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Abstract
Summary—GO::TermFinder comprises a set of object-oriented Perl modules for accessing Gene
Ontology (GO) information and evaluating and visualizing the collective annotation of a list of
genes to GO terms. It can be used to draw conclusions from microarray and other biological data,
calculating the statistical significance of each annotation. GO::TermFinder can be used on any
system on which Perl can be run, either as a command line application, in single or batch mode, or
as a web-based CGI script.

Availability—The full source code and documentation for GO::TermFinder are freely available
from http://search.cpan.org/dist/GO-TermFinder/

Contact—sherlock@genome.stanford.edu

INTRODUCTION: MOTIVATION AND DESIGN
The amount of data that can be produced by experimental platforms such as microarrays can
be overwhelming. A typical microarray experiment can generate many lists of genes, each
containing dozens or hundreds of genes of interest. The challenge to the biologist is to
determine whether there is a common theme to those genes, which will help in interpretation
of the experiment. The Gene Ontology (GO) Consortium (Ashburner et al., 2000) provides
controlled vocabularies, which model Biological Process, Molecular Function and Cellular
Component, that are structured into directed acyclic graphs (DAGs). Gene products may be
annotated to one or more GO nodes, and because of the structure of GO, a gene annotated to
a given node is thus also annotated to all ancestral nodes (parent, grandparent, etc.) of that
specific node.

THE APPLICATION PROGRAMMING INTERFACE (API)
GO:TermFinder comprises an extensible set of object-oriented Perl modules that can be
used to determine the significance of a GO annotation to a list of genes, and to access GO
information and annotation information through a well-documented API. The software
defines two abstract classes, OntologyProvider and AnnotationProvider, which provide APIs
for handling ontology and annotation information, respectively. Also provided are concrete
implementations of both of these abstract classes that parse the annotation and ontology files
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provided by the GO Consortium (www.geneontology.org), as shown in Figure 1. This
software design defines a plug-in architecture, which allows the creation of alternate
concrete subclasses, which for instance might read from a database instead of flat files.

CALCULATION OF STATISTICAL SIGNIFICANCE
To determine whether any GO terms annotate a specified list of genes at a frequency greater
than that would be expected by chance, GO::TermFinder calculates a P-value using the
hypergeometric distribution:

In this equation, N is the total number of genes in the background distribution, M is the
number of genes within that distribution that are annotated (either directly or indirectly) to
the node of interest, n is the size of the list of genes of interest and k is the number of genes
within that list which are annotated to the node. The background distribution by default is all
the genes within a given annotation file, though the software also allows a user-defined
background distribution, such that biases in the sampling population (e.g. the genes
represented on a microarray) can be accounted for correctly. The hypergeometric
distribution is sampling without replacement—for instance, consider a bag with 500 red and
500 green beads. If 20 beads were selected randomly, and beads were not replaced after each
selection, and 17 were green, we would use the hypergeometric distribution to calculate the
P-value as the probability of picking 17, or more, green beads from 20, given that there are
500 of each in the background distribution.

MULTIPLE HYPOTHESIS CORRECTION
In a statistical experiment, a P-value is considered significant if it is less than that
experiment's chosen alpha value. The alpha value specifies the accepted level of certainty at
which a result is considered statistically significant when it is in fact merely the result of
random chance. For example, in an experiment using an alpha value of 0.05, there isa1in20
that any given true ‘null’ test would seem significant just by chance. When multiple
hypotheses are tested, each hypothesis has a probability of being falsely determined to be
significant. If 10 hypotheses are tested and the alpha level is 0.05, then the chance of finding
at least one apparently significant difference due to random chance equals 0.4 (which is 1 −
0.9510).

Correction for multiple hypotheses attempts to maintain the probability of falsely finding
any significant hypothesis at the alpha value. The most common multiple hypothesis
correction method used is the Bonferroni correction, whereby the alpha value is simply
divided by the number of tests, and the overall chance of finding any false positive remains
the same as in a single hypothesis experiment. The Bonferroni correction assumes that the
tests are independent, and is usually considered a conservative adjustment (Sokal and Rohlf,
1995). In our case, the hypotheses (GO nodes) are not independent, because the nodes
themselves are structured in a DAG and it is thus not clear whether a Bonferroni adjustment
would be appropriate. To determine whether the Bonferroni correction is appropriate for
multiple hypothesis correction, we implemented a simulation-based correction within
GO::TermFinder. For each simulation, the same number of genes as were provided in the
real data were picked randomly from the list of genes that define the background
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distribution, and P-values were calculated as normal. Adjusted P-values for the real data
were calculated for each node as the fraction of 1000 null-hypothesis simulations having any
node with a P-value as good or better than the P-value for that node, where the null
hypothesis states that a randomly chosen list of genes should not be significantly annotated
by any GO nodes. Examining the output of simulations, to determine a correction factor that
would need to be applied to uncorrected P-values, and comparing it to the Bonferroni
adjusted P-values, we determined that the Bonferroni adjustment is in fact somewhat liberal,
rather than conservative. Both simulation and Bonferroni are provided as options for
multiple hypothesis correction, though while the simulation based analysis is the most
accurate, it also takes three orders of magnitude longer to run, as 1000 independent
simulations are needed.

FALSE DISCOVERY RATES
A concern with classical multiple hypothesis correction is that it aims to control the
probability of making even a single type I error (a false positive) within the tested family of
hypotheses. This can be overly restrictive, and result in lots of false negatives instead. An
alternative methodology for multiple hypothesis testing is to calculate the false discovery
rate (FDR), which is the expected proportion of true null hypotheses rejected out of the total
number of null hypotheses rejected (Benjamini and Hochberg, 1995), i.e. it is the proportion
of hypotheses deemed to be significant, that are not actually significant. Based on 50
simulations, GO::TermFinder calculates the FDR for each hypothesis from the real data as
the average number of nodes per simulation that have a P-value as good or better than the
real node's P-value, divided by the number of nodes in the real data that have a P-value as
good or better than that P-value. Comparison of P-values corrected by simulation versus the
FDR (Table 1) shows the conservative nature of classic multiple hypothesis testing. Using a
cutoff of 5% false discovery in this example results in 27 hypotheses being chosen as
significant with an FDR of 1.63%, and less than 1 expected false positive. However, the P-
value at that level is 0.137, higher than that would be typically used as a cutoff. Using a P-
value cutoff of 0.05 would result in picking 22 hypotheses as significant, suggesting that
using the corrected P-value is likely to result in more false negatives.

VISUALIZATION OF RESULTS
The GO::TermFinder set of libraries includes a module, GO::View, for visualizing the
output of an analysis of a set of genes for enriched GO terms. The module is configurable
such that both nodes in the output, and genes annotated to those nodes can be linked to
URLs, with their identifiers embedded in those URLs. Additionally, the colors of the nodes
themselves are based on the calculated P-values, so that attention is drawn to the most
significant nodes. Thus, the output data can be easily and intuitively viewed and explored in
a web browser, as shown in Figure 2, which was generated from the ‘methionine cluster’,
which is discussed below.

EXAMPLE OF A GO::TERMFINDER ANALYSIS OF MICROARRAY DATA
Spellman et al. (1998) characterized the yeast cell cycle using microarrays. The authors
called one set of coherently regulated genes the ‘methionine cluster’ because it contained
many genes whose name begins with ‘MET’ (Figure 4b in that paper, containing ICY2,
MET11, MXR1, SAM3, MET28, STR3, MMP1, MET1, SER33, MHT1, MET14, MET16,
MET3, MET10, ECM17, MET2, MUP1, MET6—note that seven of the genes in this cluster
have been named since that study). GO::TermFinder identifies (using the Biological Process
ontology, and the SGD-provided gene associations file on May 3, 2004) many GO nodes
with significant Bonferroni-adjusted P-values for this list. The top three nodes are: sulfur
metabolism (2.75e−21), sulfur amino acid metabolism (1.5e−19) and methionine
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metabolism (3.39e−16). While the initial naming of the cluster as the methionine cluster was
close to the mark, GO::TermFinder is more informative, and provides a robust statistical
basis on which to draw conclusions about observations from microarray data. In all, there
are 23 GO terms that are selected as significant using a 5% FDR as the cut-off, and at that
level, the number of expected false positives would be less than 1, with an FDR of 2.17%.

INCLUDED TOOLS
GO::TermFinder includes within its distribution a number of useful tools for enabling users
to use the functionality provided within the libraries. Two batch processing tools exist, that
allow the analysis of any number of files, each of which contain a list of genes. One of these
simply produces text output, while the other generates html pages with browsable
representations of the GO, as depicted in Figure 2. Additionally, there are some simple tools
for retrieving GO information, such as the parents, children or ancestors of a particular node.
Although potentially useful in their own right, these tools are also useful examples for
programmers wanting to implement their own client scripts of these libraries.

COMPARABLE SOFTWARE
While this work was in progress, many similar tools have become available. These include
FunSpec (Robinson et al., 2002), Onto-Express (Draghici et al., 2003a,b; Khatri et al., 2002)
and FatiGO (Al-Shahrour et al., 2004) which are web applications; GoMiner (Zeeberg et al.,
03), a Java application; GeneMerge (Castillo Davis and Hartl, 2003), which is a standalone
Perl script whose source is available; and FuncAssociate (Berriz et al., 2003), which is a
web application, comprising Perl and C code that are available for download. Each of these
supports the calculation of P-values for annotations for a given set of genes, with various
multiple hypothesis correction strategies, and some have support for FDR calculation.
Although there is a significant overlap in functionality, GO::TermFinder has some unique
attributes not found in these other tools. First, the source code for GO::TermFinder is fully
and freely available under a very permissive Open Source license (the MIT license), which
is not the case for any of the above tools. Those whose source code is available (GeneMerge
and FuncAssociate) are available under more restrictive licenses. Second, GO::TermFinder
is modular so it is easy to incorporate into other applications or analysis pipelines, or to
improve or modify its behavior—additionally, the MIT license asserts no ownership on any
improvements made to the software. Third, GO::TermFinder defines an API for accessing
GO and Annotation information, which is well documented, and can easily be used by Perl
programmers. Fourth, GO::TermFinder can create browsable, visual presentations of the
significant nodes, making it very easy for biologists to interpret their data. Finally,
GO::TermFinder includes a number of tools, as described above. Thus despite the
considerable overlap with other tools, we believe GO::TermFinder to be a significant
contribution.

DISCUSSION
The ability to determine rapidly significant GO annotations for a list of genes, generated by
any means, is a powerful tool in a biologist's arsenal in these days of genomic scale biology.
GO::TermFinder is flexible, extensible and easy to reuse and incorporate into analysis
pipelines. In future, we will write data adaptors to the CHADO schema, which is being
designed as a generic model organism database (www.gmod.org). This will enable new
databases to incorporate the GO::TermFinder functionality without additional coding.
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Fig. 1.
Simplified UML diagram of the architecture of GO::TermFinder and associated modules.
Public methods defined by the abstract base class, GO::OntologyProvider, which are
implemented by concrete subclasses, such as the GO::OntologyProvider::OntologyParser
class that we have written, return either a single GO::Node, or an array of GO::Node
instances. A subset of the public interface to GO::Node is shown, illustrating the various
methods that exist to query the attributes of a GO::Node, as well as to traverse the GO
structure.
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Fig. 2.
Visualizing output from GO::TermFinder. GO graph layout that includes the significant GO
nodes annotated by the ‘methioine cluster’, which contains ICY2, MET11, MXR1, SAM3,
MET28, STR3, MMP1, MET1, SER33, MHT1, MET14, MET16, MET3, MET10, ECM17,
MET2, MUP1 and MET6. The color of the nodes is an indication of their Bonferroni
corrected P-value (orange <= 1e-10; yellow 1e-10 to 1e-8; green 1e-8 to 1e-6; cyan 1e-6 to
1e-4; blue 1e-4 to 1e-2; tan > 0.01).
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