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An extended version of the equalization-cancellation (EC) model of binaural processing is described

and applied to speech intelligibility tasks in the presence of multiple maskers. The model incorporates

time-varying jitters, both in time and amplitude, and implements the equalization and cancellation

operations in each frequency band independently. The model is consistent with the original EC model

in predicting tone-detection performance for a large set of configurations. When the model is applied

to speech, the speech intelligibility index is used to predict speech intelligibility performance in a

variety of conditions. Specific conditions addressed include different types of maskers, different num-

bers of maskers, and different spatial locations of maskers. Model predictions are compared with em-

pirical measurements reported by Hawley et al. [J. Acoust. Soc. Am. 115, 833–843 (2004)] and by

Marrone et al. [J. Acoust. Soc. Am. 124, 1146–1158 (2008)]. The model succeeds in predicting

speech intelligibility performance when maskers are speech-shaped noise or broadband-modulated

speech-shaped noise but fails when the maskers are speech or reversed speech.
VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3502458]
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I. INTRODUCTION

In everyday life, processing with two ears provides an

improved analysis of the sound environment relative to either

ear alone. This binaural advantage appears in a large number

of circumstances, including the well-known binaural detection

advantage for cases in which the target and masker have

different interaural relationships. More generally, significant

binaural advantages are observed when there are multiple

sources, which are referred to as the “cocktail party effect”

(Cherry, 1953). In such an environment, people can focus on

an individual conversation with some effort while other con-

versations are going on simultaneously. The work presented

in this paper aims to model human performance in a subset of

these speech intelligibility tasks and investigate (1) how much

binaural advantage can be predicted by an extended version

of the equalization-cancellation (EC) model, and (2) what

components of the model need to be further developed to

improve the modeling of human speech perception.

In order to understand the binaural advantage, many

experiments have been performed for a variety of listening

tasks and numerous data sets have been collected (cf. review

chapters by Durlach and Colburn, 1978; Bronkhorst, 2000;

Stern and Trahiotis, 1996). These experiments include simple

tone-detection tasks (e.g., Blodgett et al., 1962; Jeffress et al.,
1962; Colburn and Durlach, 1965; Green, 1966; Rabiner et al.,
1966) and more complicated speech-intelligibility tasks in

various environments (e.g., Cherry, 1953; Hawley et al.,
2004; Marrone et al., 2008). Several theoretical descriptions

of binaural processing have been developed over the past

half century in connection with this empirical work (cf.

reviews by Colburn and Durlach, 1978; Colburn, 1995; Stern

and Trahiotis, 1996). In a series of papers particularly rele-

vant to the current study, Durlach developed the EC model

(Durlach, 1963, 1972). With a relatively simple structure,

the EC model predicts a large set of binaural masking level

differences (BMLDs), where the BMLD is defined as the dif-

ference in the detection threshold between diotic and

dichotic conditions.

Following the success of modeling efforts in simple

tone-detection tasks, the models have been extended to inter-

pret experimental data in speech intelligibility tasks. For

example, Zurek (1992) used equations for the dependence of

binaural thresholds from the modeling of Colburn (1977)

together with the Articulation Index (ANSI, 1969) to predict

the improvement in intelligibility when a speech signal is

masked by a single noise masker in anechoic space. In par-

ticular, Zurek predicted the dependence of the intelligibility

threshold on the angle of the masking noise (relative to the

angle of the speech source) and found that predicted behav-

ior matched available threshold measurements. Culling et al.
(2004) used the EC model to interpret intelligibility perform-

ance in two experiments in a simulated anechoic environ-

ment involving multiple speech-shaped noise (SSN) maskers.

In the first experiment, they measured binaural speech recep-

tion thresholds (SRTs) for target speech located straight

ahead and masked by three noise maskers at different loca-

tions in a simulated anechoic environment. In the second

experiment, they created diotic noise maskers and attenuated

the noise spectrum level at each frequency in proportion to

the observed binaural advantages in tonal masking data in the
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same environment. They found that the diotic performance in

the second experiment was approximately the same as the

dichotic performance in the first experiment. Even though

there were no binaural advantages in the second experiment

(since the straight-ahead speech source generated diotic target

speech and the noise was diotic), the masker attenuation

expected from the binaural advantages resulted in equivalent

performance. This led to the conclusion that binaural speech-

intelligibility benefits are predictable from narrowband detec-

tion benefits, even with multiple maskers. More recently,

Beutelmann and Brand (2006) applied an extended EC model

to predict performance in speech intelligibility tasks in several

environments, ranging from anechoic space to a cafeteria hall,

for both normal-hearing and hearing-impaired subjects. Their

task involved a single noise masker presented at different azi-

muths with a speech target presented in front. Their model

consisted of a gammatone filterbank, an independent EC pro-

cess in each frequency band, a broadband signal resynthesis

process, and the ANSI standard speech intelligibility index

(SII) calculator. Internal noise was applied to parallel process-

ing units so that each unit provided an SRT prediction. The

final SRT prediction was then obtained by averaging the

SRTs across all the units. Their model predicted human per-

formance reasonably well for the conditions considered in

their study, with an overall correlation coefficient of 0.95

between the empirical measurements and the predictions.

Beutelmann et al. (2010) further extended this study to incor-

porate short-time strategies to predict the cases involving non-

stationary interferers. Taken together, these previous studies

have demonstrated that the BMLD data for tonal targets are

fundamental and capture a great deal of the advantage that the

binaural system affords in both detection tasks and speech-

intelligibility tasks.

The present work describes an EC-based model with

time-varying jitters and applied to a wide range of experi-

ments. We consider speech intelligibility in situations where

there are multiple interfering sounds (maskers) at different

locations, as well as different types of interfering sounds. We

compare the predictions of our model to the speech intelligi-

bility data of Hawley et al. (2004) and Marrone et al. (2008).

This work differs from previous work both in the details

of the model developed and the data to which the model is

applied. One notable example is that this model uses time-

varying jitters, which have not been proposed in any previous

modeling work. Further discussion of these differences

appears in later sections of this paper after the details of our

model and the applications of our model have been presented.

The remainder of this paper is organized into three sec-

tions. Section II specifies in detail the assumptions for the EC

model used in this paper. Section III applies the model to cer-

tain speech intelligibility data, after checking that its predic-

tions for tone detection data are adequate. Finally, Sec. IV

presents a general discussion of the model, including sugges-

tions for future work.

II. MODEL SPECIFICATION

A block diagram of the EC model as used in this paper

is shown in Fig. 1. The input signals on the left side of the

figure are the acoustic inputs; bandpass peripheral filtering is

applied to these inputs for each frequency band (the outputs

of only one band are shown); time-varying jitters in both

time delay and level are applied independently to each filter

output; EC processing is applied in parallel with the monau-

ral channels; and a final decision device (DEC) selects, for

each frequency band, the signal with the best signal-to-noise

ratio (SNR) (from the binaural and monaural pathways)1 and

combines information across frequency bands.

A. Peripheral processing

The peripheral processing of the auditory system is

simulated by a set of bandpass filters followed by random jit-

ters. Since our primary intent is to model speech intelligibil-

ity performance, we followed the idea of Zurek (1992) to

use the SII to make our predictions and choose the peripheral

filters to be compatible with the ANSI standard. Specifically,

the filterbank includes 18, one-third-octave eighth-order But-

terworth filters, with the center frequencies ranging from

160 Hz to 8 kHz spaced uniformly on a logarithmic scale. In

order to explore the sensitivity of the modeling to the choice

of peripheral filters, the predicted thresholds for tones were

calculated using two sets of filterbanks, the Butterworth fil-

terbank and the gammatone filterbank implemented using

the MATLAB Auditory Toolbox (Slaney, 1998). After compar-

ing model performance in tone detection using both types of

filterbank, we believe gammatone filters are a better choice,

especially for frequencies below 300 Hz; however, one-third

octave Butterworth filters are adequate substitutes for gam-

matone filters, especially within the frequency range of inter-

est for speech.2

After the filterbank, the output of every frequency band

is jittered independently on the left and right sides. The jitter

is assumed to be independent for every frequency band. Spe-

cifically, the outputs of the ith filter pair, XLi(t) and XRi(t),
are jittered in both time and level, with jitter values denoted

as dLi(t) and �Li(t) for the left ear and dRi(t) and �Ri(t) for the

right ear, so that the jittered waveforms are given by

LiðtÞ ¼ ð1þ �LiðtÞÞ XLiðt� dLiðtÞÞ and

RiðtÞ ¼ ð1þ �RiðtÞÞ XRiðt� dRiðtÞÞ: (1)

FIG. 1. System diagram of the EC model used in this paper. Note that the

processing of a single frequency band is shown, and that the subscript i,
used in the text to distinguish individual bands, is omitted from the notation

in this figure for ease of reading. As described in the text, the equalization

parameters are chosen independently for each frequency band and held con-

stant throughout the duration of the waveform. The time argument t for the

jitter parameters indicates that the time and level jitters are time-varying

(chosen independently for each frequency band and for each time sample).
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The jitter is chosen independently for every time sample of

the waveform.3 As in the original EC model, the time and

amplitude jitters are characterized as zero-mean, Gaussian

random variables with standard deviations that are independ-

ent of frequency. The values of these standard deviations

(for all times, all frequency bands, and all conditions) were

assumed to be the same as those chosen by Durlach (1963,

1972). In particular, the standard deviation rd of the zero-

mean time jitter is equal to 105 ls,4 and the standard devia-

tion r� of the zero-mean amplitude jitter is equal to 0.25.

Note that the jittered outputs, Li(t) and Ri(t), are used for

both the binaural and monaural pathways, as assumed previ-

ously (e.g., Green, 1966). For each frequency band, the jit-

tered signals for the monaural pathways are sent directly to

the DEC whereas the jittered signals for the binaural path-

way are further processed through the equalization and can-

cellation system.

B. Binaural processing: Equalization and cancellation
operations

In the computation of the binaural (EC) output, it is

assumed that the processor in every frequency band uses a

pair of equalization parameters, soi and aoi, to minimize the

residual energy of the masker after cancellation in that band,

where soi is the optimal interaural time equalization parame-

ter and aoi is the optimal interaural amplitude equalization

parameter in the ith frequency band. Both parameters are

chosen independently for each frequency band and assumed

to be constant throughout the duration of the waveform.

These assumptions are generally consistent with the modi-

fied EC-models of Culling and Summerfield (1995) and of

Beutelmann and Brand (2006) and are consistent with the

experimental results of Akeroyd (2004).

It is assumed that the listeners implicitly know the best

choice of the equalization parameters, either from a priori
information about the noise or by searching all possible

equalization parameters and choosing the best, consistent

with Durlach (1972). For example, a priori information may

be obtained if, at the beginning of the experiment, the exper-

imenter chooses to present the listeners with the noise alone.

When a priori information of the interaural parameters of

the noise is not available, listeners may determine these pa-

rameters by scanning across all choices and determining

which choice leads to the perception of a tone (when the tar-

get is present in the stimulus) or silence (when the target is

not present), consistent with the conclusion of Bernstein and

Trahiotis (1997). The strategy that listeners use in the tone

detection or speech intelligibility tasks is still an open ques-

tion. The predictions here assume an optimal choice of

equalization parameters for each band without specifying

how they are chosen.

With respect to the interaural time equalization, it is

assumed here, consistent with assumptions in Durlach

(1972), that the repertoire of equalization transformations is

limited to a fixed range of interaural time delays. More spe-

cifically, it is assumed that the available interaural time

delays in each frequency band are limited to values less than

or equal to a half cycle of the center frequency of the band.

With respect to the interaural amplitude equalization,

the assumption that ao is adjustable is different than the

assumption in the model described in Durlach (1972), where

it was assumed that interaural amplitude is not equalized. As

discussed further below, both of these assumptions are over-

simplifications and are contradicted by some of the available

data; however, the simplicity of these assumptions is advan-

tageous for understanding the tradeoffs and alternatives.

Combining all these assumptions, one can write the re-

sidual noise energy of the masker in each band after cancel-

lation by s and a as follows (with the subscript i omitted for

simplicity):

ENYðs; aÞ ¼
ðT

0

a�1=2nL tþ s
2

� �
� a1=2nR t� s

2

� �h i2

dt

¼ a�1

ðT

0

n2
L tþ s

2

� �
dtþ a

ðT

0

n2
R t� s

2

� �
dt

� 2

ðT

0

nL tþ s
2

� �
nR t� s

2

� �
dt

¼ a�1ENL þ aENR � 2qðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENLENR

p
: (2)

In these equations, the variables nL and nR represent the jit-

tered masker for the left ear and right ear, respectively; ENL,

ENR, and ENY represent the energies of nL, nR and the residual

masker over a burst of duration T, respectively; and q(s) rep-

resents the normalized cross-correlation function of the jit-

tered masker for the left ear and right ear

qðsÞ ¼

ðT

0

nLðtÞnRðt� sÞ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

n2
LðtÞ dt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

n2
RðtÞ dt

s

¼

ðT

0

nLðtÞnRðt� sÞ dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENLENR

p : (3)

Note that q(s) always has a magnitude less than unity, i.e.,

jq(s)j � 1.

With aN defined by

aN ¼
ffiffiffiffiffiffiffiffi
ENL

ENR

r
; (4)

the residual noise energy ENY of the EC output can be written as

ENYðs; aÞ ¼
a2

N

a
þ a� 2qðsÞ aN

� �
ENR: (5)

To determine the optimal values of the internal parame-

ters, so and ao, i.e., the values that minimize the residual

noise energy, it is easy to verify that the optimal internal pa-

rameter so should be the value of s that maximizes q(s),

so ¼ argmax
s
fqðsÞg; sj j < p

x0

(6)

and the optimal internal parameter ao is the value of a that

minimizes ða2
N=aÞ þ a, i.e.,

ao ¼ aN: (7)
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With these optimal values, the minimum output noise energy

is given by

min
s;a
fENYðs; aÞg ¼ ENYðso; aNÞ ¼ 2ð1� qðsoÞÞaNENR

¼ 2ð1� qmaxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENLENR

p
; (8)

where qmax denotes the maximum of q(s).

Note that the effects of the internal noise are only

implicit in these equations. The time-varying internal jitters

cannot be fully compensated for by the equalization parame-

ters because the equalization parameters are assumed to be

constant throughout the duration of the waveform. The jitter

has a significant impact on the value of q(s), so that q(s) is

reduced from unity even when the input noise is diotic and

requires no equalization transformation. Similarly, the jitter

also influences the values of ENL and ENR.

In the cancellation step, the output of the ith band, Yi(t),
is generated by subtracting the signals equalized using the

optimal internal parameters, resulting in the equation

YiðtÞ ¼ a�1=2
o Li tþ so

2

� �
� a1=2

o Ri t� so

2

� �
; (9)

where so and ao also vary from band to band. Note that the

processing is structured so that signals from both ears are

transformed symmetrically in order to achieve left-right

symmetry, i.e., if the left ear and right ear inputs are

switched, the cancellation output remains the same.

C. Decision device operation

The DEC in the model receives all the waveforms from

both the monaural and binaural pathways as inputs. It selects

the input that provides the best SNR in each frequency band,

and then further processes the resulting cross-frequency array,

in a manner depending on the task, to provide the final decision.

For tone detection tasks, the DEC only operates on the

frequency band of the target tone, and the model output leads

directly to the BMLD prediction. Consistent with Durlach

(1963), the BMLD is calculated by taking the difference of

the SNR (in decibels) between the binaural pathway and the

better-ear monaural pathway. If the SNR on the binaural

pathway is lower than that in one of the monaural pathways,

i.e., if binaural performance is worse than monaural perform-

ance, the BMLD is predicted to be 0 dB.

For speech intelligibility tasks, the DEC combines infor-

mation from all the frequency bands. The SRT, defined as the

level corresponding to 50% correct, is calculated using SII-

based procedures. Specifically, the SII value is calculated

using a linear weighted combination of the SNRs between

�15 and þ15 dB from all the frequency bands, with the

weights given by ANSI S3.5 (1997). The final SRT output is

calculated from the SII value, as specified in the next section.

D. Computational methods

The processing outlined above, including the time-

varying jitters in each frequency band and the EC opera-

tion, was implemented in MATLAB. The temporal sequences

of values for the time and amplitude jitters were chosen for

each trial, and multiple trials were used to generate thresh-

old values, from which means and standard deviations were

computed. All waveforms, including tones, noise maskers,

and speech sentences, were sampled at 20 kHz. The tone

waveforms were generated digitally with a length of 2.5 s,

and the speech waveforms were randomly chosen from the

Harvard IEEE sentences (Rothauser et al., 1969), consistent

with Hawley et al. (2004), or from the coordinate response

matrix (CRM) corpus (Bolia et al., 2000), consistent with

Marrone et al. (2008). Time and amplitude jitters were gen-

erated by a Gaussian random generator and applied to each

sample of the waveform in each frequency band independ-

ently. More specifically, each sample of the jittered wave-

form was determined by taking a sample of the unjittered

waveform in its neighborhood according to the time jitter,

and then scaling it by the amplitude jitter, as described in

Eq. (1). The time jitters were rounded to the nearest integer

multiple of the sampling period (50 ls) to avoid interpola-

tion. After jittering, optimal equalization parameters were

calculated from the noise-alone waveforms, according to

Eqs. (6) and (7), separately for each frequency band on that

trial. The optimal time equalization parameter, so, was

found by searching for the delay s that gave the maximum

of the normalized cross-correlation, q(s), within a cycle in

that band; the optimal amplitude equalization parameter,

ao, was calculated by taking the square root of the energy

ratio for the jittered maskers. The optimal equalization pa-

rameters were kept constant over the whole duration of the

waveform, so they could not fully compensate for the time-

varying internal jitters. After the equalization step, the can-

cellation step was implemented according to Eq. (9) using

the optimal equalization parameters found previously.

Finally, both the cancellation output from the binaural path-

way and the jittered waveforms from the monaural path-

ways were sent to the DEC.

When the model was applied to speech intelligibility

tasks, with maskers in different spatial locations relative to

the straight-ahead target, the criterion value for the SII

was chosen for a specific type and number of maskers to

match the reference condition and used to predict all other

spatial conditions with the same type and number of

maskers presented at different locations. The reference

condition was taken by default to be the condition in which

the target and masker(s) were co-located in front. For

example, Fig. 2 shows two SNR-SII curves calculated

from the model, one for the reference condition and one

for a test condition. The criterion was chosen such that

the SRT of the reference condition matched the empirical

data, and this criterion value was used to find the SRT

of the prediction condition. With this approach, the SII

criterion is the only free parameter, and, as is well known,

its value depends on speech materials, environments, and

the difficulty of the speech task (Kryter, 1962). The under-

lying assumption is that, for a specific set of target

speech materials, a specific type of masker, and a specific

experimental protocol, the same SII value gives the same

performance.
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III. PREDICTIONS FOR PSYCHOACOUSTIC DATA

In this section, the predictions of the model outlined in

Sec. II are presented for speech intelligibility tasks. We con-

sider tasks in which the number of maskers may be greater

than one, the masking sources may be located at various azi-

muths relative to the listener’s head, and the maskers may be

various types of noises or speech. In addition, in order to test

our methods for deriving predictions, results for some classic

tone-in-noise detection cases are considered prior to consid-

eration of the speech-intelligibility cases.

A. Detection of a tonal target in a background
consisting of a single noise source

In Fig. 3, predictions from the current model (calculated

using the computational methods described above) are com-

pared with Durlach’s theoretical predictions (Durlach, 1972)

for the four basic configurations NoSp, NpSo, NoSm, and

NpSm. (Consistent with traditional notation, the symbols N
and S denote the noise masker and the tonal-signal target,

respectively; the subscript o or p denote the interaural phase,

and the subscript m stands for the monaural presentation to

one ear only.) Each point shown in the figure is the mean of

100 repetitions of the computation with different samples

of white Gaussian noise waveforms and different samples of

time-varying jitters. Only the mean is provided in the figure

because the standard error estimated from the 100 repetitions

is less than 0.2 dB. This figure illustrates the consistency of

our model predictions (symbols) with Durlach’s predictions

(lines) for these basic configurations, and therefore, because

Durlach’s predictions were found to be consistent with the

data (e.g., see Durlach, 1972), with the data themselves.

As indicated above, the purpose of the comparison

shown in Fig. 3 is to increase confidence in the computa-

tional methods used to derive the predictions of speech intel-

ligibility in complex environments described in Sec. III B 1.

Note, however, that for the relatively simple case of detect-

ing a tone in the background of a single white Gaussian noise

masker, an analytic expression (approximation) of the

BMLD predictions of our extended EC model, denoted

B([aS, sS] j [aN, sN]), can be derived without the use of simu-

lations. The derivation and comparisons to the predictions of

Durlach (1972) for the tone-detection case are provided in a

supplemental document.5

It should also be noted that the current model gives con-

sistent predictions with the “Revised Model” of Durlach

(1972) only when the level of the binaural masker is the

same in both ears (i.e., aN ¼ 1), as in all of the cases consid-

ered in Fig. 3. When the masker level is not equal interaur-

ally (aN = 1), the current model gives different predictions

from the original predictions given by Durlach. This differ-

ence is caused by the assumption of level equalization in the

current model. In the original model (Durlach, 1972), no

such equalization was allowed. In general, neither of these

approaches is adequate for predicting the observed depend-

ence of the BMLD on the interaural level difference.6

B. Intelligibility of a speech source in multiple
maskers

1. Model predictions for data from Hawley et al. (2004)

Hawley et al. (2004) measured the SRTs in a simulated

anechoic space for a sentence masked by one, two, or three

interferers at different locations for four types of interferers.

The types of interferers included SSN, broadband-modulated

speech-shaped noise (modulated SSN), speech, and reversed

speech. Both the target speech and maskers were from the

same male talker, and the measurements included SRTs for

both binaural listening and monaural listening. We created the

same experimental scenarios virtually. We convolved head-

related impulse responses from the CIPIC database (Algazi

et al., 2001) with different types of interferers and with speech

sentences from the Harvard IEEE corpus, consistent with

what Hawley and colleagues did in their experiments. These

virtual stimuli were used as the input waveforms to the EC

model simulations described above.

We used a single SII criterion parameter to fit the model

prediction to the empirical measurements in Hawley et al.
(2004) for all the cases, including binaural and monaural

modes, different types of maskers, and different spatial

FIG. 2. Example SII-SNR calculations. The solid line shows SII as a func-

tion of SNR for the reference condition, and the dashed line shows the SII

for another condition. Since the SRT of the reference condition, denoted as

SRTr, is specified by the data, the criterion is determined and can be used to

predict the SRT for the other condition, denoted as SRTp.

FIG. 3. Model predictions for tone detection in white Gaussian noise for the

cases NoSp, NpSo, NoSm, and NpSm, where N and S denote the noise masker

and the tonal-signal target, respectively, the subscript o and p denote the

interaural phase, and the subscript m stands for the monaural presentation to

one ear only. The curves are the theoretical predictions made by Durlach

(1972). Although model predictions (symbols) are mean values of simula-

tions with random jitter, the standard errors are so small (about 0.2 dB) that

the predicted values are essentially deterministic.
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locations. The best fit SII criterion for all cases is 0.331, and

the RMS (root-mean-square) error for this overall prediction

is 3.6 dB. The best fits and associated rms-errors for each

type of masker are shown below in Fig. 4.

As seen in this figure, the model can best interpret the

data for the SSN and modulated SSN cases. When the

maskers are speech or reversed speech, the performance of

the model is substantially degraded. This trend in model per-

formance is not too surprising because it is generally agreed

that the perception of a speech target in speech-like maskers

involves more than just simple energetic masking (Freyman

et al., 2001; Durlach et al., 2003). In particular, different

types of maskers probably cause different kinds and/or

amounts of cognitive confusion. Moreover, the interaction

between different spatial attributes and different masker

types may cause the cognitive load to diversify even more.

For example, when the maskers are co-located in front with

the target, speech maskers may cause much more cognitive

load than SSN maskers do. In order to investigate the model

performance in each condition carefully, we fitted different

SII criteria separately for different numbers of maskers.

The model predictions are shown in Figs. 5–8 along

with the empirical measurements, with one figure for each of

the four types of maskers considered (SSN, modulated SSN,

speech, and reversed speech). Each of the four figures

includes both binaural and monaural conditions (top row and

bottom row, respectively), as well as conditions with differ-

ent numbers of maskers (so that the three columns corre-

spond to one, two, and three maskers, respectively). An SII

criterion was fitted to each panel separately, as shown on the

top right corner of the panel. The monaural conditions show

the performances and predictions for the left ear; predictions

are obtained by jittering the left ear waveforms on the mon-

aural pathway and using them in the SII calculation with no

binaural processing. In all conditions, the target speech was

presented from the front (0�), and the maskers were pre-

sented from various locations, as indicated on the abscissa of

each panel. For the one-interferer case (left column), the

interferer was presented at 0�, �30�, 60�, or 90�; for the

two-interferers case (middle column), the interferers were

presented at (0�,0�), (�30�,90�), ( 60�,90�), or (90�,90�); for

the three-interferers case (right column), the interferers were

presented at (0�,0�,0�), (�30�,60�,90�), (30�,60�,90�), or

(90�,90�,90�). Positive azimuths are to the listener’s right

side, and negative azimuths are to the listener’s left side.

Each prediction plotted is the mean of 100 repetitions (with

different target and masker samples), and the standard error

across repetitions, not shown here, is less than 0.1 dB.

In each panel, the SII criterion is chosen to match the pre-

diction with the empirical data for the co-located case (plotted

as the left-most point in each graph). Although matching to

the co-located case is not necessarily the best in the least-

mean-square-error sense, this criterion value gives us a quanti-

tative measure of the difficulty of the task under co-located

conditions and a better clue to what kind of difficulty listeners

might be experiencing in these cases. The values of the

matching SII criteria are discussed below for each case.

For the monaural listening conditions, the model predic-

tions match fairly well to the measured thresholds. The

FIG. 4. The best fit SII value and associated rms-error for each type of

masker.

FIG. 5. Simulated and measured

SRTs for SSN masker cases in a

simulated anechoic environment.

Symbols are the measurements from

Hawley et al. (2004), and the error

bar is one standard error. The curves

are the predictions of our model. No

error bars are shown for the predic-

tions because the standard errors are

too small (less than 1 dB). The num-

ber in the upper right corner of each

panel gives the value of the SII crite-

rion used for that panel (chosen to

match prediction and data for the ref-

erence case in that panel).
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predictions account for 95.7% of the variance in the empiri-

cal data for the monaural conditions (with an rms-error of

about 1.0 dB). In Figs. 6–8, the fitted values of the SII crite-

rion for the single-masker conditions (left columns) are

smaller than those for the multiple-masker conditions, pre-

sumably reflecting listeners’ abilities to “listen in the gaps”

when the masker is modulated, as discussed further below.

The SII criterion values increase as the number of maskers

increases, consistent with the filling in of the gaps when mul-

tiple independent maskers are combined.

For the binaural conditions, the model predictions again

give reasonable fits to the empirical data when the maskers are

SSN (an rms-error of 0.7 dB) or modulated SSN (an rms-error

of 1.3 dB), as illustrated in Figs. 5 and 6. In these cases, the

SII criterion for the modulated-SSN case is lower than that for

the SSN case, as one would expect with “gap listening” possi-

ble in the modulated case. In contrast to the SSN cases, the

model does not give good predictions for the binaural condi-

tions when the maskers are speech (an rms-error of 3.8 dB) or

reversed-speech (an rms-error of 3.6 dB), as illustrated in Figs. 7

and 8. In these cases, an obvious problem is that, for the mul-

tiple masker cases, the predicted thresholds for masker loca-

tions that are not co-located are consistently too high relative

to the co-located thresholds to which the SII criterion was fit.

In other words, the advantage of spatial separation is not cap-

tured by the model when the maskers are speech or reversed

speech. This is consistent with the hypothesis that the spatial

release is due to not only energetic unmasking but also infor-

mational unmasking (Freyman et al., 2001).

In the following paragraphs, these results are discussed

at a more refined level. The discussion is divided into three

sections to focus separately on three distinct factors. First,

FIG. 6. As in Fig. 5, but for broad-

band modulated, SSN maskers.

FIG. 7. As in Figs. 5 and 6, but

for speech maskers.
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the effects of the spatial filtering [as captured by the head-

related transfer functions (HRTFs)] and the benefits of the

EC processing are evaluated by considering the SSN mask-

ing case as represented by the results in Fig. 5. Second, the

additional effects of masker modulation are evaluated by

considering the modulated-SSN case as represented by the

results in Fig. 6. Finally, the additional effects of speech-like

maskers, including cognitive confusions or informational

masking, are evaluated by considering the results for the

speech and reversed-speech maskers shown in Figs. 7 and 8.

a. Effective SNRs. As described by articulation theory

and the SII, speech intelligibility in noisy environments

depends on the effective SNRs for individual frequency bands.

In the SSN cases in Fig. 5, the effective SNRs are determined

by the physical acoustics as captured by the HRTFs in the vir-

tual environments and by the binaural processing when maskers

have different locations than the target. These cases have rela-

tively small fluctuations in the short-term energy of the

maskers, and share little cognitive similarity with target speech;

thus, they are expected to test the EC model and the SII per-

formance measure relatively directly.

As seen in Fig. 5, there is an excellent prediction of the

forms of the dependence on the position(s) of the masker

sources for both monaural and binaural listening. This good

match between model predictions and empirical data indi-

cates that (1) the SII evaluation component is capable of

predicting speech intelligibility performance caused by the

SNR, and (2) the extended EC model, which combines

HRTFs and EC processing, is capable of predicting the

SNRs for multiple maskers in different locations. Further-

more, the SII criterion values are approximately constant in

all the cases in Fig. 5, supporting the hypothesis that the dif-

ficulty in these speech intelligibility tasks arises almost

purely from SNR effects. The small changes in the SII crite-

rion over the number and locations of maskers, approxi-

mately 0.035, correspond to an SRT change of only about

1 dB. Note that the cases compared include different num-

bers of maskers and multiple locations of maskers.

b. Listening in the gaps. When the envelopes of the

maskers include substantial temporal fluctuations, the SNRs

created are not only a function of frequency band but also a

function of time. Furthermore, evidence (e.g., Festen and

Plomp, 1990; George et al., 2008) indicates that human listen-

ers have the ability to exploit intervals during which the SNR

is high even for a short time. The fluctuating noise cases in

Fig. 6 show directly the benefits of this ability. In these cases,

the effects of SNR are still important, but the advantages of

listening in the gaps are also apparent. Comparing the model

performance between Figs. 5 and 6 provides a clue to how

much benefit listeners get from gap listening. The value of the

SII criterion implicitly indicates the difficulty of the task. The

SII criterion, as noted above, is clearly lower (better perform-

ance) in the single-masker cases with modulation than those

cases without modulation, and the best-fit SII criterion

increases as the number of maskers increases. For example, in

binaural conditions, the SII criterion gradually increases from

0.239 to 0.356 as the number of maskers increases from one

to three, indicating that the difficulty of the intelligibility task

increases by about 3.5 dB. This increased difficulty, which is

not related to locations, presumably reflects the filling-in of

gaps by the independent maskers. Consistent with this idea, as

the number of maskers increases, the SII criterion approaches

that of the unmodulated SSN. All of these trends in SII crite-

rion can be explained by the diminished benefit of gap-listen-

ing when the number of modulated maskers increases. The

temporal gaps available for listening to the target speech

decrease, eventually approaching the situation that occurs with

SSN maskers. The success of the model predictions of the spa-

tial dependence for SSN and modulated-SSN cases with only

criterion changes suggests that the effects of listening-in-gaps

are almost independent of spatial effects and can be accounted

for by an overall SII shift.

The only points in Fig. 6 for which the SRT dependence

on location shows a consistent deviation between data and

predictions are cases when modulated maskers occur on both

sides, i.e., (�30�,90�) and (�30�,60�,90�). In these cases,

the SRT predictions are consistently 2 or 3 dB higher than

FIG. 8. As in Figs. 5–7, but for

reversed-speech maskers.
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the data. This discrepancy could be due to the fact that the

model is unable to change the cancellation parameters

dynamically over time. Peissig and Kollmeier (1997) sug-

gested that the binaural system is capable of canceling two

interferers dynamically, using the pauses in one interferer to

suppress the other interferer. When dealing with stationary

maskers, such as SSN, the optimal cancellation parameters

remain stable over time, so that the current model with a sin-

gle cancellation parameter value throughout the interval will

generally be the optimum choice. But when the maskers are

independently amplitude modulated, as in the experiments

that generate the results in Fig. 6, the model’s constraint of

calculating cancellation parameters over the whole duration

of the waveform is not optimal, causing the predictions to

require a higher SNR. This effect is more prominent when

the maskers are located on both sides of a listener’s head.

When the modulated maskers are located on the same side of

a listener’s head, the model still captures the data reasonably

well, indicating that the spatial separation on the same side

does not help much in the intelligibility tasks.

c. Cognitive confusion with speech-like maskers. As

shown in Fig. 7, when both the target and the maskers are

speech, additional factors come into play. Factors like the

effective SNR and gap-listening still affect the perception of

the target speech, but, in addition, cognitive confusions may

occur due to the similarity between target and masker. For

example, listeners may hear both target words and masker

words and still be uncertain about which word is the target.

Some researchers refer to such confusions as “informational

masking” (e.g., see Durlach et al., 2003). Factors that can

affect the amount of such masking include differences

among sources in pitch, spatial location, etc.

These cognitive factors are discussed for the monaural lis-

tening conditions first. As shown in Fig. 7, the model predic-

tions for the dependence on spatial condition (the positions of

the maskers) are very good for the monaural conditions,

although the SII criteria are much higher for multiple-masker

cases than that for single-masker cases. This trend is similar to

that seen with modulated SSN, although performance with the

single speech masker is marginally better than with modulated

SSN (with the SII criterion of 0.244 compared to 0.265, less

than 1 dB of SNR), whereas the performance with the multiple

speech maskers is significantly worse (with SIIs of approxi-

mately 0.5 compared to 0.37, about 4 dB of SNR). This

increase of the SII criterion with more maskers is presumably

a combination of filling in the gaps (as discussed above), as

well as increasing the cognitive confusion with an increasing

number of maskers. The ability of the model to predict the spa-

tial dependence of the SRT indicates that the cognitive confu-

sion factor is roughly independent of spatial location,

consistent with the hypothesis that there are almost no spatial

perception factors involved in these monaural conditions.

For binaural listening conditions with speech maskers,

the model predictions and the data show different patterns

of spatial dependence between single-masker cases and

multiple-masker cases. In multiple-masker cases, there is a

consistent difference between the data and the predictions for

non-co-located cases (with an rms-error of about 4.6 dB)

when the criterion is matched to the co-located cases (as plot-

ted in Fig. 7). In this case, when the co-located conditions are

used to set the SII criterion, this criterion is comparable in

binaural and monaural conditions, indicating that the binaural

system is not providing any benefit over monaural conditions

when the maskers are co-located with the target in front (as

would be expected since in this case there is no extra infor-

mation available to the binaural system). But when the

maskers are spatially separated from the target, human per-

formance is consistently better than the model prediction by

approximately 5 dB. This difference is consistent across all

spatial configurations in the binaural listening condition, indi-

cating that the binaural system not only provides energetic

unmasking and improves the effective SNRs but also pro-

vides release from informational masking by creating spatial

cues for separating the target from the masker. When the SII

criterion is matched to one of the non-co-located cases, it

becomes clear that performance is slightly better than pre-

dicted for cases with maskers on both sides of the head,

namely the (�30�,90�) and (�30�,60�,90�) cases, presum-

ably, as discussed above, because listeners can dynamically

adapt their processing according to the fluctuating levels of

the sources on opposite sides of the straight-ahead target.

For the single-masker binaural case, the model matched

to the co-located thresholds gives good predictions for all

SRTs (with an rms-error of about 1.2 dB), which suggests

that human performance in single-masker cases is different

than in multiple-masker cases. Since the SRT for the co-

located configuration is much lower in single-masker cases

than those in multiple-masker cases, it appears that human

subjects are not experiencing much target-masker confusion

for the single-masker cases even though the target and

masker speech sentences are co-located. This result is con-

sistent with the summaries of Kidd et al. (2007), and the per-

formance is probably achieved by using memory and

divided attention. Note that, in the Hawley et al. (2004)

experiments analyzed in this section, listeners were provided

with the text of the masker sentences before the stimulus

was presented, so that it would be relatively easy to identify

the target if both target and masker were perceived. With

multiple maskers, however, the memory load becomes

increasingly significant.

As shown in Fig. 8, when the masker is reversed speech,

both the data and the predictions show similar patterns to

those seen in Fig. 7 for the speech maskers (an rms-error of

1.3 dB for single-masker case and an rms-error of 4.4 dB for

multiple-masker cases). One difference is that the SII crite-

rion for each panel is consistently lower for the reversed-

speech masker than for the speech masker, consistent with

better performance with reversed speech for the same SNR.

Considering the three factors discussed above, one might

expect the predictions of the model to be consistent with

those in the modulated-SSN cases, since both of these

maskers can give temporal modulation benefits without direct

competition of speech words; however, the similarity in the

results for speech-masker cases and reversed-speech-masker

cases suggest that significant interference comes from the

similarity of time-frequency patterns in the target and masker

waveforms for the speech-like reversed-speech maskers.
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2. Model predictions for data from Marrone et al.
(2008)

Marrone et al. (2008) performed a set of speech intelli-

gibility tests in both low and high reverberant conditions. In

low reverberant conditions, they measured (1) the binaural

SRTs for a target speech sentence masked by two speech

maskers that were symmetrically located around the frontal

(0�) speech target [masker pairs were located at (0�,0�),
(�15�,15�), (�45�,45�), and (�90�,90�)]; (2) the binaural

spatial release for two symmetrically located reversed-

speech maskers located at (�90�,90�); and (3) the monaural

spatial release for two symmetrically located speech maskers

located at (�90�,90�). The experiments were conducted

using loudspeakers in a large sound booth (120400 � 130 � 70600)
with very low reverberation (reverberation time of 0.06 s

and direct-to-reverberant ratio of 6.3 dB). Both target and

masker sentences were chosen from the CRM corpus spoken

by three different talkers. They also measured SRTs in a

highly reverberant environment, which are not modeled in

this paper. We created a similar experimental scenario virtu-

ally by using the same speech corpus and following the same

experimental paradigm, except that we used head-related

impulse responses from the CIPIC database to simulate vir-

tually the free-field anechoic space. All other methods used

to calculate the SII and the SRT are the same as those

described above in connection with the Hawley et al. (2004)

data. Note that Hawley et al. (2004) provided a priori infor-

mation about the maskers before each trial, whereas Marrone

et al. (2008) did not provide this information.

Figure 9 shows both the measured and predicted binaural

SRTs. As in previous cases, each prediction is the mean of

100 repetitions with different target and masker samples. The

standard error (not shown here) is less than 0.05 dB. The

behavior of the model is similar to that applied to Hawley

et al. (2004), as shown in the top middle panel of Fig. 7.

When the co-located case is chosen as the reference, all of

the spatially separated measurements are substantially lower

than the predictions (solid line). Instead, if the (�90�,90�)
case is chosen as the reference, the model predictions (dashed

line) substantially underestimate the reception threshold for

the co-located case by about 10 dB. This mismatch can be at

least partly attributed to the spatial release from “informa-

tional masking” as described in Sec. III B 1 c. Furthermore,

the difference between the data and the prediction is smaller

for the (�15�,15�) case than for the other two cases in Mar-

rone et al. (2008). In Hawley et al. (2004), these differences

between model predictions and the measurements are almost

constant when maskers are spatially separated from the tar-

get. This result for the Marrone et al. (2008) data suggests

that the binaural informational unmasking resulting from spa-

tial factors depends on the degree of spatial separation, at

least when the separation is small. One might expect that

when the maskers are so close to the target that the target is

not easily perceived as a separate object, the size of the infor-

mational unmasking is relatively small. The release from

masking would be expected to increase with larger spatial

separations, but then to saturate so that further spatial separa-

tion would not contribute much to the informational unmask-

ing. Finally, the difference between the data and the

prediction is also due to the fact that the model cannot

dynamically change the cancellation parameters, as described

in Sec. III B 1 b.

Figure 10 shows measurements and predictions of spa-

tial release from masking for all anechoic cases measured by

Marrone et al. (2008). Spatial release is defined as the

threshold difference between the co-located (0�,0�) case and

the (�90�,90�) case. The negligible spatial release predicted

for the monaural case is consistent with the data, but the

model under-predicts the binaural spatial release for both the

speech-masker case and the reversed-speech-masker case.

For the speech-masker case, the prediction strongly deviates

from the data by about 10 dB, indicating that the cognitive

components combined with the spatial separation play an

important role in this speech intelligibility task. However,

when the maskers are reversed speech, the model underesti-

mates the spatial release by only 2 dB. This large difference

between the results for the speech masker and the reversed

speech masker is different in Hawley et al. (2004) where the

results for these two cases are very similar.

This large empirical difference emphasizes the com-

plexity of the speech intelligibility task and the importance

of many factors in determining performance in these cases.

FIG. 9. Simulated and measured binaural SRTs for speech masker cases in

a pseudo-anechoic environment. Symbols are the measurements from Mar-

rone et al. (2008), and the error bar is one standard error. The solid curve is

the model prediction using the (0�,0�) case as reference, and the dashed

curve is the prediction using the (�90�,90�) case as reference.

FIG. 10. Spatial release for speech perception in an anechoic space. Meas-

urements are from Marrone et al. (2008). Predictions are provided by the

model for a simulated anechoic environment.
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Although researchers have generally referred to many of

these factors under the general heading “informational

masking” (Durlach et al., 2003), these factors may affect

intelligibility performance in different ways, to different

extents, and in opposite directions. For example, the differ-

ences between the data of Hawley et al. (2004) and that of

Marrone et al. (2008) may come from the fact that the Haw-

ley study used the same talker for each source, whereas the

Marrone study used different talkers for each source, includ-

ing both target and maskers. Using the same talker for all the

sources can add informational masking for the listener

because there are reduced voice cues (e.g., pitch) available

for the auditory system to segregate the different sources. On

the other hand, the difference may also come from the fact

that the Hawley study gave additional prior information

about the masker compared to the Marrone study, thus

reducing the amount of informational masking. Additionally,

one can reasonably assume that the effects of informational

masking also depend on the speech material. For example,

Hawley et al. (2004) used the IEEE corpus, which is open-

set, whereas Marrone et al. (2008) used the CRM corpus,

which is closed-set. Finally, in considering the symmetrical

masker cases in Marrone et al. (2008), it should be noted

that they are the cases most affected by the assumption that

the EC processing in the current model is not permitted to

change dynamically during the stimulus interval.

IV. DISCUSSION

This paper presents the application of an extended ver-

sion of the EC model of Durlach (1972) to predict speech

intelligibility performance in complex environments, includ-

ing conditions with multiple interfering sources. As an exten-

sion of the original EC model, the current model has several

distinctive aspects: (1) time-varying jitters are introduced,

both in interaural time delay and interaural amplitude ratio;

(2) speech stimuli are processed by equalizing the masker in

each frequency band separately and combining information

across bands using the SII; and (3) full equalization of inter-

aural level is allowed. With these modified assumptions, the

extended model is able to predict speech intelligibility per-

formance in a number of interference situations and also

remains compatible with tone-in-noise detection conditions.

The interferer conditions include multiple maskers in variable

spatial locations and different types of maskers (SSN, modu-

lated SSN, speech, and reversed speech).

As described in Sec. I, previous studies have applied

results from tone detection to predict speech intelligibility

performance. First, Zurek (1992) used the SII with the pre-

dicted BMLD in each frequency band to predict speech intel-

ligibility performance as a function of masker direction for a

single SSN masker in anechoic space. The current study is a

direct extension of Zurek’s approach except that we have

implemented an explicit internal noise process in contrast to

the use of a formula for SNR improvement, which is limited

to simpler cases. Second, Culling et al. (2004) used the

measured BMLD in each frequency band to predict speech

intelligibility performance for cases involving multiple SSN

maskers in anechoic space. The approach presented in this

paper follows these previous studies and explicitly combines

an extended EC model with objective speech intelligibility

evaluation (the SII) to predict speech intelligibility perform-

ance in anechoic space involving multiple maskers. In addi-

tion to the application of the model to SSN maskers, we

have investigated model performance for other types of

maskers.

Among the studies that combine binaural models with

speech intelligibility performance, Beutelmann and Brand

(2006) developed an EC-based model to predict speech intel-

ligibility performance. This model differs from our model in

their assumptions about the internal noise. Durlach (1963,

1972) assumed time and amplitude jitters (i.e., variability in

time delays and amplitudes of the filtered inputs) that were

fixed during the duration of the stimulus, primarily to allow

ease of computations. Beutelmann and Brand followed this

idea and used parallel units with distributions of time-invari-

ant jitter values and then averaged the SRT outputs over all

the units. In contrast to their model, the model presented

here assumes that every time sample of the filtered stimulus

waveform is independently jittered and that jitters are

applied independently in each frequency channel. The pa-

rameters that describe the statistics of the jitter (the mean

and variance of the Gaussian distributions) are the same for

all channels and are equal to the values chosen by Durlach.

This assumption is more realistic than a single sample of jit-

ter in each trial and also avoids the statistical averaging over

the whole set of jitters for each trial presentation as used in

Beutelmann and Brand (2006). Their recent revision and

extension of the model (Beutelmann et al., 2010) make it an-

alytical, applicable to nonstationary interferers, and more

similar to the present study. In the Beutelmann et al. (2010)

paper, the effects of reverberation and the effects of hearing

loss on speech intelligibility performance were investigated

with a single noise masker. The present study used multiple

maskers and included speech as well as reversed-speech

maskers but was limited to anechoic environments and lis-

teners with normal hearing. It would be interesting and help-

ful to compare the performance of these two models over a

wider range of conditions.

Overall, this study has demonstrated that relatively

direct extensions of current binaural models can help us

understand available data and separate out the contributions

of different factors. More specifically, for the SSN and

modulated-SSN cases, the application of an extended version

of the EC model combined with the SII predicts most of the

spatial dependence of the SRT. For the speech and reversed-

speech cases, the large spatial release that is seen in the

empirical data is underestimated, presumably because the

cognitive confusions (or aspects of informational masking)

that are important in these cases have not been included in

the modeling. These results also demonstrated that several

factors are important for speech intelligibility in the presence

of multiple, spatially distributed interferers. Specifically,

these factors include SNR of the stimuli in different fre-

quency bands, effective SNR improvements from binaural

processing, strategies for listening in the gaps, and spatial

release from informational masking. Although the current

model obviously cannot account for all the factors in speech
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intelligibility tasks, some insight has been gained by looking

at the changes of the SII criterion in different conditions. For

example, the SII criterion for the unmodulated SSN cases is

relatively consistent across conditions with different num-

bers of maskers. This indicates that the current model is ca-

pable of interpreting the effects of SNR. The increasing

trend of the SII criterion in modulated SSN or speech-like

masker cases indicates that the current model cannot explic-

itly interpret the effects of gap-listening or cognitive confu-

sion involved in speech intelligibility tasks.

There are three areas in which further modeling work is

needed. The first, and most straightforward, improvement

would be to allow the cancellation parameters to vary with

time during the stimulus. The dynamics of this process

would be an important part of the modeling, since rapid EC

operation would eliminate the internal noise. The goal of

this modification would be to make the predictions compati-

ble with the measurements for cases in which the maskers

are non-stationary, such as modulated noise or speech with

multiple sources in different locations, and listeners could

benefit from responding to short-term changes in the direc-

tion of the dominant interference. Obviously, these cases are

frequently encountered in daily life. The second area need-

ing improvement concerns the assumption about available

interaural-level equalization. A better understanding of the

differences among free level equalization, constrained level

equalization, and even no level equalization is needed. Mod-

ifications could improve predictions for tone-in-noise detec-

tion as well as for complex speech-intelligibility tasks.

Finally, the third area for improvement, which is the most

challenging, is to extend the model to include informational

masking and other cognitive effects, not only because such

effects are frequently encountered in daily life, but also

because such improvement is needed for understanding both

binaural listening and monaural listening.
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1As described and demonstrated by Shub et al. (2008), there are cases for

which binaural performance is poorer than performance with a single ear;

however, tone-in-noise detection rarely falls in this category. Thus, for fre-

quency band i, the DEC operates on the EC output Yi(t) when the SNR of

the EC output is greater than the SNR for both monaural outputs. If either

monaural output has a higher SNR, then the monaural output with the larg-

est SNR is used by the decision device.
2In modeling narrowband tone-detection, EC processing is sensitive to the

shape of the peripheral filters in part because the model is only allowed to

use a single time delay to equalize the signals in two ears. A model using

gammatone filters gives good predictions, as shown in Fig. 3, for BMLD

data. We compared predictions from a model using Butterworth filters and

verified that a model using one-third octave Butterworth filters gives the

same BMLD predictions when the tone frequency is beyond 300 Hz,

which is the frequency range that contributes most to speech intelligibility.

Since the SII is specified for Butterworth filters, we used one-third octave

Butterworth filters in the model when the model was applied to speech

intelligibility tasks.
3Each sample of the jittered waveform was generated by randomly choosing

a sample around it from the original non-jittered waveform. If two samples

in the original waveform happen to be jittered to the same sample in the jit-

tered waveform, the latter sample replaces the earlier sample.

4Due to the sampling frequency of 20 kHz, the standard deviation of the jit-

ter for the 2.5 s long waveform is 106 ls 6 0.07 ls.
5See supplemental material at http://dx.doi.org/10.1121/1.3502458 Docu-

ment No. E-JASMAN-128-026012 for an analytical derivation of equa-

tions that can be compared more directly to the equations derived by

Durlach. This supplementary material also provides comparisons between

data and predictions of both models for dependence of detection thresholds

on the interaural level difference of the masking noise (aN). For more in-

formation see http://www.aip.org/pubservs/epaps.html.
6See supplemental material at http://dx.doi.org/10.1121/1.3502458 Document

No. E-JASMAN-128-026012 in which an example is provided where the cur-

rent model gives different predictions from those given by Durlach (1972) for

aN = 1. As Durlach pointed out, the predictions of the original model in this

case fall off too much as aN departs from unity. However, the predictions of

the current model in this case are independent of aN. The fact that the empiri-

cal data lie between these two predictions indicates that the binaural system

can do level equalization to some extent, but not fully. For more information

see http://www.aip.org/pubservs/epaps.html.
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