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Amyotrophic lateral sclerosis (ALS) 
-and frontotemporal lobar degener-

ation (FTLD) are clinically overlap-
ping neurodegenerative disorders whose 
pathophysiology remains incompletely 
understood. ALS initiates in a discrete 
location and typically progresses in a pat-
tern consistent with spread of the degen-
erative process to involve neighboring 
regions of the motor system, although the 
basis of the apparent “spread” remains 
elusive. Recently mutations in two RNA 
binding proteins, TDP-43 and FUS, were 
identified in patients with familial ALS. 
In addition to being involved in numer-
ous events related to RNA metabolism, 
each forms aggregates in neurons in ALS 
and FTLD. Recent evidence also indi-
cates that both TDP-43 and FUS contain 
prion-related domains rich in glutamine 
(Q) and asparagine (N) residues, and in 
the case of TDP-43 this is the location 
of most disease causing mutations. This 
review discusses the potential relevance 
of the prion-related domains in TDP-43 
and FUS in normal physiology, patho-
logic aggregation and disease progression 
in ALS and FTLD.

First described in 1869, amyotrophic lat-
eral sclerosis (ALS or Lou Gehrig disease) 
is one of the longest known neurodegen-
erative diseases.1 The clinical presentation 
typically involves progressive weakness 
and muscle atrophy (due to degener-
ation of spinal motor neurons) and spas-
ticity and reflex disinhibition (due to  
degeneration of upper motor neurons in 
the motor cortex) with death from respi-
ratory failure within 3–5 years. Since the 
earliest descriptions by both Charcot and 
Gowers,2 ALS progression was understood 
to have several key features. First is that 
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it typically has a focal site of onset in the 
nervous system, i.e., begins with unilateral  
hand weakness. Second, progression is 
characterized by apparent “spread” of 
neurodegeneration, usually to the contra-
lateral hand, followed by involvement of 
the legs. Recent detailed autopsy studies of 
ALS patients have confirmed that loss of 
motor neurons is most pronounced at the 
site of onset and diminishes in a gradient 
fashion with further distance from that 
site.3 While many aberrant phenomena 
including excitotoxicity, oxidative stress, 
mitochondrial dysfunction and altered 
axonal transport have been implicated in 
ALS pathogenesis, it is not easily apparent 
how any of these could explain the focal 
initiation or the progressive spread of the 
disease through the motor system.4

While the majority of ALS occurs 
sporadically, approximately 5–10% of 
patients have a family history of the dis-
order, typically autosomal dominant. 
For nearly 15 years the only known ALS 
gene was SOD1, mutations in which are 
responsible for ~20% of familial cases. In 
2006, accumulations of a RNA binding 
protein called TDP-43 were identified in 
degenerating neurons in both ALS and 
the clinically overlapping disorder fronto-
temporal lobar degeneration (FTLD).5 
This was followed quickly by the identi-
fication of point mutations in TDP-43 in 
patients with familial ALS, indicating that 
altered TDP-43 function can be a primary 
cause of the disease.6-10 Shortly thereafter 
mutations in a second RNA binding pro-
tein called FUS were reported in famil-
ial ALS.11,12 Both TDP-43 and FUS are 
predominantly nuclear proteins involved 
in diverse aspects of RNA metabolism;  
however, in disease tissue both were 
observed to form inclusions in the cytosol 
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There is also evidence for prion 
like behavior of a Q/N rich protein in 
Aplysia.24 CPEB is a RNA binding protein 
involved in regulating local synaptic pro-
tein synthesis. Synaptic activity appears 
to shift apCPEB from a monomeric to a 
multimeric form, which is dependent on 
the Q/N rich domain. In the multimeric 
form, apCPEB is active and regulates local 
mRNA translation to maintain synap-
tic facilitation. Similar behavior has also 
been observed in Drosophila where the 
prion-related Q/N domain of Pumilio, 
another RNA binding protein, regulates 
self-aggregation and post-synaptic transla-
tional suppression.25

Finally, the mammalian genome con-
tains a large number of proteins with 
Q/N rich prion related domains that may 
similarly use self-aggregation to modulate 
their activity.26 A well studied example is 
the RNA-binding protein TIA-1, which is 
a key component of stress granules, cyto-
plasmic RNA-protein complexes formed 
under conditions of cellular stress which 
mediate mRNA translational suppres-
sion.27 The prion related domain of TIA-1 
is necessary for it to aggregate and orga-
nize stress granule formation.28 A similar 
mechanism using Q/N domain mediated 
aggregation of RNA binding proteins also 
appears to be involved in the formation of 
P-bodies.29

Therefore, a consistent theme for pro-
teins containing prion-related Q/N rich 
domains from yeast through mammals is 

Prion-like behavior of proteins is best 
characterized in yeast.18,19 The Sup35 pro-
tein is normally required for translational 
termination; however, under certain (par-
ticularly stressful) conditions it can form 
a self-propagating amyloid conformation 
transmissible to offspring, which is depen-
dent on an intrinsically disordered region 
at the N-terminus particularly rich in glu-
tamine (Q) and asparagine (N) residues.20 
Because this Q/N rich region is required 
for prion like propagation, it is referred 
to as the “prion domain.” Evidence sup-
ports that under stressful environmental 
conditions, induction of the Sup35 prion 
state leads to loss of Sup35 function and 
widespread read through of stop codons, 
allowing the rapid emergence of novel 
phenotypes.21 Therefore, rather than rep-
resenting a disease, prion domain medi-
ated aggregation of Sup35 may actually 
be an adaptive strategy to provide imme-
diate phenotypic diversity under stressful 
conditions.19

The prion-domains of most yeast pri-
ons are similarly Q/N rich, including 
those in Ure2 and Rnq1, although others  
(including HET-s) are not. Therefore, 
while Q/N rich domains are permissive to 
allow a protein to adopt a prion-like con-
formational state, they are not absolutely 
required. A growing body of work has 
supported that while not all Q/N domain 
containing yeast proteins can function as 
prions, they share a strong tendency to 
self-aggregate when overexpressed.22,23

of affected neurons. These findings sug-
gested that aberrant protein aggregation 
may play a key role in ALS pathogenesis, 
akin to the central role of protein misfold-
ing and aggregation observed in other 
neurodegenerative diseases. Interestingly, 
both FUS and TDP-43 contain “prion-
related” Q/N rich domains and, in the 
case of TDP-43, essentially all of the ALS/
FTLD associated mutations occur within 
this domain (Fig. 1).13-15 Although the 
importance of the prion-related domains 
in FUS and TDP-43 remains unclear, 
investigation into their role in the normal 
and pathologic functions of the proteins 
clearly warrants attention and is the focus 
of this review.

Prions and Prion-Related Domains

Prion protein remains the only known 
example of a protein capable of propa-
gating a self-replicating conformation that 
can spread a disease (transmissible spon-
giform encephalopathy) across indivi-
duals and is thereby fitting of its name 
as an “infectious protein.”16,17 However, 
additional proteins exhibiting prion-like 
behavior are also observed in yeast, inver-
tebrate and mammalian cells. In these 
cases the adoption of an alternate protein 
conformation and template based spread-
ing of this conformation to the normal 
form, appears not to be deleterious and 
cause disease, but instead regulates the 
function of the aggregating protein.

Figure 1. Line diagrams of TDP-43 and FUS showing the relationship between the prion-related domains and mutations in ALS and FTLD. The location 
of the prion-related domains are based on experimental findings of their interactions with polyglutamine inclusions13,14 and a prediction algorithm 
based on yeast prion domains.15 In the case of TDP-43, all but one of the ALS associated mutations are located in the prion-related Q/N rich domain. 
In FUS, the majority of ALS associated mutations occur in the C-terminal nuclear localization signal (NLS). However, a second cluster also occurs in or 
adjacent to the N-terminal prion related domain. NES, nuclear export signal; RRM, RNA binding domain; RGG, arginine, glycine, glycine repeat rich 
region; ZnF, zinc finger domain.
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can be found in stress granules in cul-
tured cells under certain conditions.44-49 
However, neither TDP-43 nor FUS appear 
to be required for stress granule formation, 
and FUS is only present in these structures 
if it is mislocalized to the cytosol by muta-
tions in the nuclear localization signal.45,47 
Therefore it remains to be defined what 
role they actually play in stress granule 
mediated translational suppression. It 
is also important to point out that the 
same Q/N rich region of TDP-43 has 
been proposed to mediate protein-protein 
interactions with other components of the 
mRNA splicing machinery.50 Therefore, 
the prion-related Q/N rich domain of 
TDP-43 may normally be involved in 
mediating protein-protein interactions 
for splicing regulation, and only in the 
disease state does it develop an alternate 
conformation that templates and seeds 
additional TDP-43 aggregation.

Implications of the Prion-Related 
Domains in TDP-43 and FUS  

in Neurodegeneration

It is important to consider that TDP-
43 “pathology” (cytoplasmic TDP-43 
inclusions, nuclear clearing) is not only 
observed in ALS and FTLD but is also  
frequently present in affected brain regions 
in Alzheimer disease, Parkinson disease, 
chronic traumatic encephalopathy and 
even inclusion body myopathies.51-54 This 
is quite consistent with the possibility that 
TDP-43 aggregation is part of a normal 
response to cellular stress, and is medi-
ated by the prion-related domain. The 
TDP-43 inclusions themselves therefore 
may not be toxic or even protective, but 
instead are indicative of a stress response 
pathway involving TDP-43 that is acti-
vated in these cells. Therefore, defining 
a potential normal role of prion-domain 
mediated TDP-43 aggregation could help 
to explain the presence of TDP-43 aggre-
gates in a wide variety of neurodegenera-
tive conditions.

Another interesting implication of the 
presence of prion related Q/N domains 
in both TDP-43 and FUS is the known 
property of proteins with these domains to 
co-aggregate into inclusions of polygluta-
mine containing proteins.13,14 This obser-
vation provided the initial experimental 

Q/N rich domain into the fibrillar β-sheet 
structure of the polyglutamine inclusion. 
This provided the first experimental evi-
dence that the C-terminus of TDP-43 
behaves similarly to other proteins with 
Q/N rich prion-related domains.

Inclusions of either TDP-43 or FUS are 
observed in cases of ALS and FTLD. For 
TDP-43, the C-terminal region is highly 
prone to aggregation, both as purified 
protein in vitro40 or when expressed as a 
fragment in yeast or cultured mamma-
lian cells.41-43 This strong tendency of the 
C-terminus of TDP-43 to self-associate 
and form aggregates is likewise consistent 
with the behavior of a prion-related Q/N 
domain containing protein.

Finally, several algorithms have been 
used to predict proteins that contain 
prion-related domains in both yeast and 
human genomes.22,23,26 Most recently 
using a hidden Markov Model algorithm 
trained on known yeast prion domain 
containing proteins, FUS and TDP-43 
were predicted as the fifteenth and sixty-
ninth most likely to contain prion related 
domains out of nearly 30,000 proteins in 
the human genome.15

Therefore there are currently three 
pieces of evidence that TDP-43 and FUS 
contain prion-related domains: (1) both 
have modular domains highly enriched in 
Q/N residues that meet prediction criteria 
for prion-related domains; (2) both have a 
strong tendency to self-associate and form 
aggregates and (3) both are effectively 
cross-seeded into polyglutamine inclu-
sions, mediated by the Q/N rich region 
similar to other prion-related domain con-
taining proteins like TIA-1.

Implications of Prion-Related  
Domains in the Normal Function 

of TDP-43 and FUS

As discussed above, a shared property of 
many proteins with prion-related Q/N 
domains is stimulus induced self aggre-
gation, which alters the function of the 
protein in a switch like fashion. Therefore, 
a key question raised is whether TDP-43 
and FUS undergo similar self aggregation 
in response to some type of stimulus and 
mediate a cellular response, akin to other 
Q/N rich domain containing proteins 
such as TIA-1. Both FUS and TDP-43 

one of stimulus induced conformational 
change leading to self aggregation (often 
from environmental stress), which then 
alters protein function to organize an 
adaptive response (form stress granules, 
alter synaptic translation, etc.).

Evidence for Prion-Related  
Q/N Domains in TDP-43 and FUS

Given that prion-related domains are 
inherently disordered in structure, with 
minimal primary sequence determinants 
other than enrichment of Q/N residues, 
the presence of these domains was not 
immediately apparent in TDP-43 and 
FUS. TDP-43 structurally resembles 
heterogeneous nuclear ribonuclear pro-
teins (hnRNPs), and it was originally 
noted to have a glycine-rich domain 
(residues 274–314) similar to other 
“RBD-Gly” family proteins, including 
hnRNPA1.30,31 Subsequently, some have 
referred to the entire C-terminal region 
as a glycine-rich domain analogous to 
hnRNPA1.32 However, unlike hnRNPA1, 
the C-terminal domain of TDP-43 is 
not involved in binding to nucleic acids 
or nuclear shuttling.31,33,34 Instead, the 
C-terminus of TDP-43 is required for 
it to function as a suppressor at several  
splicing targets35,36 and for TDP-43 to act 
as a transcriptional insulator for the mouse 
sp-10 gene.37 Importantly, all but one of 
the ALS associated mutations in TDP-43 
occur in the C-terminal domain.

In an effort to define cellular stressors 
that regulate TDP-43 translocation from 
the nucleus, our group expressed several 
aggregation prone proteins in the cytosol 
of cultured cells, to determine if TDP-43 
could act as a sensor for misfolded protein 
stress.14 We observed that TDP-43 became 
tightly sequestered into detergent insoluble 
inclusions formed by polyglutamine pro-
teins (Huntingtin N-terminal fragment 
or pure expanded polyglutamine), which 
required a particularly Q/N rich stretch 
of residues (31%) within the C-terminal 
domain of TDP-43. This region is similar 
in Q/N content to other proteins that were 
identified in unbiased screens for polyglu-
tamine aggregate interacting proteins, 
including NF-Y, TIA-1 and FUS.13,38,39 
The presumed molecular basis of this 
interaction is the incorporation of the 
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expression. Nat Rev Mol Cell Biol 2009; 10:430-6.
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G, Dember LM, et al. Stress granule assembly is 
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2009; 66:1239-56.

31.	 Ou SH, Wu F, Harrich D, Garcia-Martinez LF, 
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cellular protein, TDP-43, that binds to human 
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amyotrophic lateral sclerosis. Hum Mol Genet 2009; 
18:156-62.

investigations into the role of altered 
RNA metabolism, which was previously 
unexplored. Although an intriguing find-
ing, additional studies are clearly needed 
to delineate the importance of the prion-
related Q/N domains in TDP-43 and 
FUS. These include determining what 
role they play in normal protein func-
tion, under what conditions they mediate 
pathologic aggregation of TDP-43 and 
FUS, and whether they might play a role in 
disease progression by allowing cell to cell 
transfer of pathologic protein aggregates.
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