habitats, unshaded bars represent overall CPUE. OB: Outside barrier
reef; DL: Deep lagoon; SL: Shallow lagoon; CPUE = sharks per 10 hook
hours.
doi:10.1371/journal.pone.0016962.g003

Figure 4. Size frequency of sharks captured at French Frigate Shoals. In all graphs, Black bars represent males, white bars represent females.
doi:10.1371/journal.pone.0016962.g004
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Four of 5 whitetip reef sharks captured were caught on smaller

baits towards the end of the study, suggesting a combination of

gear types (i.e. both large and small hooks and baits) should be

used in order to obtain a more complete representation of shark

composition and abundance in coral reef ecosystems.

The diversity of shark species captured at FFS was broadly

similar to that of other isolated atolls in the Indo-Pacific where a

few species numerically dominate the shark assemblage [4,27–32].

A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguishes

the shark assemblage at FFS from those at many other Indo-

Pacific atolls where this species is abundant [27,33,34]. Galapagos,

gray reef and tiger sharks were the numerically dominant species

in our catches at FFS, and previous longline surveys conducted in

Hawai‘i between 1978 and 1980 captured a similar species

assemblage and found relatively high abundances of Galapagos

and gray reef sharks in the NHWI compared to the MHI [25,35].

There are currently no directed fisheries targeting (or significant

bycatch of ) coastal sharks in Hawai‘i, hence a lack of shark

fisheries in the uninhabited NWHI does not adequately explain

the greater abundance of certain shark species in this area. A

feasible alternate explanation is differences in shark abundance

between these two regions primarily reflect variations in both

habitat preferences and prey abundances. For example, both grey

reef and sandbar sharks are found throughout the Hawaiian

archipelago but have opposite patterns of regional abundance,

with grey reef sharks most abundant at NHWI atolls and sandbars

most abundant around MHI high islands [25]. Additionally, fish

biomass in the NWHI is up to 260% greater than the MHI [3],

potentially limiting shark density in the MHI.

Our habitat-stratified sampling design provided higher resolu-

tion information on shark habitat preferences at FFS than previous

longline surveys. For example, our CPUE data support results of

previous visual census studies [9] indicating sharks are generally

less abundant in the shallow lagoon than other habits at FFS. Low

habitat diversity, absence of shallow lagoon specialists (such as

blacktip reef sharks) and competition with teleost predators for

prey resources may all be factors contributing to this pattern.

NWHI atolls lack mangrove and seagrass habitats typically found

at atolls with high abundances of blacktip reef sharks in shallow

lagoons [4,27,33,34]. Prey resources in shallow lagoon habitats at

FFS may be insufficient to support high numbers of predatory

teleosts (e.g. giant trevally, Caranx ignobilis) as well as sharks.

Although significant differences in CPUE among habitats were

only detected for Galapagos sharks, a general preference for

deeper atoll habitats was suggested for all shark species captured at

FFS. Galapagos shark CPUE was significantly higher in the deep

lagoon and outer reef habitats compared to shallow lagoon

habitats, with the highest catch rates occurring outside the barrier

reef. Catch rates of gray reef and tiger sharks were highly variable,

but CPUE was highest outside the barrier reef and in the deep

lagoon for both of these species. Sandbar sharks were only

encountered in deep lagoon and outer reef habitats, and blacktip

shark CPUE was highest in the deep lagoon. These patterns of

habitat use are congruent with results of previous studies [36–39].

Sexual segregation is common in shark populations [40], and in

most cases our observations at FFS are consistent with those of

previous studies. The exception was gray reef sharks for which

previous studies have documented female skewed sex ratios

[41,42]. Taylor [41] observed aggregations of female gray reef

sharks in shallow waters at Laysan Island (NWHI), contrasting

with our finding that male gray reef sharks predominated in

shallow waters at FFS. These apparently conflicting results

emphasize that sex segregation in sharks is a dynamic phenom-

enon, the timing and location of which may be determined by a

suite of environmental and behavioral factors [42,43].

The recapture of several tagged individuals enabled us to

generate the first empirical estimate of population size for any

Galapagos shark population. Our recapture rate of 5.4% is

consistent with those of other mark-recapture studies. For

example, more than half of the shark tagging studies (N = 52)

reviewed by [44] reported recapture rates of ,5%. A major

assumption of closed population models is that the population

remains constant over the course of the study. An ongoing multi-

species acoustic monitoring study of shark movements throughout

the NWHI suggests long-term intra-atoll residency and mixing of

Galapagos sharks ([45], C. Meyer unpublished data) and one of

eleven Galapagos sharks tagged in 2006 was recaptured during

this study (but not included in population models), providing

additional evidence of site-fidelity to individual atolls. Our

sampling effort was conducted over a short time span (87 days)

during summer, minimizing immigration and emigration due to

potential seasonal migrations (e.g. [46]). Additionally, Galapagos

sharks are long lived species (,24 yrs, [47]) and neonates were not

captured during this study, minimizing the effects of births and

deaths. We therefore consider closed population models appro-

priate for this study, with individual variability models (Mh) the

best fit according to selection criteria. Based on the small number

of recaptures, the Chao Mh model rather than the Jackknife Mh

model should provide the most reliable estimates of population

size [48]. Due to the small sample size of tagged sharks and

relatively wide range of population estimates produced by

individual models, our Galapagos shark population estimates

should be interpreted cautiously. However, all models were

consistent in the magnitude of population size (i.e. hundreds to

low thousands).

Population size and CPUE data collectively suggest a relatively

small number of large Galapagos sharks use shallow lagoon

Table 2. Sex ratios for the five most common species of
sharks at French Frigate Shoals atoll.

Species Male Female Ratio x2 P*

Galapagos 27 46 1.7:1 4.9 0.026

Tiger 9 34 3.8:1 14.5 ,0.001

Gray Reef 51 6 8.5:1 35.5 ,0.001

Sandbar 6 16 2.7:1 4.5 0.030

Blacktip 5 4 1.3:1 0.1 0.369

*P values in bold for x2 tests are statistically significant.
doi:10.1371/journal.pone.0016962.t002

Table 3. Population estimates for Galapagos sharks at French
Frigate Shoals atoll from closed population models.

Model Rank N S.E. 95% CI

Chao Mh 1.00 668 331.2 289–1720

Jackknife Mh 1.00 371 49.3 289–484

Null Mo 0.97 695 332.7 314–2180

Zippin Mb 0.77 104 20.2 83–172

Darrock Mt 0.00 676 320.3 301–1674

Chao Mt 0.00 528 232 251–1240

doi:10.1371/journal.pone.0016962.t003

Shark Assemblage at French Frigate Shoals Atoll

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16962



habitats during the summer months. However, even relatively

small numbers of sharks may be a significant source of predation,

and therefore natural selection, on species utilizing small sandy

islets in these habitats. Many of these species are threatened

(Laysan albatross, Phoebastria immutabilis), endangered (green

turtles, Chelonia mydas; blackfoot albatross, Phoebastria nigripes) or

critically endangered (Hawaiian monk seals, Monachus schauin-

slandi). Within the context of a Marine National Monument,

managers must balance conflicting ideological goals of preserving

a natural ecosystem, of which predation and natural selection are

integral components, with directed management of endangered

species. This dichotomy is highlighted in the ongoing debate

concerning the culling of sharks to reduce predation on critically

endangered Hawaiian monk seals. Low shark abundance in

shallow lagoon habitats suggests removal of a small number of

sharks from the immediate vicinity of lagoonal islets might

significantly reduce short-term predation on monk seal pups

without significantly impacting the Galapagos shark population at

FFS. However, our results demonstrate very high fishing effort

would be required to catch even a few sharks in these areas and we

cannot yet predict the duration of lowered predation (i.e. how soon

other sharks will move into these habitats). For example,

experimental culling of predatory gulls suggested yearly culls

would be required to effectively decrease predation rates on other

seabirds [49]. In addition, the unintended ecological consequences

of shark removal are difficult to predict. Additional empirical data

quantifying long-term movements and habitat use of sharks at FFS

are needed to assess the likely efficacy and broader ecological

impact of culling sharks to reduce predation on monk seals in

shallow habitats.
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