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Abstract
The developmental potential of stem cells and progenitor cells must be functionally distinguished
to ensure the generation of diverse cell types while maintaining the stem cell pool throughout the
lifetime of an organism. In contrast to stem cells, progenitor cells possess restricted developmental
potential, allowing them to give rise to only a limited number of post-mitotic progeny. Failure to
establish or maintain restricted progenitor cell potential can perturb tissue development and
homeostasis, and likely contributes to tumor initiation. Recent studies using the developing fruit
fly Drosophila larval brain have provided molecular insight into how the developmental potential
is restricted in neural progenitor cells.

Introduction
Restricted developmental potential allows progenitor cells to generate a limited number of
terminally-differentiated progeny, amplifying the output of stem cells while safeguarding the
stem cell pool throughout the natural lifespan of an organism. Expanded progenitor cell
potential might result in the formation of aberrant stem-like cells, contributing to
developmental defects and possibly tumor initiation. In contrast to stem cells, how
progenitor cell potential is restricted remains largely unknown due to their short-lived
nature. The fruit fly Drosophila larval brain, which consists of the central brain and optic
lobe, possesses well-defined lineages of neural stem cells that generate progenitor cells in a
highly reproducible pattern (Figure 1). These lineages provide an excellent in vivo system
for studying regulation of the progenitor cell potential at a single-cell resolution.
Conservation in gene function between flies and mammals suggests that molecular
mechanisms that regulate progenitor cell potential in Drosophila neural stem cell lineages
might be similarly employed during vertebrate neurogenesis.

Central brain neuroblasts generate neural progenitor cells with distinct
developmental potential

All neural stem cells in the central brain (called neuroblasts) undergo repetitive asymmetric
divisions to self-renew and to generate a neural progenitor cell with limited developmental
potential. The cortex of a mitotic central brain neuroblast is highly polarized, and the role of
this polarity in neuroblast asymmetric division has been extensively reviewed [1–4].
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Discrete protein complexes are assembled in the apical and basal cortical domains. In
telophase, the apical protein complexes segregate into the self-renewing neuroblast, whereas
the basal protein complexes segregate into the neural progenitor cell. Both genetic and
correlative live imaging studies indicate that the apical protein complexes have dual
functions: promoting neuroblast identity and targeting the basal protein complexes into the
neural progenitor cell. The basal protein complexes function specifically in restricting the
neural progenitor cell potential [5]. Two classes of central brain neuroblast lineages (types I
and II) can be unambiguously identified based on the progenitor progeny generated and the
combination of cell fate markers expressed [6• •,7• •,8• •] (Figure 1). Below, we discuss the
functional properties of neural progenitor cells generated in the type I and type II neuroblast
lineages and the molecular mechanisms that restrict their developmental potential.

Neuroblasts and neural progenitor cells in the type I lineage
A type I neuroblast divides asymmetrically to generate a self-renewing daughter neuroblast
and a neural progenitor cell called a ganglion mother cell (GMC) which divides once to
produce two post-mitotic neurons [6• •,7• •,8• •]. During this asymmetric division, the basal
proteins Brain tumor and Prospero exclusively segregate into the GMC by binding to the
scaffolding protein Miranda, while Numb partitions into the GMC independently of
Miranda. The basal proteins remain asymmetrically segregated into GMCs in a telophase
brain tumor mutant neuroblast, and genetic clones derived from single brain tumor mutant
neuroblasts always contain one neuroblast and many neurons per clone (Figure 2). Thus,
Brain tumor is either dispensable or functionally redundant with other proteins in restricting
the GMC potential.

prospero encodes a homeodomain transcription factor, and plays a key role in specifying
neuronal and glial cell types in the developing nervous system [9–12]. Although Prospero is
expressed in neuroblasts, it is kept out of neuroblast nuclei by the combination of nuclear
exclusion and binding to the scaffolding protein Miranda [13–16]. The Miranda-Prospero
complex localizes to the basal cortex of a mitotic neuroblast in metaphase and
asymmetrically segregates into the GMC in telophase. Upon completion of cell division,
Miranda becomes proteolytically degraded, and Prospero is released from the cortex and
localizes to the GMC nuclei [17]. Nuclear Prospero restricts the GMC potential by
suppressing genes that promote the neuroblast identity and activating genes that promote
differentiation and cell cycle exit [12,18]. While mitotic prospero mutant type I neuroblasts
exhibit normal apical-basal cortical polarity, prospero mutant neuroblast lineage clones
contain almost exclusively neuroblasts at the expense of neurons [12,19–22•] (Figure 2).
Over-expression of Prospero leads to constitutive accumulation of Prospero in neuroblast
nuclei, triggering premature loss of neuroblasts. These data indicate that Prospero is
necessary and sufficient to restrict the GMC potential.

numb encodes an evolutionarily conserved protein essential for proper neuronal fate
specification in the developing nervous system [23–27]. Eighty-five percent of numb mutant
type I neuroblast lineage clones contain more than one neuroblast per clone despite
asymmetric segregation of Miranda into GMCs [8• •,28] (Figure 2). Furthermore, mutations
that perturb asymmetric segregation of Numb into GMCs lead to formation of ectopic
neuroblasts, a phenotype that can be suppressed by over-expression of Numb in neuroblasts
[28,29]. Thus, Numb likely restricts the GMC potential independent of Prospero. Fly and
mouse studies have shown that Numb suppresses Notch signaling in the developing nervous
system, raising the possibility that Numb might restrict the GMC potential by antagonizing
Notch signaling. Expression of multiple Notch reporters is detectable in neuroblasts but is
undetectable in GMCs in the wild type brain [8• •,30]. Additionally, ectopic expression of a
constitutively active form of Notch (Notchintra) perturbs neuroblast asymmetric divisions,
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leading to a massive increase in neuroblasts at the expense of neurons [8• •,30]. Unlike
Prospero, ectopic expression of Numb or knock-down of the Notch function by RNA
interference is insufficient to trigger premature loss of type I neuroblasts [8• •]. Thus,
inhibition of the Notch signaling by Numb is necessary but not sufficient to limit the GMC
potential.

Neuroblasts and neural progenitors in the type II lineage
A type II neuroblast divides asymmetrically to self-renew and generate an intermediate
neural progenitor cell (INP), previously referred to as a transit amplifying GMC, a
secondary neuroblast or an intermediate progenitor [6• •,7• •,8• •] (Figure 1). A newly born
INP is immature, and is arrested in the G2 phase of the cell cycle and must undergo
maturation, during which it acquires restricted developmental potential prior to resuming
proliferation [8• •]. A mature INP divides asymmetrically several times, each time self-
renewing by producing a daughter INP and a GMC. The basal proteins Brain tumor and
Numb, inherited from the asymmetrically dividing parental neuroblasts, establish the
restricted developmental potential in an immature INP [8• •]. Following completion of
maturation, the transcription factor Earmuff maintains the INP potential [22• •]. These
sequential mechanisms play key roles in restricting the INPs potential.

Establishment of the restricted developmental potential in INPs
While a wild-type type II neuroblast clone always contains one neuroblast, 3–5 immature
INPs and 20–30 INPs, a brain tumor mutant type II neuroblast clone contains almost
exclusively neuroblasts [8• •] (Figure 2). Interestingly, a mitotic brain tumor mutant type II
neuroblast shows normal apical-basal cortical polarity and asymmetric segregation of Numb
into immature INPs. Thus, ectopic type II neuroblasts in the brain tumor mutant brain likely
arise from de-differentiation of immature INPs that fail to acquire restricted developmental
potential despite inheriting Numb. These data suggest that Brain tumor likely functions
parallel to Numb to promote restriction of the INP potential. Over-expression of Brain tumor
does not effect the expression of a Notch reporter in neuroblasts, and removal of brain tumor
does not alter binary cell fate determination in the sensory organ precursor lineage, a system
highly sensitive to the loss of Notch function [8• •]. Together, these data strongly suggest that
Brain tumor is necessary but not sufficient to restrict the INP potential.

Despite showing normal apical-basal cortical polarity and asymmetric segregation of Brain
tumor into immature INPs, numb mutant type II neuroblast clones also consist of mostly
neuroblasts [8• •,28] (Figure 2). Thus, ectopic type II neuroblasts in the numb mutant brain
might also arise from de-differentiation of immature INPs due to aberrant activation of the
Notch signaling mechanism. Indeed, ectopic expression of Notchintra leads to ectopic type II
neuroblasts at the expense of immature INPs, whereas over-expression of Numb or knock-
down of the Notch function by RNA interference results in the premature loss of type II
neuroblasts [8• •]. Thus, by antagonizing Notch, Numb is necessary and sufficient to
establish the restricted developmental potential in immature INPs. Taken together, Brain
tumor and Numb function non-redundantly to establish the INP potential during maturation.

Maintenance of the restricted developmental potential in INPs
Following maturation, the INP potential requires an active mechanism mediated by the
earmuff gene for maintenance during limited rounds of asymmetric divisions [22• •]. While
the number of type I neuroblasts remain unchanged in the earmuff mutant brain, the
population of type II neuroblasts becomes drastically expanded (Figure 2). Surprisingly,
earmuff mutant mitotic type II neuroblasts exhibit normal apical-basal cortical polarity and
undergo repeated asymmetric divisions to self-renew and to generate immature INPs that
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mature into INPs. Furthermore, earmuff mutant mitotic INPs also exhibit normal cortical
polarity and asymmetric segregation of the basal proteins Brain tumor, Prospero and Numb
into GMCs that produce differentiated neurons. Thus, it is unlikely that ectopic type II
neuroblasts in the earmuff mutant brain arise from de-differentiation of immature INPs due
to failure to acquire restricted developmental potential. Analyses of the cell fate markers in
lineage clones derived from earmuff mutant type II neuroblasts indicate that following
maturation, INPs fail to maintain restricted developmental potential and de-differentiate
back into type II neuroblasts. Analyses of its promoter expression pattern reveal that earmuff
is undetectable in type II neuroblasts and immature INPs and instead, is detected in INPs.
Additionally, ectopic type II neuroblasts in the earmuff mutant brain can be suppressed by
restoring the expression of Earmuff in INPs under the control of its own promoter. Thus,
Earmuff specifically maintains the INP potential.

One way to maintain the restricted potential of INPs is to limit their proliferation capacity.
In the wild-type brain, an INP shows a limited proliferation capacity prior to exit from cell
cycle and terminal differentiation, processes likely regulated by nuclear localization of
Prospero [12,31]. While nuclear Prospero is rarely detected in INPs in the wild-type brain,
over-expression of Earmuff in neuroblasts or INPs can induce almost a ten-fold increase in
the frequency of nuclear Prospero and premature loss of these cells [22• •]. Furthermore,
INP-specific expression of Prospero can partially suppress the ectopic neuroblast phenotype
in the earmuff mutant brain. Moreover, prospero mutant INPs generate ectopic INPs at the
expense of neurons, but do not de-differentiate back into type II neuroblasts [22• •]. Thus, a
Prospero-dependent mechanism limits INP proliferation and promotes INP differentiation,
whereas a Prospero-independent mechanism prevents INPs from acquiring the type II
neuroblast identity.

Neuroblast-specific expression of Notchintra leads to ectopic neuroblasts at the expense of
GMCs and immature INPs, suggesting that down-regulation of Notch might be a general
mechanism to restrict the developmental potential in neural progenitor cells. Similarly,
ectopic expression of Notchintra in INPs is sufficient to trigger formation of ectopic type II
neuroblasts, raising the possibility that earmuff might restrict the developmental potential of
INPs by antagonizing Notch signaling [22• •]. In agreement with this hypothesis, knock-
down of Notch function by RNA interference partially suppresses the ectopic type II
neuroblast phenotype in the earmuff mutant brain. Furthermore, over-expression of Earmuff
in INPs can suppress the formation of ectopic type II neuroblasts induced by over-
expression of Notchintra. A recent study demonstrates that the vertebrate homologs of
Earmuff can suppress Notch signaling by directly binding to the promoter of a Notch target
gene Hes5 during mouse cortical neurogenesis [32•]. Notch signaling plays a critical role in
distinguishing neural stem cell from intermediate progenitors during both embryonic and
adult brain neurogenesis [32•,33]. Thus, Earmuff and its vertebrate homologs likely regulate
the progenitor cell potential during neurogenesis through antagonizing the Notch signaling.

Optic lobe neuroepithelial stem cells generate two types of neural
progenitor cells

Neuroepithelial stem cells in the developing optic lobe initially undergo symmetric divisions
to expand the stem cell population, then differentiate into neural progenitors that generate
terminally differentiated neurons through limited rounds of asymmetric divisions [34• •]
(Figure 1). This dynamic mechanism allows rapid generation of a large number of post-
mitotic progeny from a relatively small population of stem cells, and is widely used in the
context of development and regeneration [35,36]. Failure to properly restrict the
developmental potential in neuroepithelial stem cells and their progenitor progeny might
contribute to childhood tumors of epithelial origin [37,38]. Thus, understanding how
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developmental potential is precisely specified in neuroepithelial stem cells and neural
progenitor cells will likely provide novel insight into development and tumorigenesis.

The functional property of neuroepithelial stem cells changes dynamically in the outer
proliferation center of the developing optic lobe. Prior to the third larval instar, most
neuroepithelial stem cells predominantly undergo symmetric divisions to expand the stem
cell population, forming a C-shaped swath flanked with few neuroblasts at the medial edge
bordering the central brain. In the third larval instar, neuroepithelial stem cells progressively
transition into neuroblasts from the medial edge toward the lateral edge of the optic lobe,
leading to narrowing of the neuroepithelia and widening of the neuroblast swath [34• •,
39,40• •]. Neuroblasts in the optic lobe share many parallels with INPs in the central brain,
including expression of similar cell fate markers and asymmetric segregation of similar cell
polarity proteins. A neuroblast in the optic lobe also undergoes limited rounds of
asymmetric divisions to regenerate and to produce a GMC that gives rise to two terminally
differentiated progeny [21,34• •]. However, the molecular mechanism that restricts the
neuroblast potential in the optic lobe has yet to be investigated and will not be discussed
further. Below, we will focus on the molecular mechanism that regulates the neuroepithelial
stem cells.

Comparative expression profiling of micro-dissected neuroepithelia and neuroblasts from
the optic lobe suggests that the Notch signaling mechanism likely plays a key role in
maintaining the neuroepithelial stem cell identity [41• •]. Removal of the Notch function
triggers premature transition from neuroepithelia to neuroblasts, whereas constitutive
activation of Notch signaling prevents the transition. Thus, down-regulation of Notch
signaling is necessary and sufficient for the transition from neuroepithelia to neuroblasts in
the larval optic lobe.

How is the Notch signaling spatially and temporally regulated in the developing optic lobe
allowing synchronous transition from neuroepithelial stem cells to neuroblasts in a medial-
to- lateral manner? Neuroepithelial stem cells become transiently arrested in cell cycle prior
to reaching the transition zone where they lose their epithelial characteristics and assume the
stereotypical round neuroblast morphology [42• •]. The expression of delta, encoding a
Notch ligand, is detected at a high level in 1-2 rows of cells that are among those transiently
arrested in cell cycle [40• •,42• •]. Since Delta activates Notch signaling cell non-
autonomously and suppresses Notch signaling cell autonomously, over-expression or
removal of delta leads to both inhibition and acceleration of neuroblast formation. This
result suggests that the coordinated change between the level of Delta and the Notch
signaling provides the cue that times the transition from neuroepithelia to neuroblasts.
Interestingly, the proneural gene lethal of scute is also highly expressed in 1–2 rows of cells
that are among those transiently arrested in cell cycle [40• •,42• •]. While removal of the
lethal of scute function mildly delays the transition of neuroepithelial stem cells to
neuroblasts, over-expression of lethal of scute suppresses Notch signaling and promotes
premature transition. The dynamic integration of Delta and Lethal of scute specifies the
transition from neuroepithelia to neuroblasts spatially in the optic lobe by repressing the
Notch signaling.

The swath of neuroblasts widens synchronously from the medial edge toward the lateral
edge of the developing optic lobe, suggesting that the transition from neuroepithelia to
neuroblasts might also be temporally coordinated. Intriguingly, the output of the Janus
kinase (Jak/Stat) signaling mechanism coincides with the timing of neuroepithelia
transitioning into neuroblasts: Jak/Stat signaling is the highest at the lateral edge and the
lowest at the medial edge. Removal of the components in the Jak/Stat signaling mechanism
leads to precocious transition of neuroepithelia into neuroblasts, while constitutive activation
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of the Jak/Stat signaling delays the transition [40• •]. In addition, inactivation of the Fat-
Hippo signaling mechanism delays the transition from neuroepithelia to neuroblasts,
whereas constitutive activation of the Fat-Hippo signaling accelerates the transition at the
medial edge of neuroepithelia [42• •]. Taken together, the Jak/Stat and the Fat-Hippo
signaling mechanisms provide temporal control of the transition from neuroepithelia to
neuroblasts. More experiments will be necessary to elucidate whether these two signaling
pathways promote the transition through Notch or independent of Notch.

Discussion
The developmental potential in stem cells and progenitor cells must be precisely defined to
ensure normal development and prevent accumulation of aberrant stem-like cells. Studies of
the neural stem cell lineages in the developing Drosophila larval brain have begun to
unravel the molecular mechanisms underlying how neural stem cells and neural progenitor
cells are functionally distinguished at a single-cell resolution. Accumulating data point to
down-regulation of the Notch signaling by various mechanisms as a critical step in
establishing the restricted developmental potential in neural progenitor cells. However,
additional mechanisms mediated by Brain tumor or Prospero function non-redundantly to
the Notch signaling, and play important roles in restricting the developmental potential of
neural progenitor cells. Notch also distinguishes neural stem cells from neural progenitor
cells in the developing mouse brain [43•,44]. It will be interesting to test whether Brain
tumor and Prospero indeed function in parallel of the Notch signaling in restricting the
developmental potential in neural progenitor cells, and whether the vertebrate homologs of
Brain tumor or Prospero might also play similar roles in regulating neural progenitor cells
during mouse cortical neurogenesis. Emerging evidence strongly suggests that the Jak-Stat
and Fat-Hippo signaling mechanisms regulate the timing of restricting the developmental
potential in neuroepithelial stem cells. It will be important to determine whether these two
signaling mechanisms might promote the transition from neuroepithelia to neuroblasts in the
developing optic lobe via a Notch-dependent or -independent mechanism.
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Figure 1.
Neural stem cell lineages in the developing Drosophila larval brain. (a) The apical and basal
protein complexes unequally segregate during asymmetric divisions of neural stem/
progenitor cells in the type I and type II neuroblast lineage in the larval brain. Abbreviation:
aPKC: atypical Protein Kinase C; Mira: Miranda; Pros: Prospero; Brat: Brain tumor. (b) The
cell fate markers allow unambiguous identification of neural stem/progenitor cells in the
type I and type II neuroblast lineage in the larval brain. Abbreviation: Dpn: Deadpan; Ase:
Asense; Pros: Prospero; Erm: Earmuff. (c) The cell fate markers allow unambiguous
identification of neuroepithelial stem cells and progenitor cells in the optic lobe.
Abbreviation: Dl: Delta; EdU: 5-ethynyl-2′-deoxyuridine; L’sc: Lethal of scute; Dpn:
Deadpan; Ase: Asense; Pros: Prospero.
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Figure 2.
A summary of the identity of cells derived from type I and II neuroblasts lacking or over-
expressing key proteins required to restrict the progenitor cell potential. Type I neuroblasts
are Dpn+Ase+ whereas type II neuroblasts are Dpn+Ase-. Abbreviation: L-O-F: loss-of-
function; G-O-F: gain-of-function; Dpn: Deadpan; Ase: Asense; Pros: Prospero.
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