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Abstract.—The marginal likelihood is commonly used for comparing different evolutionary models in Bayesian phylogenet-
ics and is the central quantity used in computing Bayes Factors for comparing model fit. A popular method for estimating
marginal likelihoods, the harmonic mean (HM) method, can be easily computed from the output of a Markov chain Monte
Carlo analysis but often greatly overestimates the marginal likelihood. The thermodynamic integration (TT) method is much
more accurate than the HM method but requires more computation. In this paper, we introduce a new method, stepping-
stone sampling (SS), which uses importance sampling to estimate each ratio in a series (the “stepping stones”) bridging the
posterior and prior distributions. We compare the performance of the SS approach to the T and HM methods in simulation
and using real data. We conclude that the greatly increased accuracy of the SS and TI methods argues for their use instead of
the HM method, despite the extra computation needed. [Bayes factor; harmonic mean; phylogenetics, marginal likelihood;
model selection; path sampling; thermodynamic integration; steppingstone sampling.]

The application of Bayesian statistics to phylogenetics
(Rannala and Yang 1996; Mau and Newton 1997; Yang
and Rannala 1997; Larget and Simon 1999; Newton et al.
1999; Li et al. 2000; Drummond et al. 2002) introduced
not only a new way of estimating phylogenies but also
new ways of evaluating models used for phylogenetic
inference. For example, the Bayes factor is a ratio of
the marginal likelihood of one model to the marginal
likelihood of a competing model. The marginal likeli-
hood measures the average fit of a model to the data,
whereas traditional approaches to model selection, such
as likelihood ratio tests (LRT; Wilks 1938), the Akaike
Information Criterion (AIC; Akaike 1974), the Bayesian
Information Criterion (BIC; Schwarz 1978), and the
decision-theoretic approach (DT; Minin et al. 2003), base
decisions on the fit of each competing model at its best
(i.e. the point in parameter space that maximizes the
likelihood). Despite the name, the BIC does not take
account of the priors that are actually used in a Bayesian
analysis, and the same is true of the other non-Bayesian
approaches (AIC, LRT, and DT).

There are two primary reasons as to why taking the
prior into account is important in Bayesian model selec-
tion. First, if the prior is informative, it may “box out” a
parameter, keeping the parameter from attaining values
that would provide the best fit to the data. A prior dis-
tribution has the effect of attaching a metaphorical rub-
ber band to a parameter value. The variance of a prior
distribution measures the average strength of its rub-
ber band, and the prior mode specifies where the rub-
ber band is staked to the ground. For vague relatively
noninformative priors (large variance), the rubber band
is very thin and stretches easily, allowing the parameter
to take on essentially any value suggested by the data.
Informative priors (small variance) attach thick strong
rubber bands to their parameters, keeping the parame-

ter value relatively close to the prior mode. Making the
prior informative and at the same time staking it down
too far away from the zone of best fit will prevent the
model from fitting the data well in a Bayesian analy-
sis. Because LRT, AIC, BIC, and DT ignore priors, these
approaches to model selection will not detect that the
prior is preventing the model from fitting the data well.
Most priors currently utilized in Bayesian phylogenetic
analyses are vague and the models used are not overly
complex. As models become more biologically realistic,
more parameter-rich informative priors will be needed
for at least some parameters to avoid overparameteriza-
tion, and “boxing out” will become more of a concern.
The second reason why priors are important in
Bayesian model selection lies in the fact that it is the
prior that determines the degree to which an extra pa-
rameter in overly complex models is penalized when
the marginal likelihood is used to assess model per-
formance. All model choice criteria reward models for
high goodness-of-fit and penalize models for gratuitous
complexity. AIC and BIC both punish unnecessarily
complex models by assessing a penalty for each pa-
rameter. If adding a parameter does not increase the
maximized likelihood enough to offset the penalty,
the model will not be favored when compared to a
model lacking that parameter. The penalty term is the
same for every parameter in AIC and BIC. For exam-
ple, the Hasegawa—-Kishino—Yano (HKY)+G model is
penalized just as much by AIC and BIC for having a
discrete gamma rate heterogeneity shape parameter
as it is for having a transition/transversion rate ratio
parameter. On the other hand, Bayesian model selec-
tion using the Bayes Factor (BF) approach allows the
investigator to specify an individual penalty for each
parameter through the choice of prior distributions.
The marginal likelihood is a weighted average of the
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FIGURE 1. Three possible priors (dotted lines) for an analysis in
which the likelihood is indicated by a solid line. a) Flat prior. b) Infor-
mative prior that strongly overlaps the likelihood. ¢) Informative prior
with almost no overlap with likelihood.

likelihood, where the weights come from the prior. The
marginal likelihood is highest when the prior and like-
lihood are both concentrated over the same parameter
value regions, and the marginal likelihood of a model is
lowest when the prior emphasizes regions of parameter
space where the likelihood is low. Choosing a prior that
is both informative and in accordance with the likeli-
hood (Fig. 1b) will penalize a model less than a prior
that is either noninformative (Fig. 1a) or informative
but with little overlap with the likelihood (Fig. 1c). BFs
thus provide tunable penalties for parameters in mod-
els, whereas the traditional approaches treat parameters
equally.

Calculating the marginal likelihood of a model ex-
actly is computationally intractable for all but trivial
phylogenetic models. The marginal likelihood must
therefore be approximated using Markov chain Monte
Carlo (MCMC), making Bayesian model selection using
BFs time consuming compared with the use of LRT,
AIC, BIC, and DT for model selection. For nested mod-
els (one model is a special case of the other model),
BFs can be estimated using the Savage-Dickey ratio
(Suchard et al. 2001); however, many interesting model
comparisons involve nonnested models. Huelsenbeck
et al. (2004) used reversible-jump MCMC (rjMCMC)
to perform model averaging over the entire family of
models that represent various constrained versions
of the general time reversible (GTR) model. This ap-
proach indirectly uses marginal likelihoods as model
weights, avoiding the technical difficulties associated
with marginal likelihood estimation while at the same
time also avoiding model choice. The disadvantage of
the rjMCMC approach is that it is restricted to a spe-
cific fixed family of models; adding a new model would
be tedious, requiring design of an ad hoc MCMC pro-
posal that allows jumps between the new model and
at least one other model already in the system. Because
of its ease of calculation, the harmonic mean (HM) ap-
proach (Newton and Raftery 1994) is the most common

approach for estimating marginal likelihoods, and
hence BFs ( e.g., Nylander et al. 2004; Pagel and Meade
2004; Brandley et al. 2005; Bleidorn et al. 2007; Brown
and Lemmon 2007; Alekseyenko et al. 2008; Praz et al.
2008). Lartillot and Philippe (2006) advocated thermo-
dynamic integration (TI) for estimating the marginal
likelihood of a single model (the “annealing-melting
integration” variant) or the BF directly (the “model-
switch integration” variant). The TI approach is far
more accurate than the HM method, but requires an
MCMC analysis that is more time consuming than that
needed by the HM method.

This paper is concerned with describing a new method
(steppingstone sampling; SS) that provides an alterna-
tive to TL. As with the annealing-melting version of TI,
SS estimates the marginal likelihood directly as opposed
to estimating a ratio of marginal likelihoods (i.e., BF).
This makes these two methods very general: they can
be applied to any model for which MCMC samples can
be obtained. Direct estimation of marginal likelihoods
allows a new model to be compared with published
marginal likelihoods of other models, which is impos-
sible for methods that estimate BFs directly unless a
common reference model is used. A further limitation
of methods that directly estimate BFs arises if the mod-
els being compared occupy different parameter spaces,
a situation that requires special treatment on a case-by-
case basis (Chen and Shao 1997). We present simulation
results showing that (because of its increased accu-
racy) the SS method often chooses different models than
the HM method, and results from empirical examples
showing that SS and TI provide very similar estimates
of the marginal likelihood. We conclude that the HM
method is quite inferior to both SS and TI and should
not be used for model choice in phylogenetics if these
alternatives are available.

MARGINAL LIKELIHOOD ESTIMATION
Importance-Sampling Approaches

An approximation to the marginal likelihood can be
obtained by importance sampling. Allowing an MCMC
sampler to explore the importance distribution g(0), the
marginal likelihood can be estimated using the sampled
0; values (i=1,...,n) as follows:

E, [ (10, M)w(8]M)]
SM) == T

o izt f(7]8i, M)wi(8iM)
% Z?:l w;(0;|M) ’

1)

where 0; represents the ith parameter vector sampled
from the importance distribution, f(y|6;, M) is the like-
lihood computed at point 8;, and w(0;|M) is the im-
portance weight for observation i. The weight w(8;|M)
in turn equals f(0;|M)/g(0;), where f(8;|M) is the joint
prior density computed at point 0; and g(0;) is the im-
portance density computed at point 6;.
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The difference between different importance-sampling
estimators lies in the choice of the importance distri-
bution. The posterior distribution f(0|y, M) is a par-
ticularly convenient choice for g(8) because a sample
from the posterior is the goal of any Bayesian phy-
logenetic analysis, allowing the marginal likelihood
to be estimated from an MCMC sample that must be
collected anyway. Equating g(0) with the posterior dis-
tribution means that an estimate of the marginal likeli-
hood can be obtained essentially for free. Substituting
3(8) = £(Bly, M) = f(y|8, M)f (8]M) /f(y|M) into Equa-
tion 1 shows that the estimate of the marginal likelihood
under this choice for ¢(0) is the HM of the likelihoods
sampled from the posterior distribution:

n
fylM) ~ S Ta—
=1 f(y|0:,M)

This importance-sampling approach for approximat-
ing the marginal likelihood was introduced by Newton
and Raftery (1994) and is known as the harmonic mean
(HM) method. The HM method is currently very pop-
ular, largely because widely used computer programs
such as MrBayes (Ronquist and Huelsenbeck 2003) pro-
vide the log HM as part of their standard output. Unfor-
tunately, the HM estimator is biased and overestimates
the true marginal likelihood (Appendix). Intuitively, this
overestimation is easy to understand in the (usual) case
of a diffuse prior and a posterior dominated by the like-
lihood. In such cases, few MCMC samples will come
from areas of parameter space in which the likelihood is
low, even if such areas are not discouraged by the prior,
leading to an overrepresentation of high likelihoods in
the estimate of marginal likelihood.

The arithmetic mean (AM) method uses the prior as
the importance distribution. Substituting g(0) = f(0|M)
into Equation 1, the marginal likelihood estimate is the
simple AM of the likelihoods sampled from the prior
distribution. This approach is unbiased; however, if the
likelihood is sharp compared with the prior, the AM es-
timate can have an unacceptably high variance. This is
because the magnitude of the estimate often depends
critically on a few points sampled in the area of high
likelihood. As we show later, the AM method becomes
very useful when the importance distribution is chosen
to be similar to (but slightly broader than) the target
distribution.

Thermodynamic Integration

The most accurate method currently used in phy-
logenetics to estimate marginal likelihoods is not an
importance-sampling approach. This method, TI, is
similar to the path sampling method of Gelman and
Meng (1998) and was first introduced into phylogenet-
ics by Lartillot and Philippe (2006). Apparently unaware
of Lartillot and Philippe (2006), Friel and Pettitt (2008)
arrived at the same method independently (but did
not apply it to phylogenetics), calling it the method of

power posteriors. Lartillot and Philippe (2006) showed
that TT is far more accurate than HM.

TI avoids the overestimation of HM by sampling
from a Markov chain that explores a near-continuous
progression of distributions along a path extending
from the posterior at one extreme to the prior at the
other extreme. Lartillot and Philippe (2006) termed this
“annealing-melting integration.” The other form of TI
they described, “model-switch integration,” involves
following a path between the posterior distributions of
two separate models. The method outlined by Lartillot
and Philippe (2006) and Friel and Pettitt (2008) differs
from the path sampling method defined by Gelman and
Meng (1998). In Gelman and Meng’s approach, points
along the path from prior to posterior are drawn from
a probability distribution. This works well in a pure
Gibbs-sampling context where no burn-in period is
required; however, in phylogenetics, where Metropolis-
within-Gibbs sampling dominates, this approach is very
inefficient due to the need to allow the chain to acclimate
to potentially radical shifts in the target distribution. In
the method of Lartillot and Philippe (2006), the sampler
crawls incrementally along the path between the prior
and posterior, and the time spent sampling one point
along the path serves as the burn-in period for sampling
the next point.

Lartillot and Philippe (2006) discuss discretization er-
ror, which is a form of bias that causes underestimation
of the marginal likelihood. Discretization bias arises be-
cause the method approximates a continuous integral
using a finite number of points. The bias decreases with
the number of points composing the path (it cannot
be ameliorated by devoting more sampling effort to
each point). Discretization bias becomes an issue only
when one attempts to cut corners by using a small num-
ber of intervals along the path. The primary practical
difficulty with TI is thus the amount of computation re-
quired to be assured that this inherent bias is negligible.
Lartillot and Philippe (2006) predicted that TI may re-
quire an order of magnitude more computation than
would be required for obtaining an adequate sample
from the posterior distribution for purposes of parame-
ter estimation.

In the next section, we introduce a new method, SS,
that lacks discretization bias and is slightly less compu-
tationally costly than TI. SS combines elements of both
TI and importance sampling. We later compare the per-
formance of SS to TI and HM in simulation and in anal-
yses of real data.

METHODS
Steppingstone Sampling

Consider the unnormalized power posterior density
function g(0), which has normalizing constant cg,
yielding the normalized power posterior density pp:

s =f(y|6,M)Pf(8|M)
P =14qp/cp:



2011

XIE ET AL.—ESTIMATING MARGINAL LIKELIHOODS

153

where f(y|0, M) is the likelihood function and f(0|M)
the prior. The power posterior is equivalent to the pos-
terior distribution when 3 = 1.0 and is equivalent to the
prior distribution when (3 = 0.0. The goal is to estimate
the ratio c1.9/co.0, which is equivalent to the marginal
likelihood because cy.g = 1.0 if the prior is proper (which
is assumed throughout). Note that this ratio can be ex-
pressed as a product of K ratios:

Vss—*—H LB

klﬁk]

where By = k/K,k =1,2,...,K. The basic idea of SS is
to estimate each ratio cg, /cg,_, in the product by impor-
tance sampling, using pg,_, as the importance-sampling
density. Because (for K large) pg,_, is only slightly more
dispersed than pg,, it serves as an excellent importance
distribution (Chen et al. 2000, p. 134). Utilizing the
importance-sampling formula (Equation 1) to approxi-
mate both the numerator, f(y|M, f¢), and denominator,
f(yIM, Br—1), of the desired ratio (rss x) of marginal like-
lihoods, and assuming g =pg,_,,

c
rssk = B

CBi1

_ f(yIBx)
f(Y|l3k 1)
‘ek 11

?
ok Zf)’|9k1 Br—

= Zf(}’|9k71,i)[3k76"*1,
i=1

where 0¢_1; is an MCMC sample from pg, , and
f(y|0k_1,) is the likelihood of that sampled parame-
ter vector. Dependence of all likelihoods and priors on
the model under consideration (M) has been suppressed
in the notation for simplicity. Note that this method re-
duces to the AM method for the special case K = 1.
Interestingly, with SS, there is no need to sample the
posterior; however, in practice, we use an initial ex-
ploration of the posterior as a means of burning-in the
MCMC sampler.

Numerical stability can be improved by factoring out
the largest sampled likelihood term, Lyacx =
maX1§i§;1f(Y|ek71,i):

N 1 BB = (f(y]8k1)\ PP
rssk = E (Lmax,k) Kb Z (L .

i—1 max,k

Combining all K ratios, the SS estimate of the marginal
likelihood is simply

K
fss = H Pssk -
k=1

Being a product of independent unbiased estimators, sg
is itself unbiased. On the log scale,

M =

logfss = ) log(Pss k)

»
Il
_

I
M~

[(Bk - [3k—1) 10g Lmax,k}

K n
+Y log <711 > exp {(Bk — Br-1)
k=1

=1
X [log f(y|ek71,i) - ].Og Lmax,k] }) .

»
I
N

Although 7ss is unbiased, changing to the log scale in-
troduces a bias. This bias appears to be directly propor-
tional to the variance of log(?ss), which can be alleviated
by increasing K. The lognormal distribution provides an
analogy. If log(X) is normal with mean p and variance
02, then log E[X]=p+0?/2, which is larger than E[log(X)]
by an amount proportional to the variance of log(X).
Similarly, the mean of the log-marginal likelihood esti-
mated by SSis smaller than the true value by an amount
proportional to the variance on the log scale. The simu-
lation variance of g  is estimated by

2
96 (Ok—1,i) — Pssk 9., (Ok—1,i)
Var (Pss k) 22( : 6, (Ok— 113

= ﬁ Z(f(y‘ek_l,i)ﬁk—ﬁkq _ f’SS,k)z‘
i=1

Based on the § method (Oehlert 1992), the variance of

log(#ss) = Zle log(?ss k) is approximated by:
K
Var log 1’55 k Z 72 7’55 k
k= S
K n 2
0 [5k Br—1

EIM) ( OIZ 20 )

= i1 Pssk
A Better Path

In TI, an MCMC sample is drawn from a series of K+1
distributions, each of which is a power posterior differ-
ing only in the power f:

0,M)P f(0
fioly.m,p) = YIOAZSE),

cp
Lartillot and Philippe (2006) advocated spreading the
K + 1 values of (3 evenly from 0.0 to 1.0. Lepage et al.
(2007) used a sigmoidal function that placed most 3
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values near the extremes of the unit interval in their
model-switch TI analysis. Friel and Pettitt (2008) chose
Br = aﬁ, where the 1 =0.0,0.1,...,1.0. The Lepage et al.
(2007) and Friel and Pettitt (2008) approaches both place
most of the {3 values at points where the power posterior
is changing rapidly. In the common situation where the
likelihood is much more concentrated than the prior, the
shape of the power posterior is relatively stable except
near 3 =0, so placing more computational effort near 0
is sensible and (as we later show) leads to a substantial
increase in the efficiency of the estimator, where better
efficiency is defined as the same accuracy with fewer
values of 3. We chose to use a Beta(x, 1.0) distribution
to select values of (3. Specifically, choosing f; = (k/K)'/*
selects 3 values according to evenly spaced quantiles
of the Beta(o, 1.0) distribution, placing most values of
 near O (in fact, Friel and Pettitt’s method represents
the special case o = 0.25). The value of « is inversely re-
lated to skewness: when « =1.0, 3 values are uniformly
spaced from 0.0 to 1.0; however, when (for example)
o = 0.3, the Beta(x,1.0) distribution is positively skewed
such that half of the 3 values are less than 0.1. We inves-
tigated the effect of the choice of o on the efficiency of
TIand SS.

EXAMPLES
Standard Normal Example

A comparison of methods using normal distributions
is instructive because of the fact that the true value of the
marginal likelihood is available analytically and direct
draws from the posterior avoid any complications due
to MCMC approximation. Suppose n observations are
sampled from a normal distribution having mean u and
standard deviation T,

yiNN(/’L7T)?i:17"'7n’

and define
2
2T
n
1 n
y= Zyz
i=1
sz_l (zn: 2_n_2>
= Yi vy |-
i=1

Letting the prior on p be normal with mean p and stan-
dard deviation o0y, the power posterior of p (conditioned
on 0) is as follows:

ply ~N

and the marginal likelihood is

_ 2

Y o4

1 S2+y2 ;1,2 (0‘2+0'2)

0 0

XeXpq T5 > vt 2T T 1

@)

We performed a simulation experiment to compare the
performance of the HM, TI, and SS methods. A single
data set of size n = 100 was simulated from a normal
distribution having mean p=0.0 and standard deviation
T=1.0. The simulated data set is available in the Supple-
mentary Material (available from http://www.sysbio
.oxfordjournals.org). We sampled 2000 values of p di-
rectly from each power posterior, pg, using K + 1 values
of 3 either spaced uniformly along the path from 3 =0.0
to p = 1.0, or according to uniformly spaced quantiles
of a Beta(x, 1.0) distribution. HM analyses were based
on 2000(K + 1) posterior samples so that HM was al-
lotted the same computational effort as TI. SS was at a
slight disadvantage because it uses samples from only
K distributions. The prior for p was normal with mean
1o = 0.0 and standard deviation oy = 1.0.

Using Equation 2, the natural logarithm of the true
marginal likelihood was log(c1) =—147.916. To assess ac-
curacy, we computed the root mean square error (RMSE)
over 1000 independent MCMC analyses using each of
the three methods. The RMSE is defined as

RMSE = y/E(log 7 — log rtrye)?

= \/Var(log 7) + (E(log ?) — log T’true)z‘

Note that the mean square error can be decomposed into
a variance term, Var(log ), plus a bias term, (E(log#)—
log 7trye)? Thus, for an unbiased method the RMSE

equals the standard error, SE = /Var(log 7).

Three generalizations are suggested by the simula-
tion results in the standard normal example (Table 1),
regardless of the number of 3 intervals used (K = 50 vs.
K = 100) or the distribution of the  values (uniform
vs. Beta(0.3,1.0)). First, TI and SS do much better than
HM at estimating the marginal likelihood. Based on the
best RMSE for each method, SS was the best method
(RMSE = 0.0074) followed closely by TI (RMSE =
0.0079), with HM a distant last (RMSE = 0.9479). HM
thus performed 128 times worse than SS, and 120 times
worse than TI. As expected, HM substantially over-
estimated the marginal likelihood, making the model
appear better-fitting than it really was. Second, compar-
ing SE to RMSE shows that TI is biased (although not
nearly as much as HM), whereas SS is evidently un-
biased. Third, using a Beta distribution favoring small
values of 3 greatly improves the performance of all
methods except HM, for which f3 is irrelevant.
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TABLE 1. Results from analysis of standard normal data

Uniform path for 32

Method Kb =100 K =50

Mean SE€ RMSE4 Mean SE RMSE
HMe® —147.020 0.3081 0.9479 —146.991 0.3179 0.9779
TIf —147955 0.0146 0.0413 —148.053 0.0218 0.1384
SS& —147916 0.0135 0.0135 —147916 0.0162 0.0162
Beta(0.3,1) path for
Method K =100 K =50

Mean SE RMSE Mean SE RMSE
HM —147.020 0.3081 0.9479 —146.991 0.3179 0.9779
TI —147.917 0.0078 0.0079 —147.921 0.0115 0.0123
SS —147916 0.0074 0.0074 —147.916 0.0105 0.0105

2The power to which the likelihood is raised in the power posterior
distribution.
PThe number of { intervals.
¢Standard error.
Root mean square error.
¢Harmonic mean method.
fThermodynamic integration method.
8Steppingstone method.

Figure 2 shows the bias in TI as a function of the pa-
rameter o (the shape parameter of the Beta distribution
used to determine 3 values) and K (the number of {3 in-
tervals). The bias is always negative, indicating that TI
tends to underestimate the marginal likelihood, and gets
worse with smaller values of K. For this example, there
is an optimum value of o between 0.2 and 0.4 that mini-
mizes the bias for any value of K. Lartillot and Philippe
(2006) discuss two forms of bias in T1: thermic lag bias and
discretization bias. Thermic lag bias results from the fact
that when the value of { is switched, the Markov chain
takes some time to adjust to the new value. This thermic
lag causes underestimation of the marginal likelihood
if B values begin at 0.0 and progress toward 1.0, and
overestimation if the first § value is 1.0 and the pro-
gression is toward 0.0. Our results, however, are based
on direct sampling from the full conditional power
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FIGURE 2. Bias of the TI method for different numbers and distri-
butions of 3 values in the standard normal example. K is the num-
ber of (3 intervals, and (3 values are evenly spaced quantiles from a
Beta(o,1.0) distribution. Bias is defined as E(?) — true-
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FIGURE 3. RMSE of the TI and SS methods for different numbers
and distributions of 3 values in the standard normal example. K is the
number of {3 intervals, and (3 values are evenly spaced quantiles from
a Beta(c,1.0) distribution.

posterior distribution, so the bias in this case is entirely
discretization bias.

Figure 3 shows the RMSE of TI and SS estimates of
the marginal likelihood as a function of o and K. Both
methods perform best when the distribution of 3 val-
ues is moderately positively skewed (i.e., « between 0.2
and 0.4), and both perform better with more 3 values
(i.e., K larger). SS is more efficient than TI for any com-
bination of K and «, but the difference between these
two methods is small compared with the considerable
improvement found for both SS and TI when switching
from even to skewed spacing of 3 values. For example,
setting o« = 0.3 (instead of & =1.0) achieves 3.5 times (TI)
or 1.3 times (SS) better accuracy with less than half the
computational effort (K = 50 vs. K = 100).

Green Plant rbcL Example

Methods for estimating marginal likelihoods should
be sensitive to priors. Specifically, decreasing the infor-
mativeness of a prior distribution for one or more pa-
rameters of a model typically increases the contribution
of low-likelihood regions of parameter space to the true
marginal likelihood, and this should be reflected in the
estimated marginal likelihood. Because HM tends to ig-
nore regions of parameter space where the likelihood is
low, we hypothesized that the HM method would be
less sensitive to priors than the TI or SS methods. This
aspect of the estimation methods can be investigated
even for the (usual) situation in which we do not know
the true marginal likelihood.

We analyzed a 10-taxon green plant data set using
DNA sequences of the chloroplast-encoded large sub-
unit of the RuBisCO gene (rbcL). Taxa were chosen
arbitrarily for this example, but with the intent to sam-
ple broadly across green plants. The alignment and
GenBank accession numbers are provided in the Sup-
plementary Material. The phylogeny for these 10 taxa
is uncontroversial: the same tree topology (Fig. 4) is
obtained using any standard model of DNA sequence
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FIGURE 4. The topology assumed for the green plant rbcL. exam-
ple. The tree topology and branch lengths were estimated by maxi-
mum likelihood using the GTR+G model.

evolution as long as transition/transversion bias and
among-site rate heterogeneity are accommodated.

In order to investigate the sensitivity of methods to
prior distributions, we estimated the marginal likeli-
hood using three methods (HM, TI, and SS) under the
HKY85+G model and three different prior distributions.
The models differed only in the prior placed on the
discrete gamma among-site rate heterogeneity shape
parameter. The three priors are Exponential(0.001)
(nicknamed the “vague” prior), Gamma(10,0.026) (the
“good” prior), and Gamma(148, 0.00676) (the “wrong”
prior). It is impossible to place a prior that is both
flat and proper on an unbounded parameter, but the
“vague” prior has variance 1 million, which makes it
much less informative than the “good” or “wrong” pri-
ors. The “good” and “wrong” priors have the same
variance, but differ in their means, with the mean of the
“good” prior centered around the posterior mean based
on preliminary runs, and the mean of the “‘wrong” prior
set (arbitrarily) to 1.0. This choice of priors mimics those
depicted in Figure 1, with Figure 1a corresponding to
“vague”, Figure 1b to “good” and Figure 1c to “wrong”.
We recognize that no prior can really be considered
wrong as long as it reflects the beliefs of the investigator,
so we use the nickname “wrong” here solely to denote
the fact that the data strongly contradict this prior.

For each of the three priors, MCMC analyses were
conducted using the software Phycas (www.phycas.org,
version 1.2) with the topology fixed at the one shown in
Figure 4. For estimating TI and SS, 51 values of (3 (i.e.,
K = 50) were chosen according to evenly spaced quan-
tiles of a Beta(0.3,1.0) distribution. Following a burn-in
phase consisting of 1000 cycles at 3 = 1.0, the single-
chain MCMC sampler was run for 10,000 cycles for each
 value in the descending series, finishing with 10,000
cycles at 3 = 0 (the prior). Samples were taken every

TABLE 2. Results from analyses of green plant Ribulose Bisphos-
phate Carboxylase/Oxygenase large subunit (rbcL) data

Method Prior model

Vague Good Wrong
HM —6587.9 (—0.9) (—36.1)
TI (—8.3) —6618.4 (—61.7)
SS (=8.2) —6618.3 (=61.7)

The estimated marginal likelihood is given for the winning model
for each method; for other models, the difference from the winning
marginal likelihood is shown in parentheses.

10 cycles after the burn-in phase (51,000 samples total).
For estimating HM, a single-chain MCMC sampler was
allowed to explore the posterior distribution for 510,000
cycles following a 1000 cycle burn-in. Samples were
again collected every 10 cycles, yielding a total of 51,000
samples. The sampling effort for HM was thus com-
parable with that for TI and slightly greater than that
for SS, which does not use samples from the posterior
(B =1.0).

The results (Table 2) demonstrate that marginal likeli-
hoods estimated under both TI and SS are lower for the
“vague” and “wrong” prior than they are for “good”
prior, demonstrating sensitivity to the prior specifica-
tion, whereas HM failed to discriminate between the
“vague” and “good” prior distribution. HM did pro-
duce a lower estimated marginal likelihood for the
“wrong” prior due to the fact that this prior prevents
the shape parameter from approaching the area of high-
est likelihood. Such “wrong” priors are less common
than “vague” priors, so the inability of HM to discrimi-
nate between “vague” and “good” priors means that it
will impose less of a penalty than it should on models
possessing unnecessary parameters.

Given that TI and SS are more expensive, compu-
tationally, than HM, we were interested in how little
computation is necessary for estimating the marginal
likelihood accurately. Is K = 50 large enough for this
10-taxon example? Could one get away with using
far fewer values of 3? To examine this, we conducted
a series of MCMC analyses in which only the num-
ber of B intervals (K) was changed. For these analy-
ses, the GTR+G model was used with the following
priors: Exponential(1.0) for branch lengths, Exponen-
tial(1.0) for the shape parameter of the four-category
discrete gamma distribution of rates across sites, Dirich-
let(1.0,1.0,1.0,1.0,1.0,1.0) for the joint prior on the six
GTR relative rates, and Dirichlet(1.0,1.0,1.0,1.0) for joint
prior on the four nucleotide frequencies. As before, sam-
ples were taken every 10 cycles, and the MCMC analysis
explored each 3 value for 10,000 cycles. As before, the
MCMC analyses used for estimating HM were designed
to be comparable in sampling effort with those used for
estimating TI and SS. For each value of K, 30 indepen-
dent MCMC analyses were performed for the purpose
of estimating the standard error.

The results (Fig. 5) demonstrate that eight {3 inter-
vals are sufficient for estimating the marginal likelihood
using SS for this data set. The aforementioned bias in
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FIGURE 5. Log marginal likelihood for three estimation methods
as a function of the number of (3 intervals, K, for the green plant
Ribulose Bisphosphate Carboxylase/Oxygenase large subunit (rbcL)
example. 3 values are evenly spaced quantiles from a Beta(0.3,1.0) dis-
tribution. Error bars represent +1 standard error based on 30 indepen-
dent MCMC analyses.

SS associated with expressing the marginal likelihood
on the log scale is also obvious, and clearly a function
of the MCMC variance. TI requires a larger number
of B intervals than SS in order to overcome its addi-
tional discretization bias. Given sufficiently large K,
both TI and SS estimate the log marginal likelihood to
be —6617, whereas HM estimates it to be 65 log units
higher (—6552).

Simulation Study Comparing Models Selected by
HM versus SS

One might argue that if HM always chose the same
model as TI or SS, then it is irrelevant that HM overes-
timates marginal likelihoods. That is, even if HM is off
the mark, as long as it covaries with the true marginal
likelihood, it may nevertheless be an effective way to
choose among models. We conducted simulations com-
paring model selection using HM versus SS to see if 1)
they always choose the same model and 2) if they do
not choose the same model, which (HM or SS) tends
to choose the simpler model. Data sets were simulated
by first drawing a number of taxa and a number of
sites at random. A discrete uniform distribution was
used for each of these choices, with the number of taxa
ranging from 4 to 20 (inclusive) and the number of
sites from 50 to 5000 (inclusive). For each simulated
data set, a tree topology was chosen at random from
all possible unrooted, labeled, binary tree topologies
(i.e., the proportional-to-distinguishable model), and
internal branch lengths, external branch lengths, base
frequencies, and GTR relative rates were drawn from

Gamma(10, 0.001), Gamma(1.0, 0.1), Dirichlet(100, 100,
100, 100) and Dirichlet(100, 100, 100, 100, 100, 100)
distributions, respectively. The discrete gamma distri-
bution (10 categories) was used to impart among-site
rate heterogeneity, with the gamma shape parameter
drawn from a Gamma(2,3) distribution. The 100 data
sets used for this example were thus iid (independently
and identically distributed). Although this generating
model technically produced all data sets from a GTR+G
distribution, the distributions were chosen such that
the parameter vectors used for many simulation repli-
cates were arbitrarily close to various submodels of the
GTR+G model. For example, the Gamma(2,3) distribu-
tion used to choose the shape parameter for among-site
rate heterogeneity produces values greater than 5 (i.e.,
very low rate heterogeneity) about 50% of the time.
Thus, about 50% of data sets could be fit nearly as well
by the GTR model as by the (true) GTR+G model.

Each of the 100 data sets was subjected to 12 MCMC
analyses (6 models for both HM and SS) for a total
of 1200 MCMC analyses. The 6 models tested were:
Jukes—Cantor (JC) model, JC+G, HKY, HKY+G, GTR,
and GTR+G. Priors used were as follows: Exponen-
tial(10) for all branch lengths; Dirichlet(1.0,1.0,1.0,1.0)
for base frequencies in HKY and GTR models; Dirich-
let(1.0,1.0,1.0,1.0,1.0,1.0) for relative rates in GTR mod-
els; BetaPrime(1.0,1.0) for the transition/transversion
rate ratio parameter (k) in the HKY model; and Uni-
form(0,200) for the discrete gamma shape parameter
in the “+G” models. The BetaPrime distribution (also
known as the “Beta distribution of the second kind”)
makes it possible to place a prior on « in the HKY
model that is equivalent to the Dirichlet prior placed
on relative rates in the GTR model. That is, the Be-
taPrime distribution assumed for «k is equivalent to
letting k = p/(1 — p), where p is a Beta(1.0,1.0) ran-
dom variable. The priors assumed thus correspond
exactly to the default priors used in MrBayes v. 3.1.2
(Ronquist and Huelsenbeck 2003). For the SS analyses,
5000 MCMC cycles were devoted to each of the K =50
(3 intervals, with a preanalysis burn-in of 5000 cycles. To
be fair, HM analyses were allowed a 5000 cycle burn-in
followed by 50 x 5000 = 250, 000 cycles of sampling. For
both HM and SS, samples were taken every 20 cycles
during the post-burn-in part of the MCMC analysis.
Both simulations and MCMC analyses were performed
using Phycas (www.phycas.org).

HM chose the same model as SS in 30 of the 100 simu-
lation replicates (Table 3). In 67 of the remaining 70 sim-
ulation replicates (95.7%), SS choose a model that was
less complex (in terms of the number of free parameters)
than HM. In the 3 cases where HM chose the simpler
model, HM chose a rate homogeneity model over a rate
heterogeneity model. In contrast, SS often chose models
that were much simpler than that chosen by HM: HKY
over GTR (25 cases), JC over GTR (21 cases) or JC over
HKY (7 cases). HM chose the most complex model pos-
sible (GTR+G) in 64% of the simulations. Although
the GTR+G is technically the correct model for all
simulations, many simulation replicates come very close
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TABLE 3. Results from simulations pitting HM against SS

HM winner SS winner
JCa  JC+GP  HKY® HKY+GY GTR® GTR+Gf

JC 0 1 0 0 0 0
JC+G 0 5 0 0 0 0
HKY 0 5 1 1 0 0
HKY+G 1 7 0 8 0 0
GTR 1 2 1 2 0 1
GTR+G 2 21 0 25 0 16

aJukes—Cantor model.
bJukes—Cantor model with discrete gamma rate heterogeneity.
‘Hasegawa—-Kishino—Yano model.

dHasegawa—Kishino—Yano model with discrete gamma rate hetero-
geneity.

€General time reversible model.

General time reversible model with discrete gamma
heterogeneity.

rate

to much simpler models. For example, in one case in
which SS chose JC+G and HM chose GTR+G, the base
frequencies and relative rates used for the simulation
were 7114 =0.24380, 71c=0.25456, 1 =0.24941, 17 =0.25223
and rac = 0.18519, rac = 0.16276, rar = 0.16649, rcc =
0.16659, rcr = 0.18298, rgr = 0.13598, respectively,
which indeed is very close to the 74 = ¢ =7 =77 =
0.25 and Yac = YAG = YAT = Icg = I'cTt = gt = 0.167
characterizing the JC model. This example further il-
lustrates the fact that HM does not impose the cor-
rect penalty for unnecessary parameters, which can
lead to choosing models that are more complex than
those chosen on the basis of accurate marginal
likelihoods.

DIsCcUSSION

In this paper, we introduce the SS method for estimat-
ing the marginal likelihood of a model, and compare
this with the existing HM method and the TI method. As
pointed out by others (e.g., Lartillot and Philippe 2006),
the HM method greatly overestimates the marginal
likelihood. Furthermore, HM is relatively insensitive to
priors: the same estimated marginal likelihood results
whether the prior is flat or informative as long as the
prior does not prevent the model from reaching areas of
highest likelihood. Although insensitivity to priors can,
in some contexts, be a good thing, in the BF context, it
robs HM of the ability to detect when a model is un-
necessarily complex. In phylogenetics, the largest use of
HM-derived BFs to date lies in comparing different par-
titioning strategies. Partitioning simultaneously adds
many parameters to a model while at the same time
reducing the number of sites available for estimating
each parameter. Partitioning is thus an area in which
the method used to estimate marginal likelihoods is ex-
pected to make a considerable difference (see Fan et al.
2010).

The TI method is far more accurate than HM; how-
ever, Lartillot and Philippe (2006) recommended a f3
increment of 0.01, which requires MCMC samples from

101 B values, making TI considerably more computa-
tionally costly than HM. We found that the TI method
could be made dramatically more efficient by choos-
ing  values according to evenly spaced quantiles of
a Beta(«,1.0) distribution rather than spacing f3 values
evenly from 0.0 to 1.0. This approach generalizes the
method suggested by Friel and Pettitt (2008), which cor-
responds to the special case «=0.25, and is analogous to
the sigmoidal function proposed by Lepage et al. (2007)
in a model-switch TI framework. The value « = 0.3 was
close to optimal for both our normal distribution ex-
ample as well as a phylogenetic example (results not
shown), suggesting that values close to o« = 0.3 are per-
haps generally optimal. The choice o« = 0.3 results in
half of the 3 values evaluated being less than 0.1. The
positive skewness of this distribution is useful because
(with sufficient and informative data) the likelihood
only begins losing control over the power posterior for
(3 values near 0, and at that point the target distribution
changes rapidly from something resembling the poste-
rior to something resembling the prior. Conditioning on
the total number of 3 values evaluated, placing most of
the computational effort on (3 values near zero results in
increased accuracy.

The SS method is an importance-sampling approach
that uses the power posterior defined by (;_; as the
importance density for estimating the ratio 7; of nor-
malizing constants cg, /cg, ,, where k =1,2,...,K. The
overall ratio 7 is the product of all K ratios. Each ra-
tio 7; thus forms one “stepping stone” along the path
bridging posterior and prior distributions. If K =1, SS
is equivalent to the AM method because the prior is
used as the importance-sampling density and there is
only one “stone” in the path (i.e., the ratio r is estimated
directly). The SS method serves as a viable alternative
to the annealing-melting form of TI proposed by Lar-
tillot and Philippe (2006). A more general version of
SS, described elsewhere (Fan et al. 2010), is more analo-
gous to the model-switch form of TI. In a real example
involving protein-coding data from green plants, the
log marginal likelihood estimated by SS was less bi-
ased than the estimate produced by TI. SS also requires
slightly less computational effort than TI due to the fact
that, for SS, no samples from the posterior are needed.
The bias in SS arises from transformation to the log scale
and is directly proportional to the MCMC variance of
the estimated log marginal likelihood. This variance is
largest for small values of K and can thus be alleviated
by using a sufficiently large value of K. One open ques-
tion is just what constitutes a sufficiently large value of
K, and further work is needed to answer the question
of how K should scale with the size and complexity of
data sets.

We showed through our simulation experiment that
HM often provides the same rank order of models as
SS. Arguing because of this that HM provides a less
costly alternative to SS and TI is specious because HM
is supposed to estimate the marginal model likelihood,
and it utterly fails at that task. Imagine that we in-
vented a new type of tuning fork that always resonates
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at a frequency somewhat higher than the fundamental
frequency of its nominal note. One could argue that
although use of these tuning forks results in very poorly
tuned musical instruments, at least the relative order of
the notes is preserved! How well would such a product
sell, however, given very accurate (but perhaps more
expensive) alternatives? Using relative model ranking
as an argument for HM is analogous. Our simulations
also showed that HM does not always rank models the
same way as SS or TI. When they differ, HM tends to
choose the more complex model because it fails to ad-
equately penalize the more complex models for having
extra parameters that contribute little to model fit. This
is direct consequence of the fact that it poorly estimates
the marginal likelihood: if it were a good estimator, it
would correctly penalize complex models.

The HM method is often criticized for having a large
variance (which can be infinite). It often appears to have
a very reasonable variance. For example, in Figure 5, the
variance of the HM estimate of the log marginal likeli-
hood does not appear to vary wildly across the 6 inde-
pendent analyses plotted. In the Appendix, we prove
that the HM estimator is biased on both the standard
and logarithmic scale. A reviewer of this manuscript,
Nicolas Lartillot, convinced us that this bias does not,
however, account for the majority of the bias actually
observed in Figure 5, and also provided us with the
following excellent explanation. Apparently, most of
the observed bias arises from the large variance of the
HM estimator. To see this, consider the fact that the in-
verse of HM is an unbiased estimator of the inverse of the
marginal likelihood. For very simple examples, it is easy
to show that even this theoretically unbiased estimator
has a large bias in practice because its unbiasedness
depends on extreme values that occur extremely rarely.
In the world of finite samples, one never sees these ex-
tremely rare values, and thus the sample variance is
much lower than the true variance, and there is a strong
apparent bias when in fact the underlying estimator has
no bias in theory. Thus, the apparent stability of HM
on the log scale is deceptive, and provides a false sense
of security about the quality of the marginal likelihood
estimate provided by HM.

We have considered several practical and philosophi-
cal issues related to the use of estimated marginal likeli-
hoods to select models for Bayesian phylogenetic analy-
ses (e.g., whether model selection should be sensitive to
prior specification); however, this paper is above all else
about estimating the numerical quantity known as the
marginal likelihood with accuracy. All of our examples
demonstrate that the differences in estimation accuracy
between the SS and TI methods are minor compared
with the difference between either SS or TI and the HM
method. Furthermore, our simulations show that SS can
sometimes choose different, and simpler, models than
HM due to the fact that HM does not penalize complex
models as much as it should for unnecessary parame-
ters. We thus recommend routine use of SS or Tl instead
of the HM method for Bayesian phylogenetic model se-
lection. Both TI and SS have been implemented in the

open-source freely available software package Phycas
(www.phycas.org).

SUPPLEMENTARY MATERIAL

Supplementary material, including data files, can be
found at http:/ /www.sysbio.oxfordjournals.org/.
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APPENDIX
Proof that the expected value of the HM estimator is greater
than the true marginal likelihood. Let ¢(X) = n/X, where

X =Y",L;" and L; is the likelihood of the ith. sample
(i=1,2,...,n) from the posterior distribution. Note that
X > 0 except for the trivial case n=0. The expected value

of each Li—1 is

[ 1 LEye) ., 1
EIL®) “/mm o T

where 0 is the vector of model parameters and y rep-
resents the data. @(X) is convex because the second
derivative of ¢ with respect to X is 2n /X3, which is
positive because X > 0. By Jensen’s inequality,

Elo(X)] > o(E[X])

Elx) >
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One may argue that the above proof is irrelevant be-

cause the HM estimator is always expressed on the log
scale. Thus, we prove below that the natural logarithm
of the HM estimator is also positively biased.
Proof that the expected value of the log of the HM estima-
tor is greater than the log of the true marginal likelihood. Let
@(X) = log(n) — log(X), where X = 3, L;"". As before,
X > 0 and @(X) is convex because the second deriva-
tive of ¢ with respect to X is 1/X?, which is positive. By
Jensen’s inequality,

Elo(X)] > ¢ (E[X])

Eflog(n) —log(X)] > log(n) — log(E[X])

)—tog (E[ZiL77])
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=logf(y).

E |log > log(n

n
L



