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Purpose: The paired box gene 6 (PAX6) on human chromosome 11p13 is an essential transcription factor for eye formation
in animals. Mutations in PAX6 can lead to varieties of autosomal-dominant ocular malformations with aniridia as the
major clinical signs. Known genetic alterations causing haplo-insufficiency of PAX6 include nonsense mutations, frame-
shift mutations, splicing errors, or genomic deletions. The purpose of this study was to identify genetic defects as the
underlying cause of familial aniridia in a large Chinese family.
Methods: All exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. The genome of the
proband was evaluated by a microarray-based comparative genomic hybridization (aCGH). Quantitative real-time PCR
was applied to verify the abnormal aCGH findings in the proband and to test five other family members.
Results: There were no detectable pathogenic mutations in the exons of PAX6 in the proband. The aCGH analysis showed
two copies of PAX6 but revealed a 566 kb hemizygous deletion of chromosome 11p13, including four annotated genes
doublecortin domain containing 1 (DCDC1), DnaJ homolog subfamily C member 24 (DNAJC24), IMP1 inner
mitochondrial membrane (IMMP1L), and elongation factor protein 4 (ELP4) downstream of PAX6. Quantitative real-time
PCR verified the deletion in the proband and further identified the deletion in a blind fashion in four affected family
members but not in the one with a normal phenotype.
Conclusions: The 566 kb hemizygous deletion of chromosome 11p13 downstream of PAX6 should be the cause of the
familial aniridia in this Chinese family, although two copies of PAX6 are intact. aCGH evaluation should be applied if
there is a negative result for the mutation detection of PAX6 in patients with aniridia.

Aniridia (OMIM 106210) is a congenital eye disorder
characterized by the complete or partial absence of the iris and
iris hypoplasia. Eight-five percent of individuals with aniridia
inherit this disorder as an autosomal-dominant trait, 13%
occur as part of the autosomal-dominant WAGR syndrome
(Wilms’ tumor, aniridia, genitourinary abnormalities, and
mental retardation), and the remaining 2% occur as part of
other disorders, including Peters’ anomaly and Gillespie’s
syndrome, in either autosomal-dominant or autosomal-
recessive inheritances [1-3].

The paired box gene 6 (PAX6) is located on chromosome
11p13 and contains 14 exons encoding a protein (PAX6) with
422 amino acids. PAX6 is a transcriptional factor controlling
development of a diversity of organs and tissues (forebrain,
pancreas, and ocular tissues, including corneal epithelium,
lens, and retina) by recognizing specific DNA sequences of
its downstream target genes [4]. Nonsense mutations or
deletions of the PAX6 gene primarily cause aniridia due to its
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haplo-insufficiency [5], while missense mutations of this gene
are associated with a diversity of eye abnormalities through
gain-of-function of the mutated protein, such as Peters’
anomaly, corneal dystrophy and opacification, congenital
cataracts, glaucoma, and foveal hypoplasia [2,6,7]. Whereas
mutations or intragenic deletions of PAX6 represent the major
causes of aniridia, genomic rearrangements involving the
downstream region of PAX6 were identified in patients with
aniridia although both copies of PAX6 are intact in these
patients [8-13].

In the present study, we report a genomic microdeletion
in the downstream region of PAX6 in a large Chinese family
with familial aniridia and other eye anomalies, using
microarray-based comparative genomic hybridization
(aCGH) techniques. To our knowledge this is the first case
found in an Asian population and is one of few similar cases
with this kind of genetic mechanism [9,11,12].

METHODS
Patients: A five-generation Chinese family with familial
aniridia was recruited from Heilongjiang province,
northeastern China. There were 15 affected individuals in this
family from which five affected members (II:2, III:4, III:6, III:
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13, and IV:11) and one unaffected individual (IV:4)
participated in this study (Figure 1). Ocular tests for these six
members included visual acuity of naked eyes and corrected
visual acuity, which were recorded using the logarithm of the
minimum angle of resolution E chart (Precision Vision, Villa
Park, IL), slit-lamp biomicroscopy, measurement of
intraocular pressure by applanation tonometry, and
gonioscopic evaluation of the anterior chamber angle.
Systemic evaluation was performed in the six subjects in this
study to exclude WAGR syndrome (Wilms’ tumor, aniridia,
genitourinary abnormalities, and mental retardation),
Axenfeld–Rieger syndrome, iridocorneal endothelial
syndromes, sclerocornea, and Peter’s anomaly. Informed
consents were obtained from the six individuals in this study.
Five affected patients and one family member with normal
phenotype were further investigated using molecular
techniques. The research protocol for this study was approved

by the Harbin Medical University Ethics Committee (Harbin,
China).

Experiments: All exons of PAX6 in the proband (III:4) were
amplified and sequenced with the ABI BigDye Terminator
Cycle Sequencing kit v3.1, (ABI Applied Biosystems, Foster
City, CA) according to the described protocol [14]. The
superimposed mutant PCR products were subcloned into
pGEM-T vector (Promega, Madison, WI) and sequenced to
identify the mutation. The genomic DNA from the proband
was analyzed by aCGH using the Agilent Human Genome
Microarray Kit 244K (Agilent Technologies, Santa Clara,
CA) based on the published procedures [15]. The digested test
DNA and reference DNA were labeled with cyanine (Cy)3-
deoxyuridine triphosphate (dUTP) or Cy5-dUTP,
respectively. Following purification, the appropriate Cy3-
labeled test DNA and Cy5-labeled reference DNA were
mixed together and combined with 2× Hybridization buffer
(Agilent), 10× blocking agent (Agilent), and Human Cot-1

Figure 1. Pedigree of the family in this study. Squares and circles indicated males and females respectively. The symbols in black represent
the affected members. The asterisks indicate those subjects who participated in this study. The arrow indicates the proband. The square with
a line indicated a deceased individual.

TABLE 1. PRIMER INFORMATION.

Primer sets Primers sequences Amplified region Amplicon
size

Target genes

Target primers Forward: aatgtttcggcctacgatgggagt chr11:31586811–31586956 146 bp FOXC2
 Reverse: tttagcacccacttacccttccca    

Target primers Forward: tcataaacactgcagccagcctct chr11:31781362–31781507 146 bp PAX6
 Reverse: tcccaacactgcagagaccttgaa    

Reference primers Forward: aggtgttctgctgctgagatggaa chrX:13693097–13693233 137 bp OFD1
  Reverse: tccctttgtgcccagatgaagaga    
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DNA (Invitrogen, Carlsbad, CA). The hybridization mixture
was slowly dispensed to a microarray chip and assembled with
an Agilent SureHyb chamber. After washing, all microarray
slides were scanned on an Agilent Microarray Scanner
G2565BA with 5-μm resolution. Captured images were
transformed to data with Feature Extraction Software, version
9.5 (Agilent), and then imported into Agilent CGH Analytics
3.2.5 software for analysis. Quantitative real-time PCR
(qPCR) was performed to verify the abnormal aCGH findings
in the proband and to test other family members, according to
published guidelines [16]. Individual optimization qPCRs
were performed in a 20 μl volume including 25 ng template
DNA, 200 nM of each primer, and 1× Premix-Choice with
ROX reference dye in an initial denaturation of 93 °C for
10min, followed by 35 cycles of 93 °C for 1 min and 61 °C
for 1 min, and 72 °C for 1 min. The three sets of primers for
qPCR analysis (Table 1) include primers targeted to the
elongation factor protein 4 (ELP4) gene within the deleted
genomic region, primers within the PAX6 gene, and reference
primers within the Oral-facial-digital syndrome 1 protein
(OFD1) gene on the human X chromosome. Both ELP4 and
PAX6 were assayed as test genes compared with OFD1, and
both ELP4 and PAX6 were assayed as test/controls.

RESULTS
Clinical findings: The clinical findings are summarized in
Table 2. The proband (III:4), was diagnosed with bilateral iris
coloboma, optic atrophy of the left eye, right corneal opacity,
and strabismus. Because of glaucoma, the proband had
undergone cyclocryotherapy on the left eye in 2002. Other
recurrent symptoms in the other affected participants include
optic atrophy, retinitis pigmentosa, cataract, subluxation of
lens, and dysplasia of trabecular meshwork, fovea, and optic
nerve (Table 2). Poor vision is due to foveal or optic nerve
hypoplasia, cataract, glaucoma and amblyopia. No visible
autistic problems or intellectual disabilities were identified in
these affected individuals.

Sequencing results for PAX6: All exons of PAX6 from the six
participants of the family were amplified and sequenced using
standard techniques. No intragenic point mutation or deletion
could be identified (data not shown).
Microarray-based comparative genomic hybridization
findings in the proband: The aCGH analysis detected 35 copy
number variations (CNVs) in the proband’s genome (Table
3). One of them is a 566 kb hemizygous deletion of
chromosome 11p13 (chr:31,074,403–31,640,263) with
approximately a 123 kb distance from the 3′ end of PAX6
(chr11:31,762,916–31,796,085) according to HG18 (NCBI
36, March 2006; Figure 2. This deletion contains four
annotated genes: doublecortin domain containing 1
(DCDC1), DnaJ homolog subfamily C member 24
(DNAJC24), IMP1 inner mitochondrial membrane
(IMMP1L), and elongation factor protein 4 (ELP4). The

remaining 34 CNVs were considered to be benign because
these CNVs were identified in healthy individuals
documented in the Database of Genomic Variation or in recent
publications [17,18].
Quantitative real-time PCR assays in the proband and other
family members: The 566 kb hemizygous deletion of
chromosome 11p13 in the proband was verified by qPCR
using primers targeted to ELP within the deleted region, which
showed one threshold cycle difference between the patient
and reference DNA samples for the amplification of the test
gene (Figure 3). Two copies of PAX6 were confirmed by
qPCR, consistent with the aCGH results in this individual
(data not shown). We used the qPCR method for testing the
other five family members in a blind fashion, four affected
family members with eye anomalies, and one healthy
individual. All four patients were confirmed to carry the
deletion, including ELP, but not PAX6. The phenotypic
normal individual showed two copies for both ELP and
PAX6 (data not shown).

DISCUSSION
The major finding in this Chinese family with familial aniridia
is the presence of a 566 kb heterozygous deletion containing
four annotated genes: DCDC1, DNAJC24, IMMP1L, and
ELP4. The proximal breakpoint of this deletion is
approximately 123 kb from the 3′ end of PAX6. We postulate
that this 566 kb heterozygous deletion is the underlying cause
of the familial aniridia and acts by disrupting the transcription
in one of the two PAX6 alleles, even though the two copies
of PAX6 were intact in all individuals investigated in this
study.

Our finding provides further evidence of the existence of
the remote 3′ regulatory elements in the downstream region
of PAX6 controlling the expression of this gene, if disrupted,
leading to aniridia and other eye anomalies. To our
knowledge, this is the first case found in Asian patients with
aniridia and one of few similar cases with this kind of genetic
mechanism.

Our postulation is based on following evidence: 1) The
heterozygous deletion segregated with aniridia in the five
affected individuals but not in the unaffected individual, while
the exons and splicing regions of PAX6 are apparently free of
mutations. 2) Several publications reported similar
observations in patients with aniridia, but the chromosomal
breakpoint from the 3′ end of PAX6 and the fragment of
deletion were different. For example, two aniridia pedigrees
have been characterized in which the disease segregates with
chromosomal re-arrangements that involve 11p13 but do not
disrupt the PAX6 gene since the chromosomal breakpoint is
at least 85 kb away from the 3′ end of PAX6 [8]. Two aniridia
pedigrees have also been described in which deletion in the
ELP4 gene region, not involving PAX6, was present in all
subjects with aniridia but not in the investigated normal
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relatives [12]. A 1.3 Mb deletion (including seven annotated
genes: metallophosphoesterase domain containing 2
(MPPED2), doublecortin domain containing 5 (DCDC5),
DCDC1,DNAJC24, IMMP1L, zinc finger CLS domain
containing 3 (DPH4), and ELP4) has been characterized that
starts 35 kb from the 3′ end of PAX6 in a patient with aniridia,
autism, and mental retardation [11]. Recently a ~406 kb
heterozygous genomic deletion containing four annotated
genes (DCDC1, DNAJC24, IMMP1L, and ELP4) was found
in patients with aniridia [13]; apparently the gene contents in
this deletion are the same as the 566 kb heterozygous deletion
in the family we report here. 3) Functional studies in both
human cells and animal models confirmed the existence of
remote 3′ regulatory elements in the downstream region of
PAX6. Deletions in this region have been shown to abolish
PAX6 expression and cause aniridia and other eye anomalies

due to loss of enhancers and a downstream regulatory region
[9,19,20].

Little information is known about the four annotated
genes within the 566 kb deletion in this study. It is also
unknown whether these genes are involved in any of the
phenotypic features found in these individuals carrying the
deletion. The DCDC1 gene encodes a member of the
doublecortin family, which is highly expressed in testis and
fetal brain [21]. DNAJC24 is one of several enzymes involved
in synthesis of diphthamide, which is a unique
posttranslationally modified histidine found only in
translation elongation factor 2 [22]. IMMP1L encodes a
peptidase similar to mitochondrial inner membrane peptidase
(IMP1), which is one of the catalytic subunits of the IMP
complex proteolytically removing the mitochondrial targeting
presequence of nuclear-encoded proteins [23]. ELP4 encodes

Figure 2. The 556 kb genomic deletion of chromosome 11p13. This deletion harbors four annotated genes, DCDC1, DNAJC24, IMMP1L,
and ELP4.

Figure 3. qPCR analysis result. An
example of the qPCR amplification plot
showed a single copy of the test gene,
ELP4, in the affected individuals
compared to the two copies of this gene
in the reference DNA.
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a component of the six subunit elongator complex, a histone
acetyltransferase complex that associates directly with RNA
polymerase II during transcriptional elongation. Two recent
reports indicate that ELP4 is possibly associated with the
centrotemporal sharp wave electroencephalogram (EEG) trait
in rolandic epilepsy and speech sound disorder [24,25].

Submicroscopic copy number variations may play a role
in human diseases either by loss of gene expression regulatory
elements or by disrupting coding sequences. As well as the
point mutations in PAX6 exons, copy number variation should
be investigated in the flanking regions of PAX6. We suggest
that patients, such as the subjects reported here, should be
investigated using high resolution aCGH techniques in a
clinical setting if sequencing analyses for PAX6 in patients
with aniridia is negative.
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