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Dendritic branches and spines are key regulators of neuronal func-
tion. Number, growth and orientation of dendritic branches mod-
ify the way information is integrated and select axonal targets.1,2 
Dendritic spines are specialized structures that modulate the activ-
ity, strength and stability of the synapse.3-5 Both structures are 
often altered in number and morphology in mental disorders.6-8 
From the times of Cajal we learned to identify the myriad of differ-
ent types of neurons by their stereotyped dendritic morphologies, 
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Dendrites and spines are key regulators of neuronal function 
often affected in cognitive disorders. Neuronal subclasses are 
characterized by a wide range of dendritic morphologies that 
aid their specific functions. However, how subclass-specific 
dendritic trees arise during vertebrate development remains 
largely unknown. we have recently reported that the restricted 
expression of Cux1 and Cux2 genes in the upper layers of 
the cerebral cortex determines the specific morphology of 
dendrites and spines and the function of these neurons. Since 
Cux genes are the vertebrate homologs of Drosophila Cut, 
which specifies the dendritic morphologies of certain sensory 
neuron populations, our findings suggest that mechanisms of 
dendrite differentiation are conserved between Drosophila 
and mammals, which had yet to be demonstrated. Importantly, 
we found that Cux genes not only modulate dendritic 
branching, but also dendritic spine morphogenesis, the 
functional synapse and cognition. Dendritic spine stabilization 
was partly mediated by direct repression of genes of the Xlr 
family, previously implicated in cognitive defects in a model 
of Turner syndrome. Hence, our work indicates that neuronal 
subclass specific determinants may intrinsically affect synaptic 
activity beyond expected. The functions of Cux1 and Cux2 
were additive and complement each other to establish the 
final pattern of the dendritic tree and the number and strength 
of the synapses. This work unravels novel mechanisms of 
dendritogenesis and synaptogenesis and illustrates how 
regulating dendritic structures contributes to the specialization 
of upper layer neurons. It will be interesting to dissect how 
these mechanisms regulate cortical activity, area specialization 
and cognitive functions.
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and we now begin to understand how these dendritic patterns serve 
their specialized functions.1 However, how subclass-specific neuro-
nal features are defined during development is largely unknown. 
Based in studies on Drosophila, dendritic architecture is thought 
to be instructed by the selective expression of transcription factors 
(TFs), but few of such TFs have been described in vertebrates.2,9 
Moreover, the possibility that these subclass specific intrinsic fac-
tors may affect the formation of dendritic spines and synapses has 
not been proposed or explored.

Cux1 and Cux2 are two transcription factors selectively 
expressed in the pyramidal neurons of the upper layers (II, III 
and IV) of the mouse cortex.10,11 These neurons have elabo-
rated dendritic morphologies and profusion of spines12 that 
allow them to integrate intracortical circuits involved in the 
higher cognitive tasks of the brain. They might be considered 
as a late evolutive addition, since they appear in mammals and 
are highly represented in the primate cerebral cortex, especially 
in humans.13 We have recently found that Cux genes exert an 
intrinsic control of the dendritic structures of the upper layer 
neurons of the mouse cerebral cortex (Fig. 1).15 Our knockout 
and knockdown studies demonstrate that the homeobox Cux1 
and Cux2 are early regulators of dendrite branching in a cell 
autonomous manner. Cux genes are the vertebrate homologs of 
Drosophila homeobox Cut, which specifies the dendritic mor-
phology of certain sensory neurons.14 Our findings support the 
existence of conserved mechanisms of dendritic differentiation 
between flies and mammals. They may also imply that the 
activity of Drosophila Cut in specifying simpler neuronal types 
might have been co-opted during cortical evolution to gener-
ate the more complex neurons of mammals. But perhaps more 
unexpected, we found that Cux1 and Cux2 instruct also genetic 
programs that control the number and morphology of the den-
dritic spines. In the absence of Cux genes, the dendritic spines 
adopt a more immature morphology, with longer necks and 
smaller heads. Correspondingly, electrophysiological recordings 
show reduced number and strength of the synapses. A few other 
TFs, such as MEF2, have been previously implicated in activity 
dependent spine formation and synaptogenesis,8,16,17 but these 
mechanisms apply to most neuronal populations. The implica-
tion of Cux1 and Cux2 on neuronal plasticity and in normal 
brain function remains to be understood. Why is it important 
to selectively restrict or promote synapse formation by intrin-
sic factors? Do presynaptic axons need this constrains to define 
their connectivity?
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induced more mature dendritic spine phe-
notypes (Fig. 2). Thus, the additive func-
tions were revealed also for the intrinsic 
control of the spine. Altogether, these sug-
gest that discrete differences in the levels of 
expression of Cux1 and Cux2 may modu-
late dendritic and spine morphogenesis 
in a dose-dependent manner in subsets of 
superficial neurons or regionally, in cortical 
areas. This would refine their functions and 
establish a fine tuning of their connectivity.

In search for the downstream elements 
by which Cux genes exert their functions 
we found mechanisms of synaptogenesis 
key to cognition, including the regulation 
of NMDAR2B and PSD95.8,19-21 Directly 
downstream of Cux, we found the chro-
matin remodeling genes of the Xlr family 
(Fig. 2). These genes were initially identi-
fied as upregulated in the Cux2-/- cortex in 
a screen of genes differentially expressed. 
Previous report showed that increased level 
of Xlr3b and Xlr4b expression correlated 
with more acute behavioral inflexibility in 
a mouse model of Turner syndrome.22,23 
Nothing was known about the functions 
of Xlr genes, but dendrite and spine defects 
associate to mental retardation and there-
fore, it seemed possible that these genes 
were involved in the changes in dendritic 
structures in the absence of Cux. Further 
research identified Cux binding sites in 
the Xlr3b and Xlr4b locus and proved that 
Cux proteins bind to these sites in vivo and 

repress Xlr expression. The functional demonstration of the direct 
implication of Xlr genes in the control of the synapse was provided 
by experiments in which RNAs of interference targeting Xlr res-
cued normal spine density and reduced the proportion of long 
spines upon Cux loss of function. Dendritic tree was not affected, 
proving to be independently regulated. Interestingly, Cux1 and 
Cux2 proteins selectively bound and repressed distinct regulatory 
regions on Xlr3b and Xlr4b loci, illustrating the mechanisms con-
veying the additive functions (Fig. 1, lower parts).

The expression of Cux2 selectively defines the upper layer 
of the human cortex.24 We identified FAM9A, B and C25 as the 
closest orthologos of Xlr genes in human and found sequences 
containing Cux binding sites in FAM9A, B and C loci that are 
conserved between primates and humans. In vitro ChIP experi-
ments in human cell lines demonstrated binding of Cux1 and 
Cux2 proteins to these regions, indicating that it is possible that 
similar Cux mediated synaptic mechanisms act in humans.

The functions of Cux in spine morphogenesis highlight the 
existence of neuronal subclass specific mechanisms of synapto-
genesis that contribute to the establishment of cognitive circuits. 
Accordingly, we found defects in working memory in Cux2-/-. 
Work lies ahead to further investigate these intrinsic mechanisms 

Another interesting point is the additive and complementary 
functions of Cux1 and Cux2. Cux1 and Cux2 label most neu-
rons of the superficial layers and display overlapping patterns 
of expression in several areas of the cortex. This indicates that 
they are likely co-expressed in many upper layer neurons, as we 
formally corroborated for the neurons of the somatosensory cor-
tex. Initially, this suggested us that Cux1 and Cux2 might have 
redundant functions.10,18 However, we found that Cux1 and Cux2 
are complementary but not redundant. Upper layer neurons of 
the somatosensory cortex of both Cux1 and Cux2 single mutants 
show similar reduction in dendritic complexity and comparable 
defects in dendritic spine numbers and morphologies. Double 
loss of Cux1 and Cux2 expression induced more dramatic defects 
in dendrites and spines. Ectopic expression of Cux1 in cingulated 
neurons, that normally express Cux2 but lower levels of Cux1, 
increased branching and reproduced the more complex dendritic 
morphologies of the somatosesory areas. Therefore, we concluded 
that the functions of Cux genes add to each other to stimulate 
branching and that it is the combinatorial expression of Cux1 and 
Cux2 that defines the final dendritic pattern.

Out of these experiments, it should be highlighted that over-
expression of Cux1 also incremented dendritic spine density and 

Figure 1. Cux genes control dendrite branching and synaptogenesis. Cux1 and Cux2 regulate 
neuronal differentiation and control intrinsic mechanisms of dendrite development, spine forma-
tion and synaptic function in upper layers in the cortex. Upper part: Dendritic parterns in wT and 
Cux2-/- pyramidal neurons of the upper layers. Lower parts: Downregulation of Xlr3b and Xlr4b gene 
expression by Cux proteins contributes to dendritic spine differentiation. Cux1 and Cux2 bind and 
regulate different regions in the Xlr4b locus. Miniature excitatory postsynaptic current (mePSCs) 
from layer II and III pyramidal cells of Cux2-/- mice were reduced in amplitude and frequency.
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of synapse regulation. It will likely reveal genes and proteins 
affected in cognitive disorders and neurodegeneration. In addi-
tion, it will be a challenge to investigate how the selective control 
of dendritic structures and spines by Cux1 and Cux2 contribute 
to laminar, columnar and area connectivity, and ultimately to the 
establishment of the intellectual capabilities that rest in the cortex.

Figure 2. Dendritic spine formation in neurons of the cingulate cortex is stimulated upon Cux1 overexpression. Upper parts show representative 
confocal image of GFP positive spines in the cingulate cortex. These neurons had been electroporated with control or CAG-Cux1 plasmid. Scale bar 
represents 5 um. Lower parts show quantification of dendritic spine number, spine morphology and spine head area. Data in bar graphs depict mean 
± SD. *p < 0.005, **p < 0.001, compared with control. This figure is a modification of Cubelos et al.15
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