
Biophysical Journal Volume 100 February 2011 1129–1138 1129
Nonadditivity in Conformational Entropy upon Molecular Rigidification
Reveals a Universal Mechanism Affecting Folding Cooperativity
Oleg K. Vorov,† Dennis R. Livesay,‡* and Donald J. Jacobs†*
†Department of Physics and Optical Science and ‡Department of Bioinformatics and Genomics, University of North Carolina at Charlotte,
Charlotte, North Carolina
ABSTRACT Previously, we employed a Maxwell counting distance constraint model (McDCM) to describe a-helix formation in
polypeptides. Unlike classical helix-coil transition theories, the folding mechanism derives from nonadditivity in conformational
entropy caused by rigidification of molecular structure as intramolecular cross-linking interactions form along the backbone. For
example, when a hydrogen bond forms within a flexible region, both energy and conformational entropy decrease. However, no
conformational entropy is lost when the region is already rigid because atomic motions are not constrained further. Unlike clas-
sical zipper models, the same mechanism also describes a coil-to-b-hairpin transition. Special topological features of the helix
and hairpin structures allow theMcDCM to be solved exactly. Taking full advantage of the fact that Maxwell constraint counting is
a mean field approximation applied to the distribution of cross-linking interactions, we present an exact transfer matrix method
that does not require any special topological feature. Upon application of the model to proteins, cooperativity within the folding
transition is yet again appropriately described. Notwithstanding other contributing factors such as the hydrophobic effect, this
simple model identifies a universal mechanism for cooperativity within polypeptide and protein-folding transitions, and it eluci-
dates scaling laws describing hydrogen-bond patterns observed in secondary structure. In particular, the native state should
have roughly twice as many constraints as there are degrees of freedom in the coil state to ensure high fidelity in two-state
folding cooperativity, which is empirically observed.
INTRODUCTION
The past decade has seen an explosion in experimental (1–5)
and computational (6,7) studies on protein dynamics and
thermodynamic populations for better understanding of
functional mechanisms. From these studies, it is clear
entropy plays a key mechanistic role for cooperative struc-
tural transitions in proteins regarding allosteric events (8).
Moreover, entropy can also modulate cooperativity in ligand
binding by shifting the thermodynamic stability of
a complex through the accessible conformational ensemble
(9). It is known that changes in entropy and rigidification of
a protein are both modulated by osmolytes and other solva-
tion effects (10). Unfortunately, fundamental relationships
among entropy, thermodynamic stability, molecular rigidity,
and cooperativity remain poorly understood (11–14). In this
report, the thermodynamic nature of folding cooperativity is
addressed quantitatively.

Identification of the relevant degrees of freedom (DOF)
and constraints within a polypeptide chain is fundamental
to a complete understanding of the origin of cooperativity.
A completely unfolded chain constrained only by quenched
covalent bonding defines a flexible coil state. The number of
DOF decreases as the chain folds into a compact structure
because new constraints form due to cross-linking hydrogen
bonds (H-bonds) and packing. Levinthal’s paradox explains
why folding cooperativity is necessary for proteins to fold
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on observed timescales, rather than timescales that would
span longer than the age of the universe in its absence
(15). Folding cooperativity implies the progress of a chain
segment to fold into specific native structure depends on
the folding progress of other segments.

Specific microscopic mechanisms are commonly invoked
to model the folding process under native state conditions.
The process of a polypeptide to transition from a coil to
helix is modeled as a coupling between neighboring amino
acids that bias the conformation toward the a-helix state
through a nucleation/propagation process (16,17). To fold
proteins that are soluble in aqueous solution requires
a hydrophobic collapse (18,19), and this mechanism is
commonly thought to be the primary thermodynamic
driving force. However, the hydrophobic effect also applies
to the stability of the nonspecific molten globule collapsed
state, meaning it cannot be the sole driving force. Folding
processes require specific arrangement of atomic interac-
tions. Consequently, additional mechanisms must be
invoked to describe the self-organization of structure, such
as diffusion-collision (20,21) or posit of a hierarchical
sequence of events starting from coil to the onset of
secondary structure to tertiary structure (22–24).

A fundamental question is whether different microscopic
processes for self-organization share an underlying mecha-
nism that serves as the origin of folding cooperativity. Man-
ifested as different folding processes that could dramatically
affect kinetics (25), we present a simple model that suggests
the origin of folding cooperativity is a thermodynamic
driving force caused by the link between nonadditivity in
doi: 10.1016/j.bpj.2011.01.027
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FIGURE 1 (A) Using Maxwell constraint counting, the number of

internal degrees of freedom of a protein decreases linearly as the backbone

is cross-linked by distance constraints (dark coloring) until the Maxwell

level, M, is reached. Beyond M, all additional distance constraints are

redundant (light coloring). (B) For T z Tm, two basins in the free energy

landscape yield two-state behavior.
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conformational entropy and flexibility/rigidity within
molecular structure. By employing an all-atom-based
distance constraint model (DCM) within a mean field
approximation, the essential features of structural phase
transitions observed in proteins and polypeptides are
captured.

Based on profound insight of Maxwell (26), mechanical
stability of a network with uniformly distributed constraints
can be characterized by constraint counting, requiring no
detailed knowledge of the network. In modern terms,
Maxwell constraint counting is a mean field approximation
that treats the density of constraints within a network as
uniform, where local constraint density fluctuations are
ignored. Applied to proteins, Maxwell counting qualita-
tively describes the unfolding process as rigidity is lost
(27,28).

Although the connection between the rigidity transition
and two-state behavior was previously made using an athe-
rmal model (28), the McDCM differs fundamentally
because the quantitative link between independent
constraints and conformational entropy (29) allows a statis-
tical mechanics treatment for the calculation of thermody-
namic stability and thermodynamic response functions,
such as heat capacity. Recently (27), we demonstrated that
the Maxwell counting DCM (McDCM) well describes
cooperativity within the a-helix/coil transition, thus indi-
cating that this approximation is not too severe to capture
essential features of two-state folding.

Because atomic interactions form within the molecular
structure, this corresponds to constraints being added to
a network. Under the Maxwell counting approximation,
constraints added anywhere to the network remove DOF
associated with a drop in conformational entropy until the
network becomes rigid. Thereafter, additional constraints
are redundant and pay no entropic price. As a result,
Fig. 1 shows the expected competition between two free
energy basins that emerge at intermediate temperatures cor-
responding to the folded and unfolded states. An important
aspect of Fig. 1 is that it directly relates the microscopic
interactions that form within a protein to its thermodynamic
properties. In this report, we demonstrate that the McDCM
appropriately describes cooperativity within both polypep-
tide and protein-folding transitions. Moreover, our results
uncover scaling laws that maintain the universal applica-
bility of the approach.
DISTANCE CONSTRAINT MODEL

Based on a free energy decomposition scheme combined
with constraint theory (29), a distance constraint model
(DCM) is a statistical mechanical model that explicitly
accounts for nonadditivity in conformational entropy by
modeling atomic interactions as a network of distance
constraints. Fluctuating interactions are each associated
with a component energy and entropy. Although total
Biophysical Journal 100(4) 1129–1138
energy of a given network is the sum of constituent energy
components, the conformational entropy is nonadditive
(30,31) due to correlated motions.

Additive models neglect correlations in atomic motion
that extend throughout the protein and therefore overesti-
mate conformational entropy. In response, the DCM relates
nonadditivity of conformational entropy to rigid and flexible
regions within molecular structure depending on the
numbers and types of interactions that form. For example,
cross-linking disulfide bonds and H-bonds critically affect
the formation of flexible and rigid regions. Of particular
importance are interactions that break and form due to
thermodynamic fluctuations. A reduction in conformational
entropy does not occur when atomic interactions form
within rigid regions because atomic motions are not further
restricted. The DCM provides a fast estimate for the total
conformational entropy of the macromolecule (described
below) without recourse to computationally expensive
simulations that sample the available phase space.

Because atomic interactions form and break due to
thermal fluctuations, an ensemble of mechanical frame-
works must be considered. Each framework, F, is composed
of A atoms and C distance constraints. In the simplest case,
an energy of formation, 3k, and maximal entropy cost, Rgk,
are assigned to the kth distance constraint (for 1 % k % C).
Here, R is the universal gas constant and gk is a dimension-
less pure entropy. The energy of a framework, E(F), is
obtained by summing over all C energy contributions. The
entropy of a framework is given by

SðFÞ ¼ So � ScðFÞ;
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where So is the reference entropy of a polypeptide chain in the
coil state, and Sc(F) is the entropic cost of adding constraints.
The conformational entropy that the chain loses is Sc(F)¼ ln
(Uc), where Uc is the excluded phase space because of
constraints placed on atomic motions. In the case of one
constraint per interaction, it is convenient to define hk(F) ¼
1 or 0 when the kth constraint is present or not, respectively.
Whenever a constraint is present, it can be independent,
nk(F) ¼ 1, or redundant, nk(F) ¼ 0. Thus, (0,0), (1,0), and
(1,1) are valid combinations for (hk, nk). Quenched
constraints that model covalent bonds are critical to the prop-
erties of rigidity, but their energy and entropy contributions
are constant across all terms in the partition function, and
therefore factor out. Consequently, the free energy

GðFÞ ¼ ½EðFÞ � TSðFÞ� � Go

for framework F relative to the coil state is of interest, and it
is expressed in terms of fluctuating distance constraints only,
given by

GðFÞ ¼
XCðFÞ
k¼ 1

½3khkðFÞ þ RT gknkðFÞ�: (1)

The first term in Eq. 1 is linear over all distance constraints.
The second term in Eq. 1 is nonlinear because the kth

distance constraint does not reduce conformational entropy
when it is placed in a rigid region (i.e., nk(F) ¼ 0). The
formation of a rigid region will depend upon all other
distance constraints within the network through a nonlocal
collective effect. The details regarding size, shape, and
location of rigid and flexible regions depend on the number
of constraints, C(F), and how they are distributed within
framework F.

All possible arrangements of constraints define the
ensemble of mechanical frameworks. Independent and
redundant constraints are identified within a given frame-
work using graph-rigidity algorithms (32,33). Summing
over the entropy contributions from independent distance
constraints (i.e., only for the terms with nk(F) ¼ 1) yields
an upper bound estimate for S(F). However, in graph-
rigidity algorithms, the order that constraints are placed
in the network affects which constraint is identified as
independent or redundant. As such, many different upper-
bound estimates can be obtained. The best estimate that
can be made is to determine the lowest possible upper-
bound estimate.

The DCM obtains the lowest possible upper-bound
estimate for conformational entropy by first sort-ordering
the constraints in terms of their maximal entropy cost, gk,
from greatest to smallest. Second, in the graph-rigidity algo-
rithm, distance constraints are placed one at a time in the
network with the preferential ordering that gk R gkþ1.
Details can be found in Jacobs et al. (29). Note that although
the mathematical process of preferentially placing
constraints in the network is required to estimate a thermo-
dynamic quantity, the kinetics of constraints forming is
irrelevant. Because conformational entropy is a thermody-
namic state function, all that matters is which constraints
are present. The complex issue of accounting for nonaddi-
tivity in conformational entropy, S(F), is rendered to a sort-
ing process involving all constraints within the network, and
summing only over the greatest entropy loss contributions
from Ci independent constraints (Ci % C). From constraint
theory (34), the number of internal DOF, J, in a system of
A atoms in d dimensions with C constraints, of which
Cr constraints are redundant, is given by

J ¼ dA� dðd þ 1Þ=2� Cþ Cr: (2)

Note that Ci ¼ C – Cr. Graph-rigidity algorithms calculate
Ci based on recursively adding constraints to a network
one at a time (32,33), which conveniently couples to the pre-
sorting process. Consequently, S(F) decreases as the number
of DOF decreases.

Using standard formulas from statistical mechanics, the
probability for framework F is tied to its Boltzmann weight
normalized by the partition function, Q, given by

PðFÞ ¼ exp

 
�
XCðFÞ
k¼ 1

nkðFÞ gk

!
exp

 
� b

XCðFÞ
k¼ 1

hkðFÞ 3k
!

1

Q
;

(3)

where b ¼ 1/RT. Calculating Q is a formidable task due
to the astronomical number of graph-rigidity calculations
on all accessible mechanical frameworks. Nevertheless,
the most probable state (or competitive states across
a first-order transition) dominates the total contribution of
the sum. Hence, only a tiny fraction of frameworks have
appreciable contribution to the partition function, and char-
acterize physical observables. For this reason, a template
structure is used to define fluctuating interactions, Nf, that
are allowed to break and form independently to create a -
subensemble of 2Nf accessible frameworks. The native struc-
ture is appropriate to use as a template for describing protein
stability and the folding/unfolding process (25). Using
this native state ensemble, efficient computational methods
were developed to calculate Q accurately (29,35).
With phenomenological parameters, the DCM robustly
reproduces excess heat capacity curves for protein folding
(36). In addition, myriad applications involving studies of
protein stability, flexibility, and their relationships lead to
successful comparison with experiments (37–42).

Despite demonstrated utility of the DCM, an important
question is whether the lowest upper-bound estimate for
conformational entropy provides sufficient accuracy to
predict protein stability. This concern is warranted because
the model requires fitting parameters, similar to how the Lif-
son and Roig model (16) is applied to the helix-coil transi-
tion. However, this concern is mitigated by the robustness of
the fitting parameters across a diverse set of systems. More-
over, by comparing to an exact geometry-based rigidity
Biophysical Journal 100(4) 1129–1138
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calculation (43) , it was shown that the key approximation
involving the lowest upper bound estimate for conforma-
tional entropy involves systematic errors that are compen-
sated by transferable parameters. In short, the DCM
captures essential mechanisms of cooperativity, and it is
not simply a matter of curve fitting.
MAXWELL COUNTING

In previous works the approach described above was shown
to be quantitatively robust in modeling folding cooperativity
across a variety of polypeptide and protein length scales,
including: the a-helix/coil transition (27,29,44), the b-turn/
coil transition (45), and folding in globular protein structures
(35,36). However, due to varying scope, these investigations
decomposed molecular structure into mechanical frame-
works differently, and used different methods to calculate
the partition function. For example, a transfer matrix method
was developed for the a-helix/coil transition due to its one-
dimensional character (29), whereas a hybrid method
combining mean-field theory with Monte Carlo sampling
was developed for three-dimensional protein structures (35).

The process of characterizing network rigidity is greatly
simplified within the McDCM because its mean-field char-
acter allows J to be determined by Maxwell counting (26)
by replacing Eq. 2 with the formula

J ¼ min ð3A� 6� C; 0Þ; (4)

where d ¼ 3 reflects three-dimensional space. The meaning
of Eq. 4 is that all constraints are assumed to be independent
until the entire molecular structure is globally rigid, at which
point all further constraints are redundant. Consequently, the
number of independent DOF within the network is a
decreasing linear function in the number of constraints, C,
present in the network until the number of internal DOF is
zero, as shown in Fig. 1 A. We define the Maxwell level,M,
as the minimum value of C that rigidifies the network corre-
sponding to when J ¼ 0 and Cr ¼ 0. The network is flexible
when C<M, just rigid at C¼M, and overconstrained when
C > M. When the network is overconstrained, the number
of redundant constraints is given as Cr ¼ C – M. All the
constraints that are recursively added one at a time to the
network before theMaxwell level is reached are independent,
whereas the constraints added thereafter are redundant.

Ignoring local constraint density fluctuations, Maxwell
counting approximates the structure as globally flexible or
globally rigid, rendering the graph-rigidity calculation into
a counting exercise. Combining the preferential rank
ordering of entropies, and theMaxwell level as a global crite-
rion for when constraints are independent (flexible state) or
redundant (rigid state), the concept of an entropy spectrum
defined by accessible {gk}, where the indexing is such that
gk R gkþ1 for all interactions proves convenient (27). The
McDCM is translated into a process that fills entropy levels
within a spectrum from bottom to top as constraints are
Biophysical Journal 100(4) 1129–1138
added. With the entropy spectrum and constraint filling
procedure, a transfer matrix method to calculate Q for arbi-
trary molecular geometries becomes possible.
TRANSFER MATRIX METHOD

The partition function for a molecular system with Nf

number of fluctuating interactions can be calculated exactly
using a transfer matrix method within the McDCM. To this
end, we define the statistical weights, Bk, for independent
constraints, and bk, for redundant constraints, based on the
Boltzmann factors given by

Bk ¼ expð � b 3k � gkÞ and bk ¼ expð�b 3kÞ; (5)

where redundant constraints do not have an entropic penalty.
We also introduce the generating function

fgen ¼
YNf

k¼ 1

ð1þ BkÞ; (6)

where 1 represents no constraint. For one distance constraint
per interaction, fgen expands into 2Nf terms, each of which is
a product of C statistical weights where 0 % C % Nf. For
a network with Nf % M, all constraints are independent,
and Q ¼ fgen. For an overconstrained network with Nf >
M, any term with C >M will contain redundant constraints,
causing Q s fgen.

To obtain Q, nonadditivity in entropy is accounted for by
replacing Bk / bk for all the constraints added beyond the
Maxwell level. Fig. 2 illustrates the procedure for a network
with three fluctuating interactions (i.e., Nf ¼ 3), and thus Q
will consist of eight terms. The number of Bk/ bk substitu-
tions in fgen increases exponentially as a function of Cr. The
transfer matrix method facilitates exact summation over all
terms in the partition function in ~(Nf)

2 operations (vs. ~ 2Nf).
Three possible cases can occur when the kth constraint is

considered; the constraint is 1), not present, or when the
constraint is present, then it is 2), independent or it is 3),
redundant. To generate all three cases, a transfer matrix,
Tk, is constructed as

Tk ¼ 1þWk; (7)

where 1 is the unit matrix. The matrix, Wk, is sparse with
nonzero statistical weights that are offset below the diagonal.
It is useful to work within a subspace defined by fluctuating
constraints of dimension Df. For one distance constraint per
interaction, the dimension of the subspace is Df ¼ Nf þ 1.
In the example shown in Fig. 2,Df¼ 4,M¼ 2, and themacro-
state vector is generated using the matrices

1 ¼

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA and Wk ¼

0
BB@

0 0 0 0

Bk 0 0 0

0 Bk 0 0

0 0 bk 0

1
CCA;

(8)



FIGURE 2 Schematic calculation of the partition function for a two-

dimensional four-atom system. (A) The system includes three quenched

(solid lines) and Nf ¼ 3 fluctuating (dashed lines) constraints with entropies

g1 > g2 > g3. Labels for the fluctuating constraints are provided. All 23

frameworks are accessible microstates. (B) Statistical weights defining

the eight terms in Q are grouped into four rows indicating 0, 1, 2, or 3 fluc-

tuating constraints are present. Summing over all components in the macro-

state vector gives Q. As indicated, the maximally interacting microstate has

one redundant constraint, whereas in this example all other constraints are

independent.
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where k ¼ 1, 2, 3 labels the constraints with g1 > g2 > g3.
The Bkweights defined in Eq. 5 appear along the offset diag-
onal in Wk until M is reached; thereafter the constraints are
redundant with bk weights. Subsequently, the partition func-
tion for the example in Fig. 2 is given as

Q ¼ ð1; 1; 1; 1Þ T3 T2 T1

0
BB@

1

0

0

0

1
CCA; (9)

where the multiplication order of the transfer matrix for
kth constraint inherits its entropy-rank ordering. When
a distance constraint is added to a networkwithC constraints,
the new partition function,Q(Cþ 1), is related to the current
partition function, Q(C), through matrix multiplication that
accounts for all possible ways that C can increment by 1.

In general, an interaction may consist of more than
one distance constraint. In this case, the transfer matrix
represents an interaction rather than a single distance
constraint. Then, when the ith interaction forms, associated
with ci distance constraints, the transfer matrix, Ti, is em-
ployed to relate the partition function Q(C þ ci) relative
to the current partition function Q(C). For a general molec-
ular structure with Nf fluctuating interactions, the partition
function is given as

Q ¼ hlj
YNf

i¼ 1

Tijri; (10)

where all entries in the left row vector, hlj, are one, and for
the right column vector, jri, all entries are zero, except the
first entry is one. The ith interaction has a formation energy,
3i, and each independent distance constraint contributes the
same maximal entropy loss, gi. The product of Nf number of
Ti transfer matrices are ordered such that gi > giþ1. To fill
the appropriate levels of the entropy spectrum by constraint
filling, the matrix elements of Wi are given as

h jjWijki ¼ dj�ci ;kexpð�b3iÞ
� expð � ½minðmaxðM � k; 0Þ; ciÞ� giÞ;

(11)

where dk0, k is the Krönecker delta. AgainWi is sparse, where
all matrix elements are zero except those that increase the
number of constraints in the systemby ciwhen the interaction
forms. If C % M � ci, then all the distance constraints are
independent. When the number of constraints within the
network is within ci constraints from the Maxwell level, it
can happen that one or more of these constraints will be
redundant. The second exponential term in Eq. 11. accounts
for all the possible ways the total number of distance
constraints can exceed the Maxwell level. The dimension
of the state space (length of themacrostate vector) is given by

Df ¼ 1þ
X
i

ci:

The calculation of Q for a 1000-residue protein (i.e., DF ~
104) takes just a fraction of a second.
RESULTS AND DISCUSSION

Here, the McDCM uses effective parameters to keep it iden-
tical to the model employed in Vorov et al. (27) so that trans-
ferability of parameters between polypeptides and proteins
can be assessed. Namely, 1), native torsions and 2), H-bonds
are modeled. In the McDCM, H-bonds include salt bridges.
Packing is indirectly modeled through the locking of torsion
angles into a native conformation that reduces the available
phase space. Native torsions are modeled as one distance
constraint with degenerate parameters (3nt, gnt). H-bonds
are modeled as three distance constraints with degenerate
parameters (3hb, ghb). The physical regime corresponds to
ghb > gnt. These four effective parameters, {3nt, gnt, 3hb,
ghb}, represent the smallest number of fitting parameters
that are found to robustly fit to excess heat capacity curves.
The coupling between these two modes of competing inter-
actions suggest there may be a scaling law that controls their
relative numbers in structural motifs as a function of number
of residues.
Scaling laws

The free chain reference state has the maximum number of
DOF. Formation of native torsions or H-bonds will lower
energy, and reduce conformational entropy as the number
of DOF decrease. Assuming all native torsion interactions
are present, but no H-bonds are formed, the structure will
Biophysical Journal 100(4) 1129–1138
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be marginally rigid. Adding native H-bonds to this state will
overconstrain the network. The balance between the number
of constraints and DOF determines, respectively, the param-
eters Df and M. For polypeptides, the number of native
(backbone) H-bonds is related to the number of residues,
Nr, by Nhb ¼ Nr � 4, and the number of backbone f and
j torsions is given by Nnt ¼ 2Nr. This gives Df z 5Nr and
M z 0.40 Df. For the a-helix geometry, side-chain interac-
tions are not included because they do not substantially
participate in cross-linking interactions with limited side-
chain packing.

Conversely, side-chain interactions must be considered in
proteins due to the native structure’s tight atomic packing.
From sequence alone, M is readily determined as the
number of free dihedral angles assuming no cross-linking,
M ¼ Nnt, which now includes side-chain dihedrals. It is
found that Nnt ~ 4.8 Nr for each of the four proteins analyzed
here, and generally across globular proteins. This scaling
estimate is then used as input to the McDCM. Similarly,
the number of H-bonds within the native state scales as
Nhb z 1/3 M, where the proportionality constant of 1/3
appears in globular protein structures. These relationships
lead to Df z 9 Nr and M z 0.53 Df. That is, the Maxwell
level, compared to the total number of possible native
distance constraints, is approximately half-filling in both
proteins and polypeptides.
FIGURE 3 (A) The McDCM (solid lines) reproduce experimental Cp

curves across a diverse set of proteins (up-triangles, lysozyme; circles,

thioredoxin; squares, ubiquitin; and down-triangles, Protein G). (B) The

free energy landscapes for protein G (top to bottom) at T ¼ 310, 355, and

391 K. At Tm ¼ 355 K, the native and disordered state basins are compet-

itive, whereas at T 1 Tm, one state is clearly more probable than the other.

Dashed lines are provided to guide the eye.

TABLE 1 Summary data for the four considered proteins

Protein Nres Nhb Nnt 3hb 3nt ghb gnt

Protein G 56 269 90 2.10 0.70 1.15 0.59

Ubiquitin 76 365 122 2.30 0.78 1.05 0.49

Thioredoxin 108 518 173 2.15 0.42 1.20 0.42

Lysozyme 130 624 208 2.17 0.56 1.25 0.40

Percent deviation 3.9 25.8 7.3 18.1

Energy parameters have units of kcal/mol, and entropy parameters are

dimensionless. The last row gives the percent deviation in the model param-

eters.
McDCM parameters

The McDCM incorporates the scaling relations found above
to set the subspace dimension and the Maxwell level. The
only information about the protein that determines the trans-
fer matrix is the number of residues, and the specific type of
structural motif (i.e., a-helix or globular protein). The
McDCM is applied to four single-domain proteins. Model
parameters are determined by fitting to differential scanning
calorimetry Cp data (46–50) shown in Fig. 3 A. The
McDCM reproduces the Cp curves markedly well only
when the fitting parameters have physically realistic values,
although the parameters are not expected to be transferable.
Nevertheless, parameter values are consistent across the
four considered proteins (compare to Table 1 and Fig. S1
in the Supporting Material). Including our prior results on
four polypeptides that undergo the a-helix to coil transition
(27), the three parameters {3nt, gnt, ghb} are seen to be qual-
itatively conserved.

As expected, the least transferable parameter is 3hb,
because it reflects an overall increase in residue solvent
accessibility in a helical polypeptide compared to a protein.
This effective H-bond energy simultaneously accounts
for the stability gained upon formation of an intramolecular
H-bond, 3i, and the cost of breaking competing interactions
with solvent, u. As such, the net H-bond energy is given by
3hb ¼ 3i � u. The decrease in 3hb between polypeptides and
proteins is explained by differences within u. In polypeptides
Biophysical Journal 100(4) 1129–1138
and protein positions near the solvent interface, the stability
gained from an intramolecular H-bond is similar to the ener-
getic cost of breaking solvent H-bonds (51), meaning 3i ~ u.
However, within the core, compensating H-bonds to solvent
are unlikely to occur. Consequently, the average solvent
H-bond energy is larger in protein structures, uprot > upoly,
as the double-sided arrow in Fig. S1 shows.



FIGURE 4 Using Protein G as an example, the straddling barrier height

is plotted versus M=Nf at the respective Tm for each. (Insets) Adding

H-bonds (smaller values of M=Nf ) separates the basins, thus increasing

the barrier height. In addition to the native and unfolded basins, additional

states (dashed) are possible, but their probabilities are generally zero; yet

they do emerge when the barrier height is increased as M=Nf/0.

Conversely, the barrier height is suppressed asM=Nf/1 because the basins

share greater overlap, transforming into a continuous transition, and then

eventually no transition without any H-bonds. (Highlighted) The wild-

type value (M=Nf ¼ 0:502) for Protein G.
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Two-state behavior from nonadditivity

Although the fit to experimental Cp curves parameterize the
model (compare to Fig. 3A), this result is not a demonstration
of folding cooperativity. Rather, two-state behavior in the
free energy landscape is required to show coexistence of
the folded and unfolded states near the melting temperature,
Tm. As an exemplar case, the free energy of protein G is
shown in Fig. 3 B as a function of number of constraints
formed, where G(C) ¼ �RT ln [Q(C)] and Q(C) is an entry
in the macrostate vector component as Fig. 2 B depicts. At
low temperature, the folded state is stabilized by an increase
in the number of constraints by lowering energy. At high
temperature, the entropy cost of forming interactions
surpasses the energetic loss, leading to an unfolded confor-
mational state. One caveat is that if the cross links are too
weak they will not reduce atomic motions appreciably, and
folding cooperativity can be substantially reduced or elimi-
nated. Thus, the strength of an atomic interaction is impor-
tant, where (3i, gi) represents (depth, width) of a potential
energy well. Due to the narrow range of physically realistic
parameter values, the most interesting aspects of folding
cooperativity derive from properties of constraint networks.

Nonadditivity in conformational entropy occurs because
of two options in constraint topology. Either the network
is globally flexible with all independent constraints, or it
is globally rigid when the number of constraints exceeds
the Maxwell level. As previously shown, the McDCM
cannot exhibit two-state behavior when there is an insuffi-
cient number of cross links for a rigidity transition to take
place (27). The empirical scaling laws described above
ensure a sufficient number of constraints to facilitate
a rigidity transition from a globally floppy to rigid network.
In particular, the ratio M=Nfz0:5 indicates that proteins
and polypeptides are well balanced in the number of native
distance constraints for cooperative behavior. As a mathe-
matical result, assuming M is fixed, with Nnt and Nhb as
independent variables, the transfer matrix yields maximum
cooperativity at M=Nf ¼ 1=2, and as shown previously for
the helix-coil transition (27), folding cooperativity is lost
under the extreme conditions where M=Nf/1 or
M=Nf/0. Therefore, the degree of nonadditivity is linked
to the relationship between M and Nf. However, M and Nf

cannot be independently varied, because the number of fluc-
tuating constraints, Nf, depends on the size of the polypep-
tide or protein. Recall that

Nf ¼ Nnt þ 3Nhb;

where Nnt is fixed based on the size of the protein, andMh
Nnt. Adjusting M=Nf can be achieved by changing the
number of native H-bonds. Because a native structure
supports more H-bonds, the ratio M=Nf will decrease.
However, even in the limit thatM=Nf/0, not all constraints
will be redundant, because at least M number of constraints
will always be independent.
Interestingly, M=Nfz0:40 for the a-helix and M=Nfz
0:53 for globular proteins are markedly close to 0.5 for
maximum cooperativity. As M=Nf deviates away from
empirically observed values, McDCM cannot reproduce Cp

with physically realistic parameters, if at all. These results
suggest that the nature of H-bond patterns within proteins
and polypeptides have evolved to favor a high-degree of
cooperativity through structural characteristics that support
an optimal balance between constraints and DOF.

For the same size protein (fixed M), it is interesting to
consider what happens when the number of H-bonds in
the native structure deviates from the observed scaling
law. As discussed above, the ratio M=Nf will depend on
the number of native H-bonds. Using the fixed parameters
in Table 1, Fig. 4 demonstrates that the free energy barrier
between the native and unfolded basins decreases as M=Nf

increases (lower number of H-bonds), and eventually the
two basins gradually merge together until no transition
occurs. Of course, the Cp curves do not match experiment
when we deviate from the empirically determined ratio.
Conversely, as more native H-bonds are added
(M=Nf/0), the free energy barrier increases as the two
basins are separated further. At some point, an intermediate
state forms (compare to insets in Fig. 4), where multiphasic
behavior can appear by reducing the ratio M=Nf by as little
as 15%. However, upon initial onset of the intermediate
state, the barrier flattens and the transition quantitatively
responds as a two-state folding process. This result is
consistent with observation that single domain globular
proteins are typically two-state folders.
Biophysical Journal 100(4) 1129–1138
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There are other important features in the free energy
landscapes. Unfolded proteins are not predicted to be
random coils, meaning C s 0 within the unfolded basin.
For example, protein G in the unfolded state at Tm has
~220 less DOF than the reference coil state. Similarly,
proteins are predicted to have many native interactions
broken in the folded state. Both DG and DGz values that
occur at intermediate temperatures are appropriately small
compared to the overall scale. These results underscore
the importance of fluctuations in the number of constraints,
and suggest that nonadditivity in conformational entropy
upon molecular rigidification is a universal mechanism
affecting folding cooperativity. Although solvation effects
contribute to the folding process (i.e., hydrophobic
collapse), it is a mechanism that does not depend on the
formation of specific intramolecular interactions character-
istic of atomic structure. Conversely, molecular rigidifica-
tion explains two-state behavior in both polypeptide and
protein systems related to the dramatic loss in conforma-
tional entropy.
The McDCM in perspective

The McDCM captures the essential physics of folding coop-
erativity, and due to its simplicity, it takes less than a second
of CPU-time for a 1000-residue protein. Improvements can
be made by using energy/entropy parameters that depend on
local environments in the template structure, use more than
one template structure, and/or generalize the transfer matrix
to couple constraint density to solvent exposure. In related
published works (35–42), the more accurate minimal
DCM (mDCM) that employs graph-rigidity algorithms has
been extensively used. Before closing, results from the
McDCM are compared to those from mDCM, and the
need for an extended DCM is discussed.

The most severe approximation in the McDCM is that
distance constraints are uniformly distributed within molec-
ular structure. For this discussion, assume favorable interac-
tions readily lower energy and conformational entropy. At
low constraint density, the drop in energy from favorable
interactions cannot overcome the concomitant drop in
conformational entropy. At high constraint density, a large
decrease in energy occurs without a concomitant drop in
conformational entropy due to redundancy. This means
that nucleation of a rigid structure occurs when there is suffi-
cient number of redundant constraints. Separation of regions
of low and high constraint density promotes folding cooper-
ativity as an emergent property caused by enthalpy-entropy
compensation among molecular interactions that are
coupled through network rigidity. In proteins, secondary
structure is rich in constraints whereas loops will have lower
than average constraint density. The same enthalpy-entropy
compensation mechanism applies in the heterogeneously
distributed regions that are flexible or rigid, leading to
altered properties of the transition state (36). What signifi-
Biophysical Journal 100(4) 1129–1138
cance does variation in atomic-interaction effectiveness
and fluctuations in spatial constraint density play?

The McDCM predicts the rigidity transition defined by
the Maxwell level, M, to coincide with the thermodynamic
transition state, and GTS ¼ �RT ln [Q(M)] is at the cusp
that separates two free energy wells, as shown in Fig. 3 B
for protein. Rader et al. (28) suggested that globular proteins
exhibit this coincidence. The McDCM reveals that this coin-
cidence occurs whenever there is nearly perfect two-state
folding cooperativity. More generally, the rigidity transition
and transition state do not coincide as we reported previ-
ously (35,36,40) because the size, shape, and locations of
rigid clusters fluctuate within a protein as atomic interac-
tions break and form due to thermal fluctuations. Fluctua-
tions in rigid cluster size reach a maximum at the rigidity
transition, similar to the peak in heat capacity that is used
to define the melting temperature. The mDCM shows that
heterogeneity in the effectiveness of atomic interactions
and spatial variation in rigid and flexible regions affects
the transition state barrier’s height and location. In the
mDCM, the rigidity transition can take place before or after
the transition state as more distance constraints are added.
Interestingly, the folded basin can occur before the rigidity
transition (40), indicating that the mDCM allows a protein
in its native state to have a flexible folding core. This latter
effect has been observed experimentally (12).

A drawback of the McDCM is that detailed information
about the rigid cluster decomposition and identification of
regions of correlated motion is lost due to the mean field
approximation. Nevertheless, it demonstrates that a critical
aspect of modeling folding cooperativity is to account for
nonadditivity in conformational entropy that links toflexibility
and rigidity propertieswithinmolecular structure.Whereas the
hydrophobic effect (52) in aqueous solution thermodynami-
cally drives globular compaction, rigidification of molecular
structure is a universal mechanism that thermodynamically
drives self-organization in the folding process. Consequently,
modelingonly solvationeffects yields an incomplete picture of
folding cooperativity because it does not discriminate between
specific and nonspecific (molten globule) collapse (53).

Due to elective simplifications, the McDCM and mDCM
are also incomplete models because they implicitly model
solvation effects using nontransferable phenomenological
parameters. Although McDCM is an oversimplified version
of mDCM, it is important because it highlights an essential
mechanical mechanism generally ignored in free energy
decomposition schemes. Going forward, network rigidity
will be coupled with explicit solvation effects using a more
sophisticated DCM that explicitly accounts for solvation,
pH, hydrophobic effects, and rigidity (unpublished).
CONCLUSIONS

A transfer matrix method was developed to calculate the
partition function of a DCM within a mean field
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approximation where molecular structure is described by
uniform flexibility or rigidity characteristics. This approxi-
mation replaces the graph-rigidity algorithm by Maxwell
constraint counting. Based on this simplification, an entropy
spectrum is defined by the native state where entropy levels
are occupied or unoccupied because distance constraints
representing native interactions are present or not, respec-
tively. This Maxwell counting DCM, referred to as
McDCM, underscores the link between nonadditivity in
conformational entropy to flexibility and rigidity in molec-
ular structure. Moreover, this effect is unique in its ability
to appropriately model cooperativity across length and
complexity scales, as illustrated by the helix-coil and
protein folding transitions, thus suggesting an important
physical significance. For example, scaling laws are found
that connect H-bond patterns observed in secondary struc-
ture to folding cooperativity. A ratio near 1:2 for the DOF
in a coil state to maximum distance constraints in the native
state will have a high fidelity two-state folding cooperativ-
ity. We suggest maintaining this balance is an evolutionary
constraint that leads to the ubiquity of cooperativity.
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