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The plasma membrane (PM) and the membranes of many intra-
cellular organelles separate the cytosol from environments with 
different free Ca2+ concentrations ([Ca2+]) and electrical poten-
tials.1 The cytosolic [Ca2+] ([Ca2+]

cyt
) is around 20,000-fold lower 

than in the mammalian extracellular fluids, and varies between 
50–100 nM, whereas in the external fluids the [Ca2+] is about  
2 mM. In addition, the lumens of several cellular organelles, like 
the endoplasmic reticulum (ER) and the Golgi apparatus (GA), 
store high amount of free Ca2+, in the order of 1.0 mM and 0.3–
0.4 mM, respectively,2 comparable with those in the external 
fluids. The [Ca2+] in all these compartments is finely regulated 
and the correct Ca2+ homeostasis is important for the majority 
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Mechanisms for intra-Golgi transport remain a hotly debated 
topic. Recently, we published data illuminating a new aspect 
involved in intra-Golgi transport, namely a release of free 
cytosolic Ca2+ ([Ca2+]cyt) from the lumen of Golgi cisternae that 
is fundamental for the secretion and the progression of newly 
synthesized proteins through the Golgi apparatus (GA). This 
increase in [Ca2+]cyt during the late stage of synchronous intra-
Golgi transport stimulates the fusion of membranes containing 
cargo proteins and Golgi cisternae, allowing the progression of 
proteins through the GA. Subsequent restoration of the basal 
[Ca2+]cyt is also important for the delivery of cargo to the proper 
final destination. Additionally, the secretory pathway Ca2+-
ATPase Ca2+ pump (SPCA1) plays an essential role at this stage. 
The fine regulation of membrane fusion is also important for the 
formation and the maintenance of the Golgi ribbon and SPCA1, 
which regulates [Ca2+]cyt levels, can be considered a controller 
of trafficking. This evidence contradicts a model of intra-Golgi 
transport in which permanent membrane continuity allows 
cargo diffusion and progression.
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of intracellular pathways, including the protein trafficking and 
secretion.

Membrane fusion is considered to be essential for intracel-
lular transport. Fusion between membranes within the secre-
tory and endocytic pathways is mediated by SNARE (soluble 
N-ethylmaleimide-sensitive factor attachment protein receptor) 
proteins.3,4 The SNAREs cannot induce rapid fusion of mem-
branes, but proper level of [Ca2+]

cyt
 is necessary.5 Recently, we 

reported that a transient increase in [Ca2+]
cyt

 during the late phase 
of intra-Golgi transport was simultaneous with a decreases in 
Ca2+ stored in the lumen of the Golgi cisternae ([Ca2+]

GA
) and 

maximal [Ca2+]
GA

 restoration ability.6 [Ca2+]
GA

 started to decrease  
7 min after the restoration of intra-Golgi transport.6 However, 
we do not exclude the ER as a possible source of the increased  
[Ca2+]

cyt
, mainly from the trans-ER, strictly associated with the 

GA.7 The release of Ca2+ from the GA rapidly flows through 
opened Ca2+ channels (IP

3
R; inositol-1,4,5-trisphosphate recep-

tor), creating a local ‘cloud’ with an increase of [Ca2+]
cyt

 surround-
ing the GA and generating a local Ca2+ signal.8 The [Ca2+]

cyt
 can 

also rapidly stimulate IP
3
Rs.1,9 Indeed, it is also possible that the 

ER has a role in restoring the [Ca2+]
GA

 that is crucial for cargo 
progression,10 because there are direct interactions between the ER 
and the GA.7 Therefore, focusing attention on the role that the 
GA have in regulating the Ca2+ during intra-Golgi trafficking, 
we can assume that the decreased [Ca2+]

GA
 could be due to (1) an 

impaired pumping of Ca2+ into the GA, (2) an increased opening 
of the IP

3
R channels or (3) a combination of both of these two. 

Of these, we believe the third possibility to be the most plausible.
In the late phase of intra-Golgi transport, 5–7 min after the 

release of the temperature block in our experimental asay,6,11 the 
increase of [Ca2+]

cyt
 is critical for cargo progression. One critical 

step is the remodelling of the more rigid trans-GA membranes, 
which contain more cholesterol and glycolipids,12 operated 
by Ca2+-sensitive and locally recruited Golgi enzymes.13 At 
the same stage, after tethering of fusing compartments oper-
ated by SNAREs,3,4 the destabilization of membranes within 
the contact region needs increased [Ca2+]

cyt
.14,15 An increase in  

[Ca2+]
cyt

 leads to the recruitment of the cytosolic phospholi-
pase A(2) a (hereafter cPLA

2
) on the membranes of the GA.14,16 



www.landesbioscience.com Communicative & integrative Biology 505

 Mini-Review Mini-Review

such as the ability of cells to maintain their Golgi stacks within 
a restricted space, and the normal functioning of the golgins and 
the SNARE/Rab machineries.34 There is a need for correct posi-
tioning and normal functioning of the centrosome, the polymer-
ization and growing of microtubules, the presence of ER-to-GA 
transport and regulated levels of [Ca2+] in both cytosol and secre-
tory compartments.34 If any of these machineries are blocked, the 
stacks will not fuse with each other and the Golgi ribbon will not 
form.35 There is evidence that SPCA1 is crucial for the mainte-
nance of the structure of the GA and that its inactivation affects 
intracellular transport. Inactivation of the Hansenula polymorpha 
PMR1 gene (the yeast homologue of ATP2C1) reduces cell viabil-
ity and functionality of the secretory pathway.36 Recently, a very 
similar result to ours on GA fragmentation in SPCA1-interfered 
HeLa cells was reported.37 All these observations support our 
data, confirming that SPCA1 inactivation inhibits the correct 
organization and functioning of the GA.37

However, our observations contradict some other previous 
reports describing SPCA1-depleted cells in which GA appears 
not to be fragmented33,38 and protein trafficking is unaffected,33 
although the exit of GPI-anchored proteins and VSVG from the 
ER was inhibited.38 Okunade et al.33 used several criteria to deter-
mine there were no effects to transport in SPCA1-depleted mice, 
including observations made of clathrin-coated buds, complexes 
of cell junctions, desmosomes and the development of the base-
ment membrane. However, these parameters have low depen-
dency on intracellular transport, because during the long life of 
epithelial cells they synthesize only very small amounts of the 
matrix proteins involved in the formation of the basement mem-
brane, while the cell junctional complexes are relatively inert. 
Similarly, clathrin-coated buds are poorly involved in antero-
grade intracellular transport, but mostly in endocytosis. In addi-
tion, different cellular models and species were used: in our work 
we used human cells27 whereas Okanude et al. used a murine 
model.33 SPCA1 depletion seems also to have different effects in 
different cellular phenotypes; for instance, the lost of one allele 
of the ATP2C1 gene induces Hailey-Hailey disease in humans, 
demonstrating that SPCA1 has a crucial role in the regulation 
of [Ca2+] in keratinocytes, whereas in the murine model this 
appears not to be the case.39

A potential explanation of how SPCA1 affects the formation 
of the Golgi ribbon is that the generation and maintenance of the 
Golgi ribbon is a membrane fusion-dependent process that is a 
Ca2+-mediated.2 The transient increase in [Ca2+]

cyt
 detected dur-

ing the late phase of intra-Golgi transport was co-incident with a 
Ca2+ efflux from the GA itself.6 Simultaneously, there was a decline 
in the maximal [Ca2+]

GA
 restoration capacity, which is operated 

by the Golgi Ca2+ pumps. 6 This temporary redistribution of Ca2+ 
from the GA into the cytosol during cargo movement through 
the GA appears to have a crucial role in intra-Golgi transport and 
mainly in the late Ca2+-dependent phase of SNARE-regulated 
fusion between the different Golgi subcompartments.6

Similarly, these [Ca2+]
cyt

 changes will also regulate SNARE 
cofactors that are involved in the release of the trans-SNARE 
complex that is formed between two distinct compartments dur-
ing cargo progression through the GA.14,40-42 However, it appears 

cPLA
2
 is regulated by phosphorylation and Ca2+, whereby Ca2+ 

binds the C2 domain of the enzyme, inducing the translocation 
of the cPLA

2
 to the GA and vesicles.13,16 Indeed, the cPLA

2
-C2 

domain itself moves to the GA during the passage of vesicular 
stomatitis virus G (VSVG) through the trans-Golgi.13,16 The 
enzymatic activity of cPLA

2
 or its binding to the membranes, 

could be responsible for the increased sensitivity to [Ca2+]
cyt

 of 
the secretory pathway membranes that are tightly attached one to 
each other by SNAREs. An increase in [Ca2+]

cyt
 is also required 

during the release of the trans-SNARE complex,5 which allows 
formation of the intercisternal connections.17 However, the  
[Ca2+]

cyt
 increase observed during the late stage of intra-Golgi 

transport has to quickly return to its basal levels of 50–100 nM, 
allowing the exit of cargo from the GA.7,18-20 All of the cellu-
lar Ca2+-ATPase pumps, including the secretory-pathway Ca2+-
transport ATPase pump type 1 (SPCA1), which probably have a 
main role in the GA, act to reduce this otherwise ‘toxic’ level of 
Ca2+ from the cytosol.

The mammalian Ca2+-ATPase pumps accumulate Ca2+ into 
different compartments against the Ca2+ gradient, using ATP 
as the source of energy. This group of pumps includes four iso-
forms of the plasma-membrane Ca2+-ATPases (PMCA),21 three 
sarco-(endo)plasmic reticulum Ca2+-ATPases (SERCA),22 and 
two located on the GA and the secretory granules Ca2+-ATPases 
(SPCAs).23 SERCAs are specifically located on the ER and the 
most cis-GA;19,24,25 SPCAs are located mostly on the GA and are 
excluded from the ER.26,27 The two SPCA isoforms, SPCA1 and 
SPCA2,28-30 are differently distributed; in mammals, SPCA1 is 
expressed in all tissues,28 whereas SPCA2 is expressed in only 
a limited set of tissues.30 We recently characterized the (sub)
compartmental distribution of SPCA1 along the secretory path-
way.27 SPCA1 is mostly excluded from the cores of the Golgi 
cisternae and is mainly distributed on the lateral rims of Golgi 
stacks, in the non-compact zones that interconnect differ-
ent Golgi stacks and in the tubular cluster of the trans-Golgi 
network.27 This localization suggest SPCA1 has a role regulat-
ing the local [Ca2+]

cyt
 in (sub)compartments surrounding the 

GA where membrane fusions occur during protein trafficking.  
A schematic of SPCA1 redistribution along the secretory path-
way is provided in Figure 1.

ATP2C1 encodes for the human SPCA1 protein, with four 
known mRNA splice variants.31 Gene silencing of ATP2C1 inhib-
its the correct organization of the GA32 and affects the subsequent 
development of the affected tissue.33 SPCA1 depletion inhibits the 
exit of VSVG from the GA and delays retrograde redistribution 
of the GA glycosylation enzymes into the ER caused by brefeldin 
A (BFA);27 however, the exit of these enzymes from the ER is not 
affected and the decreased sensitivity of SPCA1 depleted cells to 
BFA is not related to GA fragmentation.27 Additionally, SPCA1 
depletion by RNA interference induces GA fragmentation; these 
fragments lack the cis-most and trans-most cisternae and remain 
within the perinuclear region.27This suggests that correct SPCA1 
functioning is crucial to intra-Golgi transport and for the main-
tenance of the Golgi ribbon.

So how is SPCA1 involved in maintaining the Golgi rib-
bon? The organization of the GA depends on many factors, 
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this [Ca2+]
cyt

 could not be sufficient to drive the fusion of COPI 
vesicles with membranes of the GA. This is consistent with our 
observation that SPCA1 depleted cells accumulate COPI vesicles 
as a result of decreased membrane fusion events. This results in 
an inhibition of Golgi ribbon formation.

It is now clear that a local release of Ca2+ from the lumen of the 
GA is necessary for intra-Golgi transport;7 this supports a model 
of intra-Golgi transport where the movement of protein through 
the GA requires temporary membrane fusion. In fact, if all of the 
Golgi cisternae are already interconnected, there is no require-
ment for SNARE-mediated membrane fusion modulated by the  
[Ca2+]

cyt
 increase during the late phase of intra-Golgi transport.

that at steady state, even a low [Ca2+]
cyt

 is sufficient to promote 
many constitutive membrane-fusion interactions along the secre-
tory pathway.7,43-47 For instance, COPI vesicles can fuse with 
Golgi cisternae at steady-state48 without any apparent changes in 
[Ca2+]

cyt
. The presence of SPCA1 at the lateral rims of the GA and 

in the non compact zones of the Golgi ribbon, where membrane 
fusion occurs during cargo progression, supports the involvement 
of SPCA1 not only in GA Ca2+ homeostasis, but also trigger-
ing (highly localized) increases in [Ca2+]

cyt
. It has also recently 

been shown that in SPCA1 depleted cells, the basal [Ca2+]
cyt

 is 
about 1.5-fold lower control cells.38 If we consider that this basal  
[Ca2+]

cyt
 is about 50–100 nM, in these SPCA1 depleted cells 

Figure 1. Schematic representation of the (sub)compartmental distribution of SPCA1 along the secretory pathway. SPCA1 is prevalent on the lateral 
rims of the Golgi cisternae, in the most cis- and trans-Golgi and on the endo/lysosomal compartment, but not on eR membranes. SeRCA is typically 
present on eR membranes and overlapping with SPCA1 distribution only in the most cis-Golgi (eRGiC and cis-Golgi). The arrival of cargo to the GA 
induces the release of Ca2+ from the iP3R which induces a relocation on the GA of membrane remodeling enzymes (i.e., cPLA2) as well as calmodulin 
(CaM) and SnARe cofactors Ca2+-sensitive; this redistribution is crucial to orchestrate the SnARe fusion machinery which coordinates the fusion events 
necessary for the protein trafficking through the GA. Subsequently, the restoration of the basal [Ca2+]cyt requires the activation of the SPCA1, that trans-
fers the increased [Ca2+]cyt into the GA lumen. The diluted colors from the darker eR to the clearest TGn indicates decreasing lumenal [Ca2+].
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