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Abstract
Elderly subjects exhibit declining sleep efficiency parameters with longer time spent awake at
night and greater sleep fragmentation. In this paper, we report on the changes in cortical
interdependence during sleep stages between 15 middle aged (range: 42-50 years) and 15 elderly
(range: 71-86 years) women subjects. Cortical interdependence assessed from EEG signals
typically exhibits increasing levels of correlation as human subjects progress from wake to deeper
stages of sleep. EEG signals acquired from previously existing polysomnogram data sets were
subjected to mutual information (MI) analysis to detect changes in information transmission
associated with change in sleep stage and to understand how age affects the interdependence
values. We observed a significant reduction in the interdependence between central EEG signals
of elderly subjects in NREM and REM stage sleep in comparison to middle-aged subjects (age
group effect: elderly vs. middle aged p<0.001, sleep stage effect: p<0.001, interaction effect
between age group and sleep stage: p=0.007). A narrow band analysis revealed that the reduction
in MI was present in delta, theta and sigma frequencies. These findings suggest that the lowered
cortical interdependence in sleep of elderly subjects may indicate independently evolving dynamic
neural activities at multiple cortical sites. The loss of synchronization between neural activities
during sleep in the elderly may make these women more susceptible to localized disturbances that
could lead to frequent arousals.
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A. INTRODUCTION
The effects of physiological aging on sleep have been researched since the 1980s (Feinberg
et al., 1984; Dijk et al., 1989; Ehlers and Kupfer, 1989). Most studies based on whole night
hypnograms have found that the elderly spend more time awake and have lower sleep
efficiency and greater sleep fragmentation. The elderly also spend less time in slow wave
sleep (delta sleep). Delta power is reduced greatly with increasing age in the first NREM
period of the night and delta power reduction over the later sleep epochs usually observed in
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young subjects occurs to a much lesser extent in elderly subjects (Carrier et al., 2001). Major
causes of sleep fragmentation in the elderly are multiple arousals attributed to extrinsic
factors such as pain, apneas and other breathing-related disruptions (Smith and
Haythornthwaite, 2004). There may also be neurodegenerative factors such as Alzheimer’s
disease that cause sleep disruption in the elderly. The changes in elderly sleep patterns may
reflect age-related changes in the neuronal network activations or interconnections that
produce and regulate normal sleep in humans. There may also be disrupting factors acting
on the neural mechanisms causing alterations to the duration of sleep stages in the elderly. A
better understanding of sleep dynamics in the healthy elderly may prove beneficial to
clinicians in diagnosing and treating age-related sleep disorders.

Quantitative sleep studies have traditionally analyzed amplitude and spectral measures such
as spectral power density and correlation (Armitage et al. 1992; Corsi Cabrera et. al., 2000;
Ferrara et. al., 2002). These studies identified variations in the spectral band powers as sleep
progressed from wake (W) to stages 1-4 (NREM) and REM. On the other hand, the origin of
the waves that compositely form the sleep EEG was explored from a cellular and neural
oscillations standpoint by Steriade and others (Achermann and Borbély, 1997; Steriade
1999). The predominance of delta waves in sleep led to close investigation of the low
frequency, high amplitude oscillations in animal and human sleep patterns at macroscopic as
well as neuronal levels. Lately, the unique characteristics of the <1 Hz delta oscillation has
captured the attention of sleep researchers. It is suggested that the low frequency component
of delta may have a functional role different from that of 1-4 Hz delta rhythm during sleep
(Campbell et al., 2006) and may synchronize spatially distributed neural activities during
specific periods of NREM sleep (Ferri et al., 2005). Furthermore, low frequency delta power
does not decline over successive NREM sleep periods, and it has a cortical origin in contrast
to the thalamocortically-generated high frequency delta rhythm (Achermann and Borbély,
1997; Steriade and Amzica, 1998). The functional correlates of alpha rhythms during wake
and sleep stages have also been reevaluated following research that suggested the existence
of different sites of generation and non-uniform topographic scalp distribution for this
spectral component (Pivik and Harman, 1995; Cantero et al., 2002).

In recent times, the application of methods derived from the theory of dynamical systems
has supplemented the frequency content based analysis of sleep EEG. Measures such as
generalized dimensions and Lyapunov exponents have been used to characterize the static
and dynamic properties of the neurophysiological system generating the EEG signal (Fell et
al., 1996; Pereda et al., 1999; Kobayashi et al., 2001; Acharya et al., 2005). The differences
in features such as irregularity and long range correlations of EEG signals in various sleep
stages between healthy people and patients with sleep-disordered breathing are the topic of
many publications (Lee et al., 2004; Burioka et al., 2005). In light of findings from multiple
studies, it is widely accepted that stages 3 and 4 of sleep, known as slow wave sleep (SWS),
are characterized by high delta band powers and corresponding lowered dynamical
complexity.

Multivariate measures have been applied to assess the interdependence of cortical regions
during sleep. The interdependence between EEG signals depends on the functional
differentiation of cortical regions. This implies that differences in activation of the cortical
regions can cause individual dynamics at these sites to evolve almost independently of each
other resulting in low correlation between them. Studies on EEG signals from healthy,
young subjects using spectrally based coherence measures and other nonlinear
interdependence measures have reported higher coherence between cortical regions during
deeper sleep stages (Guevara et. al., 1995, Achermann and Borbély, 1998, Pereda et al.,
2001). In normal sleep, large responses to localized disturbances are attenuated by the high
coupling between cortical sites. A lowered interdependence in sleep may increase the
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likelihood of such responses persisting and reaching levels usually associated with active
awake states, causing arousals or awakenings to the detriment of sleep continuity. Thus,
decreased inter-regional correlation during sleep may explain some aspects of declining
sleep quality in the elderly population. Previous reports about age-related differences in the
spectral analysis of sleep stages suggests that the behavior of cortical interdependence of
aging subjects may indeed be different from that of young subjects during sleep (Carrier et
al., 2001; Darchia et al., 2007). Our objective in this study was to assess the cortical
interdependence across cortical regions during sleep in healthy adults by analyzing the scalp
EEG signals.

Different measures of connectivity between physiological signals have been introduced and
applied extensively to assess the interdependence between brain regions under different
conditions (David et al., 2004; Pereda et. al., 2005). The Mutual Information (MI) derived
from information theory is one such measure which assesses the amount of information
about one signal contained in another signal (Fraser and Swinney, 1986). Hence, when
applied to two EEG signals, MI gives a measure of dynamical coupling between them. In
comparison to other connectivity measures, mutual information is a measure of statistical
dependence between signals that does not make an assumption on the nature (whether linear
or otherwise) of the generating system of the signals and gives stable estimates with
reasonably long data sets. MI can also be useful in narrow band analyses to determine the
information content of the different spectral bands in the EEG (David et al., 2004). Narrow
band coupling may be dependent on age and gender as well as on sleep stage. When the MI
is extracted from a single signal, it is called the auto mutual information (AMI). The AMI
quantifies the linear and nonlinear correlations contained in the signal as a function of
elapsed time between observations. MI has been applied to the human EEG in different
contexts.

An early application of the MI to single channel signals determined the characteristic time at
which the auto mutual information reached a minimum as a measure of the time delay
utilized in delay embedding methods for system characterization (Fraser and Swinney,
1986). To study the information transfer across brain regions, MI was applied to EEGs from
normal subjects and from subjects suffering various pathological conditions (Jeong et al.
2001; Na et al. 2002). Patients suffering from conditions such as Alzheimer’s disease were
found to exhibit lowered information transmission, especially across anterior-posterior brain
regions. Na and coworkers (2006) applied MI analysis to study the effects of total sleep
deprivation on waking human EEG. This study revealed lower MI following sleep
deprivation between the left central and frontal brain areas, implicating homeostatic
deterioration in these regions. Xu et al. (1997) analyzed sleep EEG from young subjects
using MI to demonstrate higher values of information transmission in deeper stages of sleep.

In the present paper, we applied the MI method to EEG segments chosen from undisturbed
sleep stages of elderly (age range- 71-86 years) and middle aged subjects (age range- 42-50
years) to explore the inherent differences in the information content of the signals. By
undisturbed we mean EEG sleep stage epochs uninterrupted by events such as hypopneas,
apneas and arousals. Analysis was carried out on broad as well as narrow band EEG to
investigate if the EEG interdependence changed within spectral bands in different sleep
stages. As sleep progresses from W to SWS, the delta band oscillations increasingly
dominate the EEG. Therefore, we hypothesized that age-related effects may arise in this
band. The proposed significance of the slow component of the delta band also prompted us
to further divide the traditional delta band of EEG frequencies up to 4 Hz into a low delta,
(Delta_L: 0.2-2 Hz) band and a high delta (Delta_H: 2-4 Hz) band to better resolve the
changes occurring within the delta band.
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B. METHODS
1. Subjects and EEG recordings

Mutual Information analysis was conducted retrospectively on overnight polysomnogram
(PSG) EEG datasets obtained from the NIH-sponsored Sleep Heart Health Study (SHHS)
(Quan et al., 1997). Fifteen healthy middle-aged (MA) Caucasian women of mean age 46.93
± 1.91 yrs (range: 42-50 yrs), and fifteen healthy elderly (ELD) Caucasian women of mean
age 77.8 ±4.20 (range: 71-86 yrs) were selected for this study. These subjects did not have
sleep-disordered breathing or a history of stroke and were not taking any medications known
to interfere with sleep. The Respiratory Distress Index (5% RDI) for the elderly group was
1.99±1.56 (range: 0 −5.10) and for the middle aged subjects, 1.6±2.13 (range: 0-5.28).

The overnight PSG studies were conducted in the SHHS participants’ homes by certified
technicians (Redline et al., 2004). The PSG data recorded for each subject included: EEG
leads C3A2 and C4A1, a right and a left electro-oculogram (EOG), a bipolar submental
electromyogram (EMG), electrocardiogram (EKG), nasal airflow, respiratory excursions of
the thorax and abdomen, and finger pulse oximetry. The EEG was acquired at a sampling
rate of 125 Hz. A notch filter at the 60 Hz electrical mains contamination was designed and
applied to the EEG signals. Sleep staging was scored by SHHS personnel at 30 s intervals
based on the Rechtschaffen and Kales (R&K) criteria (Rechtschaffen and Kales, 1968). For
each subject, we selected six 30 s segments of EEG data from Wake, stages 2 and 3 of
NREM, and REM during the first sleep epoch (90 segments per group per stage). Due to the
lack of sufficient segments from stages 1 and 4 of NREM sleep, especially for the elderly
subjects, these stages were not analyzed. EEG segments that were scored as free from
respiratory or movement artifacts were selected. Also, the chosen sleep segments did not
include disruptive events such as apneas, hypopnias or arousals. For the narrow band
analyses, the EEG signals were band pass filtered using a bank of fourth order elliptic filters
with peak to peak ripple of 1 dB and stop band attenuation of 40 dB. The EEG signal was
filtered into the following bands: low delta (Delta_L): 0.2 to 2 Hz, high delta (Delta_H): 2 to
4 Hz, theta: 4 to 8 Hz, alpha: 8 to 12 Hz, sigma: 12 to 16 Hz, and beta: 16 to 24 Hz.

2. Mutual Information (MI)
Mutual Information, a metric derived from information theory, quantifies the information
gained about one random event from observations of another (Fraser & Swinney, 1986). It
measures the linear and nonlinear dependencies that may exist between two sets of data.
Hence, MI is often regarded as the nonlinear counterpart of the correlation function which
identifies linear dependencies between two data series (Abarbanel et al., 1993, Cellucci et
al., 2005). The MI function can be applied to two time series as a cross measure of mutual
information (CMI), and when applied to a single data series it is referred to as the Auto
Mutual Information (AMI).

Consider X = {xi} and Y = {yj} representing two sets of random observations with
probability distribution of amplitudes given by PX (xi) and PY (yj), respectively. The average
amount of information gained from measurements of X is obtained from Shannon
information theory as

(1)

This is the a priori uncertainty in X existing before any measurements are made. The
conditional uncertainty in a measurement of X, given that yj is the measurement made in Y,
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is H(X | Y = yj). The mean conditional uncertainty in measuring X under the condition that Y
is known is then

(2)

where,  The mutual information (MI) estimates
the information gained about one signal by measuring the other. In other words, it quantifies
the reduction in uncertainty of X by measurements made on Y and is given as

(3)

From equations (1) and (2), the Cross Mutual Information between X and Y can be written
as

(4)

Usually, the base of the logarithm in the above relations is 2 and information is then
expressed in units of bits. By estimating the CMI for signals lagged in time, the CMI
function can be obtained as a function of the time lag between them. This function gives the
average number of bits of X that can be predicted by making measurements of Y. In a
similar way, the Auto Mutual Information (AMI) function says how many bits on average
about a given signal may be predicted by measurements on the time advanced version of
itself.

The AMI between X(t) = {xi } and X(t + τ) = {xi+τ } is

(5)

The estimation of the probability functions in (4) and (5) pose a hurdle in estimating the MI
function from time series data. While other estimators based on the nearest neighbor and
kernel based methods exist (Papana and Kugiumtzis, 2008), the histogram based estimation
was found to provide stable CMI functions and was used in this study. The average CMI
computed over −0.2 s to 0.2 s was used as a measure of the interdependence between the
signals. In the case of AMI, the rate at which information decays with time is an inverse
measure of the predictability of the signal. Higher rate of decay is associated with a quicker
loss of predictability of the signal (Abásolo et al., 2008). The behavior of the AMI curve
prompted us to fit it with an exponential function of the form,

(6)

where λ is the decay rate and fc is the central frequency of the band. The damped squared
cosine equation for MI function is a natural generalization of the damped cosine model for
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the autocorrelation function of signals. In the case of the broad band data where effects from
all the spectral bands are present, the AMI curve was fit using,

(7)

With this definition, we may say the central frequency for the unfiltered segment is the
sampling frequency fs. The AMI curves of specific spectral bands did not exhibit much
difference between sleep stages over short time lags. Hence, the estimated decay rates of
AMI function for the different bands did not vary substantially. However, the small
persistent changes in AMI at longer lag times in specific spectral bands are captured well by
the average AMI parameter.

3. Surrogate analysis
The MI quantifies the linear and nonlinear correlations in the signal. The question of
whether the estimated CMI detects dependencies other than linear ones between the sleep
EEG signals is answered by applying the method of surrogate data (Theiler et al., 1992;
Schreiber and Schmitz; 2000). Although the MI between independent signals is zero, the
finite size of a data set often causes this lower bound to be greater than zero. The
methodology we followed to establish the significance of the CMI values is similar to that of
Pereda and coworkers (2001). In this two step procedure, first univariate surrogates, S1, that
contained the linear behavior of one of the signals, say E1, were generated by the iterated
Amplitude Adjusted Fourier Transform (iAAFT) method. The CMI of these with the other
EEG signal, E2, was computed. In case of true interdependence between E1 and E2 , MI (E1 ,
E2)will be always greater than MI (S1 , E2), because the surrogates are in no way correlated
with E2. For the pairs of signals for which interdependence was thus established, bivariate
surrogates, (S2)1 and (S2)2, that preserved the linear properties of each of the signals and also
the linear cross correlation between them, were generated by the iAAFT method for the
multivariate case. If the signals have nonlinear correlations between them, then the MI of the
original signals will be greater than that of the surrogates. This difference was detected using
a rank order test at a pre-specified significance level, (1−α)×100%. For the one-sided tests in

both the univariate and bi-variate cases, we generated  surrogates. Including the

original EEG segments, this gave an ensemble of  data sets. The probability that the
observed CMI between the EEG signals is the largest in the ensemble of MI values due to
chance is then exactly α. With α = 0.05, the significance level was 95% and M= 19 surrogate
sets were generated for the analysis in both cases. Because here the MI is computed as a
function of time lag between the signals, in the final step we required that the estimated MI
for the EEG signals be greater than that for the surrogates for at least 50% of the time lags
considered. This condition ensured that the higher values of MI due to the interdependence
between the signals that is present at short time lags is included in assessing the nature of the
interdependence.

4. Statistical analysis
The statistical procedure was aimed at detecting significant variations in the MI parameters
due to the age effect and the sleep stages in broad band and narrow band analyses. A mixed
linear model implemented using SAS 9.1 software (SAS Institute Inc., Cary, NC) with an
unstructured covariate design was applied to the estimated MI parameters. We specified the
between subject factor AGEGROUP with two levels (ELD, MA) and the repeated measures
within subject factor STAGE with 4 levels namely, W, S2, S3 and REM. The SUBJECT
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factor was nested under AGEGROUP. A post hoc test based on the differences of least
squares means was applied to identify significant differences in the main effects or in the
AGEGROUP*STAGE term.

C. RESULTS
1. Cross mutual information analysis

CMI was calculated for the C3A2 and C4A1 EEG signals of 30 s duration from specific
sleep stages from the two subject groups. Here and elsewhere, we used 13 bins to estimate
the histograms involved in MI computation. In a recent paper on the AMI estimation of
biomedical signals, Escudero et al. (2009) observed that the computation of MI is biased
only when the binning used in histogram estimation is either too fine or too coarse. The
reasons for analyzing 30 s windows are twofold. The sleep stage scoring is done over epochs
of 30 s and we wanted the results to reflect the changes that occurred in the same time
period. Also we ensured that nonstationarity did not affect the analysis significantly by
comparing the MI functions over smaller window lengths with the MI functions from the
whole data length. As mentioned earlier, spectral power variations across sleep stages of
different bands exhibit an age effect. This may be manifested in the coupling behavior of
spectral bands as well, and these effects may go undetected in a broad band analysis.
Therefore, we carried out MI estimation over EEG signals filtered into the spectral bands,
i.e., delta, theta, alpha, sigma and beta. The predominance of low frequencies during sleep
states and the significance of the very low frequency (<1 Hz) delta rhythm stressed earlier,
prompted us to divide the delta band into two regions and explore MI changes further within
this band.

Figure 1 gives typical CMI functions between C3A2 and the time delayed C4A1 signal for
the various sleep stages in a middle aged subject for both the broad band and the narrow
band data as defined above. CMI between the central regions was low during wake as
compared to the subsequent sleep stages of S2, S3 and REM. This behavior was observed
for the broadband CMI and for most of the spectral regions as well. The beta band CMI
values were in the range of 0.02-0.05. These values were compared with CMI values
obtained for time shuffled surrogates of the data, which are equivalent to independent
signals with all correlations removed. Because the CMI estimates for the beta band fell
within the distribution of the CMI values for the IID surrogates, especially in the sleep (S2,
S3 and REM) EEG segments, the beta band was not considered for further analysis. Mutual
information function is nonsymmetrical about the time axis, and this behavior was taken into
account by computing a measure for the CMI averaged over time. The averaged CMI (A-
CMI) between the signals was computed over time delays of −0.2 to 0.2 s. In the broad band
case, the averaged CMI between the signals increased from W, reached a maximum at S3,
and then decreased in the REM state for both ELD and MA subjects. The broad band CMI
contains an overall effect of the dominant spectral bands in a particular sleep stage. Figure
2(a) represents the estimated Mean ± Standard Error (S.E.) of the A-CMI for the ELD and
MA subjects. It was observed that the ELD subjects had lower CMI values in all sleep states
than the MA subjects. The mixed linear model analysis with AGEGROUP as a between-
subjects factor with 2 levels and sleepstage (STAGE) as a repeated measure with 4 levels
applied to the A-CMI values produced significant main and interaction effects
(AGEGROUP: F(1,28)=46.49, p<0.0001; STAGE: F(3,28)=63.59, p<0.0001;
AGEGROUP*STAGE: F(3,28)=5, p=0.007). The post hoc tests based on the mean
differences of A-CMI revealed significantly lower values of CMI for the ELD group in S2,
S3 and REM sleep stages when compared to MA subjects. The CMI difference in W was
non-significant.
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The narrow band CMI analyses yielded functions with characteristic frequencies close to
twice the central band frequencies as observed in Figure 1. For instance, the Delta_H band
defined over 2 to 4 Hz had CMI functions with a periodicity of approximately 6 Hz at low
values of delay. The CMI functions for the bands (with the exception of beta band) are
plotted in Figure 1 for each of the sleep stages. The low frequency bands especially delta,
exhibited the largest CMI values among all spectral components not only in S2 and S3
stages but also in REM. Among the higher frequencies, the alpha band CMI for the W and
REM states was higher than that for sigma band while the sigma band predominated in the
NREM sleep stages of S2 and S3. Average CMI calculation was carried out on the narrow
band signals and results of the statistical analysis are presented in Figure 3. For the sake of
completeness, the estimated A-CMI values for the beta band are also presented. The
statistical analysis had significant main and (AGEGROUP*STAGE) interaction effects for
all bands except the alpha band for which only main effects were present. It is readily
apparent that in most spectral bands, the interdependence between the signals was higher for
the MA group than for ELD subjects during sleep states. Moreover, the higher spectral
powers of low frequencies in the slow wave sleep stage had led us to expect higher
interdependence in these bands in the S3 stage in comparison to that in S2. But contrary to
expectation, the lower spectral bands (delta and theta) had higher CMI in S2 than in S3
while faster bands exhibited higher CMI in S3 than in S2. The MA subjects had significantly
higher CMI in S2 state than in W state for Delta_H, theta and sigma bands in post-hoc
comparisons (Delta_H: t-value=7.92, p<0.001; Theta: t-value=2.67, p=0.01; Sigma: t-value
=9.13, p<0.0001). Such large variations between CMI values of W and S2 states were not
observed for the ELD group.

2. Auto mutual information analysis
The AMI function quantifies the dependence of a signal on its time lagged self. The rate of
decrease of AMI describes how quickly information regarding the signal is lost and is
inversely related to its predictability. The AMI estimation of both C3A2 and C4A1 signals
was carried out, but since the results of the statistical analysis were very similar in both
signals, only results from the C3A2 signal are reported here. Figure 4 presents AMI
functions normalized by the maximum value (at τ = 0) for the C3A2 signal from a middle
aged subject for broad band and narrow band data. While the broad band EEG exhibited
variations between sleep stages in the rate of loss of AMI at low delays, this was not the case
for the narrow spectral range AMI functions. Hence, in the broad band case, the rate of loss
of AMI was quantified by a fit to the AMI function with a damped squared cosine function
as in equations 6 and 7. The constants C0 and C1 were found to be of the order of 0.01 and
1.00, respectively. The decay rate, λ , estimated in each case was assessed for differences
due to state and age difference between the two subject groups. The changes in AMI were
more apparent at longer lag values for bands such as Delta_L, Delta_H and alpha. For the
narrow band case, we computed the average AMI over a period of −0.2 to 0.2 s as a measure
of the dependence inherent in the signal. These values were separately subjected to a
statistical analysis identical to that in the CMI case.

The estimates of the decay rate obtained from the fit to the AMI function of the broad band
signal are given in Figure 2(b). The decay rates in the different stages were nearly equal for
the two subject groups especially in the W, S2 and S3 states. The statistical analysis
demonstrated a significant difference due to the STAGE effect (F(3,28) = 165.21, p<0.0001)
and the (AGEGROUP*STAGE) effect (F(3,28) = 3.12, p = 0.042). The post-hoc
comparisons for the (AGEGROUP*STAGE) effect yielded significance for the REM state
(t-value = 2.02, p = 0.05) alone. This indicated a significantly higher AMI decay rate for the
ELD subjects than for the MA group in the REM state. The results of the post hoc
comparisons for the significant STAGE effect are summarized in Figure 2(b). We observed
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that the decay rate showed large variations with sleep stage, decreasing from the W to S3
state and then increasing to a level lower than W in REM. All states had significant pair-
wise changes in the estimated decay rate. Since the decay rate is an inverse measure of the
predictability, it followed that the signal predictability was lowest in the W state and highest
in the S3 state. Between the intermediate decay rates exhibited by S2 and REM states, REM
had a higher decay rate or lower predictability than the S2 state. The A-AMI measure
computed for the broad band data exhibited very close values for the ELD and MA groups.
The mean AMI was highest in the S3 state and lowest in the W state. In the broad band case,
because they are both normalized measures, the A-AMI and decay rate of AMI function are
inversely related. A faster loss of AMI means a quickly decaying function from the
maximum value of 1.0 leading to a lower A-AMI measure in the same segment. The
STAGE effect was the only significant effect from the statistical analysis (F(3,28)=110.79,
p<0.0001). The post-hoc tests revealed all pair-wise comparisons between sleep stages to be
significant as in the case of the decay rate. The A-AMI measure for the broad band is
presented in Figure 2(c).

The A-AMI values obtained for each of the spectral bands were subjected to the statistical
analysis to identify the significant effects of age, stage, and interactions therein, on the AMI.
These results are summarized with the estimated means for the A-AMI measure in Figure 5.
The low delta band had significant main effects of AGEGROUP (F(1, 28) = 10.37, p=
0.0032) and STAGE (F(3,28)=17.05, p<0.0001). Interestingly, the low delta AMI was
higher for ELD than for MA subjects for all stages. In the Delta_H band, the S2 stage had
significantly higher AMI than all others and for the theta band, S2 was higher than W and
S3. The AGEGROUP*STAGE effect was just significant for the alpha band (F (3, 28)
=2.87, p=0.054) and the S3 stage showed higher AMI for the ELD subjects than for the MA
group (t-value=2.23, p=0.03). The sigma band also had significant AGEGROUP*STAGE
effect (F(3,28)=3.97, p=0.018) and post hoc comparison identified higher A-AMI for the
MA group in the S2 and S3 stages than for the elderly subjects. The beta band A-AMI had
no significant main or interaction effects.

3. Significance tests using surrogate signals
The CMI measure of sleep EEG was tested using surrogate analysis to evaluate if the
detected interdependence could be completely explained by the linear correlations of the
data. Surrogate signals were derived from the EEG signals by preserving the linear
characteristic contained in the power spectrum and/or the signal distribution. If linear
dependencies did not fully account for the CMI between the actual EEG signals, the
parameter computed from the EEG would have a value higher than that from the surrogates.
The test was carried out in two steps following the procedure described in Methods section
3. A one-sided rank test applied to the CMI values estimated for the signals and the bi-
variate surrogates in the second step of the analysis helped to reveal the nature of the
interdependence. For nonlinear nature of interdependence to be present between segments,
we stipulated that the mean CMI for the EEG signals be higher than that for all of the pairs
of surrogates, and that the individual CMI values at discrete time steps be higher for the
EEG signals in at least 50% of the time steps considered. In this manner, the higher MI
values observed at short time lags between the EEG signals were taken into consideration.
At longer lags, as the signals became more independent, the difference between MI values
between the surrogates and signals was smaller. With this condition, we detected about 62%
of S2 and 38% S3 segments in the MA group exhibiting interdependence values that could
not be explained by linear correlations contained in the surrogates. For the ELD, significant
NREM segments were 59% (S2) and 28% (S3) respectively. The wake segments with a
nonlinear component in the CMI were ~ 22% for both age groups. In the case of REM, the
ELD had 33% and the MA had 30% of the CMI values significantly higher than that for the
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bivariate surrogate pairs. The NREM S2 state had the maximum number of nonlinear
segments in both groups. However the segments with CMI values that failed to achieve
significance based on independence between the segments was higher for the ELD group
(14% as opposed to 5% in the MA).

D. DISCUSSION
In this study, we observed that elderly subjects exhibited lowered cortical interdependence
during NREM and REM sleep stages in comparison to middle aged subjects. The narrow
band CMI analysis identified the delta, theta and sigma bands as exhibiting these differences
between the two subjects groups. While the signal predictability assessed from the decay
rate of the AMI function was almost the same for the W, S2 and S3 states for both groups,
the REM state of the elderly was characterized by greater signal unpredictability. The sigma
band signal, however, had significantly greater information content in the NREM stages of
MA subjects than for the elderly.

The mutual information measure was used in the present analysis to compare information
transmission across cortical regions in different sleep stages between the middle aged and
elderly subjects. The MI applied between two random signals will be theoretically zero
when the two signals are completely independent of each other and, hence, reflects the
coupling existing between the two signals. As a nonlinear counterpart of the auto correlation
function, the AMI from single channel EEG was also studied to understand how the time
dependence inherent in a signal varied across sleep stages. A higher AMI value would mean
that with respect to a given instant, the signal continued to evolve in the same manner that it
did a certain (probably short) time period before the instant and this would make it more
predictable in time. The AMI of cortical EEG signals thus reflects the predictability inherent
in the signal. A quickly decaying AMI function points to a less predictable signal that may
cause a reduction in the information transmission between signals. Since neural origins of
the individual spectral components of the EEG differ, the dynamical behavior exhibited in
the different frequency bands may also be different. We attempted to find changes in CMI
and AMI of signals from broad band and narrow band EEG so that the role played by
specific neurophysiological mechanisms associated with the various EEG spectral
components during different sleep stages can be understood further. While it is generally
accepted that sleep parameters such as sleep efficiency and NREM sleep duration decline
with age, we were interested in determining whether there are age-related changes in the
interdependence of EEG activities of typical sleep stages devoid of confounding effects such
as apneas, arousals etc. If so, such changes may contribute to macroscopic effects of
declining sleep efficiency parameters seen in whole night hypnograms of elderly subjects.
Since elderly subjects have characteristic differences in the EEG power of traditional bands
such as delta during sleep stages when compared to young subjects, the narrow band
analysis was expected to help in determining the frequency-specific nature of cortical
interdependence. Multiple reports have indicated that aging in men is associated with an
increase in sleep disordered breathing affecting sleep efficiency and architecture to a greater
extent than women (Lin et al., 2008 and references therein). Hence it may be advantageous
to seek changes in measures such as regional interdependence from healthy women on
whom the impact of aging on sleep may be smaller.

During sleep, the information transmission in the central cortical regions from ELD subjects
was significantly lower than that from MA subjects. The lowered CMI meant that local
differences in EEG activity of ELD subjects may not be attenuated to the same extent as in
MA subjects during sleep. This difference may be due to one of two mechanisms. On the
one hand, there could be a dissociation between underlying cortical regions (such as cortical
and sub-cortical structures). Alternatively, this could reflect a reduction in the strength of a
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common drive to the neural circuits that was inducing the characteristic high
interdependence values during sleep states. In either case, the result is that the EEG
activities at the two sites become more independent with increasing age. This independence
might mean less spatial uniformity of cortical sleep state in the ELD group. Some
researchers support the theory that sleep states are linked to continuous levels of intensity or
depth, rather than to discrete levels (Pardey et al., 1996). If so, lack of spatial homogeneity
may mean that some cortical sites are more sensitive to disturbances or arousal stimuli
during a given sleep stage and their localized activity in the faster spectral range may result
in frequent arousals from sleep.

The average CMI parameter exhibited an increasing trend from wake state to deeper sleep
states such as S2 and S3, and then decreased again in REM stage to a value above that of the
wake state. This was in agreement with a sleep EEG study by Pereda and colleagues (2001)
on young adults which reported higher nonlinear interdependence between signals in deeper
sleep stages compared to awake resting states. From the narrow band analysis, we found that
all bands exhibited higher CMI during NREM sleep states than during W. This also matched
with results from an EEG analysis in which spectral band correlations increased during slow
wave sleep when compared to waking levels (Guevara et al., 1995). However EEG sleep
dynamics are known to exhibit both linear and nonlinear structures (Pereda et al, 1999).
Hence, the interdependence quantified by the CMI function ensured that nonlinear
dependencies between the signals were taken into account.

The interdependence between spectral components was further explored by narrow band
CMI estimation. We found that the higher CMI computed from the broad band data in sleep
stages had contributions not only from high interdependence of slow delta and theta band
components but also from the faster alpha and sigma components. The low and high delta,
theta and sigma components of EEG had lower CMI in ELD subjects during sleep stages of
S2, S3 and REM in comparison to the MA group. The coherence peaks in the spindle
frequency range (12-16 Hz) in S2 stage are well documented (Achermann and Borbély,
1998). The authors of that publication suggested that some waking information is carried by
these frequencies during sleep that is relevant to specific functional process in sleep. If this
information is of importance in sleep, then reduced high frequency CMI in sleep may be a
key factor affecting the decline of macroscopic sleep quality parameters of elderly subjects.

The decay rate of auto mutual information decreased from W to S2 to S3, and then increased
in REM stage for the broad band EEG data. The AMI decay rate quantifies how quickly
information about a signal is lost as a function of time delay. The decay rate of AMI is thus
an inverse measure of the regularity or predictability of the signal. This can be understood as
a variation in the EEG spectral content as sleep progresses from the wake condition. The
faster spectral bands become less dominant as sleep deepens to S3 and the synchronous delta
range frequencies exhibit greater regularity or a slower rate of decay of predictability. The
faster alpha and/or beta waves reemerge in the REM state exhibiting stronger power and
causing a faster loss of information in REM. In a study of the regularity aspect of sleep
EEG, we reported enhanced regularity in deeper sleep stages as compared to wake and REM
(Bruce et al., 2009). This analysis reaffirms the findings of that study by showing significant
differences in the pair-wise comparison of decay rates between all stages. Moreover, the
ELD group AMI decay rate in REM was higher than that of the MA group, indicating lower
predictability of EEG in this state for the ELD subjects. These findings are consistent with
the reported loss of regularity (i.e., increased Sample Entropy) of the elderly in REM in our
previous study.

The narrow band analysis presents a more detailed picture of the self-dependence of EEG
signals in sleep. Both subject groups exhibited higher AMI values in the Delta_H, theta and
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sigma bands in the S2 stage than for the other stages. The sigma band had lower A-AMI for
the ELD subjects compared to the MA in the NREM stages. In an earlier study, the
regularity measure, sample entropy of EEG was found to correlate with power in the (12-20
Hz) spectral band in sleep. The higher the power of this band, the greater the sample entropy
and the lower the regularity of the signal (Bruce et. al., 2009). In the present context, the
lower A-AMI of the EEG points to reduced correlations at longer lags of the EEG for the
elderly subjects in the S2 and S3 states and hence a greater presence of faster spectral
components in sleep of the elderly.

The surrogate data analysis was carried out to check for the presence of correlations in the
EEG during sleep that may not be completely captured by a linear approach. Surrogate data
analysis is a much advocated method to distinguish nonlinear behavior in EEG analysis. Our
findings in this case resemble those in a larger study by Shen and others (2003) where EEG
data in NREM stage 2 predominantly exhibited nonlinear behavior. We observed that most
of the EEG segments that we analyzed exhibited linear interdependencies. This was
especially true for W and REM states. The ELD group had fewer NREM epochs that passed
the test for nonlinear correlations in comparison to the MA group. In most studies,
significance is calculated as a z-score between the observed nonlinear parameter for the
original data and the mean and standard deviation of the same parameter computed for an
ensemble of surrogates. However, this approach implicitly assumes the normality of the
distribution of the estimated parameters for the set of surrogates. Another method would be
to determine if a single parameter, for example, the mean value of the MI estimated over a
certain period or the maximum MI value for the signals, was greater than the respective
single parameter values for all of the surrogate pairs. Here, we utilize a more conservative
approach by including the MI values at each time lag in addition to the single parameter of
interest, the average CMI, in the decision to detect nonlinear interdependency. Some of the
other methods mentioned above may have resulted in more of the segments being accepted
as exhibiting nonlinear interdependence. Between the two age groups, there was a slightly
higher occurrence of segments with nonlinear interdependencies for the MA group in the
NREM stage and for the ELD group in the REM stage. However, the low CMI values
observed among the EEG segments from the ELD caused failure to reject the hypothesis of
independence to a greater proportion in comparison to signals from the MA group. Several
authors have reported on the nonlinear nature of sleep EEG (Pereda et al, 2001; Fell et al.,
1996) and it is generally accepted that both linear and nonlinear features are exhibited by
EEG during sleep. However, in a finite data analysis such as ours, the nature of the data may
be dynamically changing with the chosen time resolution. This makes MI based analysis a
valuable tool in EEG signal analysis where linear and nonlinear dynamics may coexist or be
expressed independent of each other.

A crucial point to consider in the estimation of connectivity measures from EEG signals is
the bias introduced by effects of volume conduction and the reference electrode in the EEG
recording (Nunez et al., 1997; Stam et al., 2007). In this study, the signals were recorded
referenced to the mastoids; a procedure usually followed in sleep EEG recordings. An
earlier report by Duckrow and Zaveri (2005) compared the intrahemispheric coherence
profiles of slow wave sleep obtained from bipolar and common reference derivations.
Despite certain topographic differences, common coherence peaks were obtained involving
the central regions with respect to anterior or posterior comparisons in both derivations. This
would mean that with respect to the central regions, the inter-hemispheric coherence would
still be apparent if the signals were referenced to another derivation. However the nature of
intra-hemispheric interdependence during sleep and topographic changes with respect to
regions other than the central, due to progression of age, are yet to be investigated.
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While sleep efficiency and delta band power parameters based on whole night hypnograms
exhibit a declining trend for aging subjects, the present analysis shows significant
differences between interdependence of central cortical signals in specific sleep stages of
two age groups- healthy middle aged and elderly. In the sense that the amplitude based
parameters reflect the macroscopic changes in sleep in the elderly in comparison to younger
subjects, analyses such as ours provide an answer to whether inherent differences in
dynamics are present during typical sleep between age groups. Our findings suggest lowered
information transmission in ELD subjects during sleep stages than their younger
counterparts. This behavior was also reflected in the different spectral bands, especially the
delta, theta and sigma bands. The predictability of the EEG signal based on broad band
analysis showed strong variation with sleep stage. The predictability of the REM state in
elderly subjects was lower than that for middle aged subjects indicating a more irregular
signal in the REM state of the elderly. However it was the sigma band AMI that exhibited
lower values in sleep stages of ELD subjects in comparison to the MA group. Hence, while
delta band EEG has been known to exhibit reduced power in slow wave sleep with
advancing age (Carrier et. al., 2001) we demonstrated the differences in the faster spectral
content of the EEG. The physiological implications of our findings relate to the modulation
of information transfer between neural circuits involved in generation of the EEG rhythms
and how age affects this information transmission between cortical regions during sleep. The
reduction of interdependence in the sleep stages of elderly subjects may be due to
attenuation of the synchronization in the neuronal activities of spatially separated regions.
This may be linked to high levels of activation in sleep as that in waking states and may be a
factor affecting sleep quality of elderly subjects.
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Figure 1.
Typical CMI curves from one middle aged subject as a function of time lag for narrow band
and broad band EEG signals. These functions represent the mean of the six segments
corresponding to each sleep stage for this particular subject.
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Figure 2.
Broad band EEG analysis: Mean CMI (A-CMI) between C3A2 and C4A1 is on the extreme
left (a) and the AMI parameters- decay rate (b) and average AMI (A-AMI) in (c) are plotted
across sleep stages. The error bars represent the standard error in the estimated mean of a
measure in a particular sleep stage. The asterisks mark the significant
(AGEGROUP*STAGE) interactions- *p<0.05, **p<0.005 and ***p<0.0001. In the AMI
parameters, the horizontal lines represent the post-hoc results of the significant STAGE
effect. Dashed line, p<0.05, thin solid line p<0.005 and thick solid line p<0.0001.
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Figure 3.
Average CMI (A-CMI) (Mean ± S.E.) across sleep stages grouped by age for the various
spectral bands. Significant differences are marked as, * p<0.05, **p<0.005, ***p<0.0001. In
the case of Alpha band, the lines denote the post-hoc results for the STAGE effect when
connecting two stages marked along the x-axis. Thick solid line, p<0.0001, thin solid line,
p<0.005 and dashed line, p<0.05. Also the significant AGE effect for this band is denoted by
the asterisks on the left side inside the plot window.
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Figure 4.
AMI curves for the broad band and the filtered C3-A2 signal in the different sleep stages as
a function of the delay time. The curves shown here were obtained by averaging the AMI
function for the individual segments (6) of each sleep stage in a middle aged subject. The
same behavior was observed in all other subjects’ data.
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Figure 5.
(Mean ± S.E.) of the A-AMI measure for the spectral bands. The asterisk (p<0.05) denotes
significant main effect in AGEGROUP when marked between the A-AMI values
corresponding to the two groups (Delta_L band). It denotes significant
AGEGROUP*STAGE effect when marked below the A-AMI values at specific sleep stages.
The lines denote the post-hoc results for the STAGE effect when connecting two stages
marked along the x-axis. Thick solid line, p<0.0001, thin solid line, p<0.005 and dashed
line, p<0.05.
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Figure 6.
Results of the surrogate data analysis applied to EEG segments from ELD (circles) and MA
(triangles) subjects. The line of identity represents the equality between the average CMI for
the EEG segments [A-CMIorig] and the maximum value from the ensemble of the average
CMI calculated for the surrogate pairs [{A-CMIsurr}max].
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