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But Tuffley and Steel (1997) introduced
a model called No Common Mechanism
(NCM), in which characters may—but
are not required to—vary their relative
rates independently, both within and be-
tween branches. Because the indepen-
dent variation is taken only as a possi-
bility, not as a requirement, NCM would
apply to almost any situation, and so may be
accepted as realistic. This is useful because
Tuffley and Steel also showed that maximum
likelihood under NCM selects the same trees
as does parsimony. With the realistic NCM
in the background, then, most parsimonious

trees have greatest power to explain available
observations.

—Farris (2008)

The maximum parsimony method is widely used to
infer the genealogical history, or phylogeny, of species
by selecting the tree that minimizes the number of char-
acter state changes as the best estimate (Edwards and
Cavalli-Sforza 1963; Camin and Sokal 1965). Interest-
ingly, the development of the method as a way to in-
fer phylogeny preceded attempts to justify its use as a
coherent method of inference. Attempts to justify the
use of the parsimony method have taken two courses.
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One approach justifies the use of the parsimony method
based on philosophical considerations. At various times,
the parsimony method was thought to adhere to the
hypothetico-deductive framework of scientific inference
(Wiley 1975; Gaffney 1979) or conform to Popper’s the-
ory of corroboration (Siddall and Kluge 1997). The other
approach to justify the parsimony method starts with
the idea that good methods of inference are statistical;
the approach then attempts to find probabilistic mod-
els of evolution that—when implemented using a stan-
dard statistical method of estimation, such as maximum
likelihood—order the possible phylogenetic trees in the
same way as the parsimony method. Several evolution-
ary models yield a correspondence between maximum
parsimony and maximum likelihood, with most sharing
the feature that the number of parameters increases as
fast as the data are added (Farris 1973; Goldman 1990),
with the most interesting being the no common mech-
anism model (Tuffley and Steel 1997). (Steel and Penny
[2004] show that maximum likelihood and parsimony
also order the trees in the same manner when the num-
ber of possible states is sufficiently large.)

The no common mechanism model posits an inde-
pendently estimated branch-length parameter for every
alignment site in the data and every branch in the phy-
logeny. An alignment of N sequences each of length L
has (2N−3)×L branch-length parameters to estimate in
an unrooted phylogeny. Note that extending the align-
ment by one site introduces an additional set of 2N − 3
branch parameters to estimate. The no common mech-
anism model has captured the attention of systematic
biologists for two reasons. First, the model has been
used to strongly justify the use of the parsimony method
(Farris 2008). The idea is that the parameterization un-
der the no common mechanism model is so general
that some realized combination of the many parame-
ters must surely capture reality. By contrast, the stan-
dard biologically inspired evolutionary models used in
phylogenetic inference usually have one length param-
eter for every branch, with all sites sharing the 2N −
3 branch parameters and, thus may be too simple to
adequately capture the evolutionary process, or allow
reliable estimation of phylogeny. Second, the no com-
mon mechanism model provides a bridge between the
parsimony method and standard implementations of
stochastic models in phylogenetics that typically have
few parameters (Kim and Sanderson 2008).

The models typically used in phylogenetic analysis
and molecular evolution have been carefully crafted to
account for new biological phenomena as they were
discovered. For example, the discovery that transitions
(A ↔ G and C ↔ T substitutions) occur at a higher
rate than transversions (A ↔ C, A ↔ T, C ↔ G, and
G ↔ T substitutions) in DNA sequences led directly
to the development of models that allowed transitions
to occur at a different rate than transversions (Kimura
1980; Hasegawa et al. 1985). Similarly, the idea that
natural selection acts to remove mutations that cause
proteins to change secondary structure, and hence their
function, led to the development of models that allow

rates of substitution to vary across a sequence (Yang
1993) and to models that allow the nonsynonymous rate
of substitution to vary across a protein (Nielsen and
Yang 1998). Even the parameterization of the branch
lengths on a phylogenetic tree has a biological motiva-
tion. There should be more opportunity for change to
occur along the longest branches of an evolutionary tree.
Hence, one should assign different branch-length pa-
rameters to different branches of the evolutionary tree
to accommodate the differing opportunities for change
along short and long branches. The careful crafting of
phylogenetic models to reflect biology stands in con-
trast to the approach used in the no common mecha-
nism model, which holds a profusion of parameters that
have little to do with the underlying biology. That said,
it remains an open question whether the biologically in-
spired approach of incrementally improving models or
an alternative approach in which the number and iden-
tity of the parameters is not determined in advance is
better.

METHODS

Our goal is to compare several traditionally parame-
terized phylogenetic models, such as the models first de-
scribed by Jukes and Cantor (1969), Felsenstein (1981),
Hasegawa et al. (1984, 1985), or Tavaré (1986) with or
without rate variation across sites as modeled by a
gamma probability distribution (Yang 1993, 1994), to
two variants of the no common mechanism model and
also to submodels of the no common mechanism model.
In this section, we describe the necessary background
for understanding the different possible branch-length
parameterizations used in phylogenetics as partitions,
how we choose among competing models using Bayes’s
factors, and the details of three analyses performed in
this study.

Submodels of the No Common Mechanism Model

The idea of a partition of the branch/site elements
among branch-length parameters provides the bridge
between the no common mechanism model and the
simplest conceivable phylogenetic model. A partition
of a set of objects divides the objects into nonoverlap-
ping subsets. The degree of the partition is the num-
ber of subsets. In this case, the objects to be partitioned
are the branch/site elements and the subsets represent
branch/site elements that share the same branch-length
parameter. The simplest model has a single branch pa-
rameter shared by all sites in the alignment and all
branches of the phylogeny. For example, the simplest
partition for an alignment of N = 4 sequences each of
length L= 5 is

1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 1

, 1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 2

, 1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 3

, 1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 4

, 1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 5

using the restricted growth function notation for a par-
tition (Stanton and White 1986). The most complicated
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model, on the other hand, is the no common mechanism
model with an independently estimated length parame-
ter for every branch and every site, which is represented
as

1, 2, 3, 4, 5
︸ ︷︷ ︸
Branch 1

, 6, 7, 8, 9, 10
︸ ︷︷ ︸

Branch 2

, 11, 12, 13, 14, 15
︸ ︷︷ ︸

Branch 3

, 16, 17, 18, 19, 20
︸ ︷︷ ︸

Branch 4

, 21, 22, 23, 24, 25
︸ ︷︷ ︸

Branch 5

Between these two extremes lives a large number of
models with an intermediate number of branch-length
parameters. The total number of such partitions is de-
scribed by the Bell (1934) numbers. Examples of parti-
tions of degree 5 (for the case where N = 4 and L = 5)
include

Example 1: 1, 2, 1, 3, 4, 3, 1, 2, 3, 2, 2, 2, 4, 5, 5, 4, 5, 3, 2, 1, 1, 4, 4, 3, 2

Example 2: 1, 1, 2, 3, 1, 1, 4, 4, 3, 1, 2, 5, 2, 5, 1, 1, 1, 2, 3, 1, 5, 5, 3, 4, 1

Example 3: 1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 1

, 2, 2, 2, 2, 2
︸ ︷︷ ︸

Branch 2

, 3, 3, 3, 3, 3
︸ ︷︷ ︸

Branch 3

, 4, 4, 4, 4, 4
︸ ︷︷ ︸

Branch 4

, 5, 5, 5, 5, 5
︸ ︷︷ ︸

Branch 5

.

The last partition shown represents the “traditional”
grouping of branch/site elements according to the
branch on the evolutionary tree; each branch has a
single length parameter that all the sites share.

Comparing Models in a Bayesian Context

We formally evaluate the fit to data of the no com-
mon mechanism model and its numerous submodels
by comparing marginal likelihoods, an approach com-
monly advocated to choose among competing models
in a Bayesian context (Jeffreys 1961). The ratio of the
marginal likelihoods of two models, M1 and M2, is
called the Bayes’s factor

BF=
Pr(A|M1)

Pr(A|M2)
,

where A is the sequence data alignment. A Bayes’s
factor greater than 1 indicates that the data are more
probable under M1 than M2, and values much greater
than 1, say 1000 or more (Kass and Raftery 1995), prof-
fer decisive statistical support in favor of M1 over M2.
The opposite is true for Bayes’s factors less than 1.
Note that the models may also contain unique sets
of unknown parameters, denoted θ1 and θ2 for mod-
els M1 and M2, respectively. The marginal likelihood
takes into account all possible values of the parame-
ters unique to the model via integration, Pr(A|Mi) =∫
θi

f (A|θi,Mi)p(θi|Mi)dθi for i = 1, 2, where f (A|∙, ∙) is
the data likelihood and p(∙|∙) is the parameter prior
density. In this way, the marginal likelihood automati-
cally and naturally penalizes an overly parameter-rich
model; a parameter-rich model spreads the prior prob-
ability over a wider area, placing less prior density on
combinations of parameters. Models that are sensibly
parameterized show improvement in the marginal like-
lihood that outweighs the cost of the more diffuse prior,
whereas those models with poorly chosen parameter-
izations cannot adequately explain the observations
despite the increased complexity of the model.

Data Analysis Using Markov Chain Monte Carlo

We assume that the N sequences are related to one
another through an unknown evolutionary tree. Here,
we consider the tree to be a fixed part of the analysis;
we use the maximum parsimony tree in all analyses.
The tree of N sequences has 2N − 3 branches. Under
the no common mechanism model, every site and every
branch has an independently estimated branch-length
parameter. The length of the ith branch and jth site is de-
noted νij. The branch-length parameters are arranged in
the order ν(1,1), . . . , ν(1,L), ν(2,1), . . . , ν(2,L), . . . , ν(2N−3,1),
. . . , ν(2N−3,L). As described, above, the (2N − 3) × L
branch-length parameters can be constrained to be equal
to one another in many different ways, with the com-
binatorics described by the Bell (1934) numbers. In this
study, we either constrain the degree of the partition
(but explore various partitions of that degree) or fix the
partition.

In our first set of analyses, we compare the marginal
likelihoods of phylogenetic models with the traditional
branch-length parameterization to two different vari-
ants of the no common mechanism model. The tra-
ditional models we examine include the models first
proposed by Jukes and Cantor (JC69; 1969), Felsenstein
(F81; 1981), Hasegawa et al. (HKY85; 1984, 1985), and
Tavaré (GTR; 1986). These models—all variants of
continuous-time Markov models—describe how sub-
stitutions occur along the branches of the phylogeny.
The rate matrix characterizing how substitutions occur
under the GTR model

Q=







∙ rACπC rAGπG rATπT

rACπA ∙ rCGπG rCTπT

rAGπA rCGπC ∙ rGTπT

rATπA rCTπC rGTπG ∙





μ

has six exchangeability parameters (rAC, rAG, rAT, rCG,
rCT, and rGT) and four stationary frequency param-
eters (πA,πC,πG, and πT). The diagonal elements of
the rate matrix are specified such that each row sums
to zero. The scaling factor, μ, is chosen such that the
average rate of substitution is one. The other models
we examined—the JC69, F81, and HKY85 models—
are all special cases of the GTR model. The HKY85
model constrains the exchangeability parameters such
that rAC = rAT = rCG = rGT and rAG = rCT. The JC69
and F81 models further restrict the exchangeability pa-
rameters such that rAC = rAG = rAT = rCG = rCT = rGT.
Three of the models examined (the F81, HKY85, and
GTR models) make no restrictions on the stationary
frequency parameters. However, the JC69 model re-
stricts the stationary frequencies of the nucleotides to be
equal.

We allowed the rate of substitution to vary across a
sequence; specifically, we treated the rate at a site as a
random variable drawn from a mean-one gamma dis-
tribution (Yang 1993, 1994). We denote models with
gamma-distributed rate variation with the suffix “+Γ .”
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Under the no common mechanism model, substitu-
tions are assumed to occur under some continuous-
time Markov model; the no common mechanism model
described by Tuffley and Steel (1997), for example, as-
sumes the simple continuous-time Markov model first
described by Jukes and Cantor (1969). We implemented
two versions of the no common mechanism model: One
assumed that substitutions occur according to the JC69
model, whereas the other assumed the GTR model.
In both cases, the length parameter for each site and
branch are allowed to vary independently. We place a
gamma prior probability distribution on the lengths of
the branches. The transition probabilities are

P(α, λ) =

(

I−
1
λ
Q

)−α
,

where Q is the rate matrix, I is the identity matrix, and
the branch-lengths are integrated over the gamma prior
probability distribution with shape and scale param-
eters α and λ, respectively (Suchard et al. 2002, 2003;
Sinsheimer et al. 2003; Huelsenbeck et al. 2008). We
chose the shape and scale parameters in such a way that
the branch lengths had exponential prior distributions
(the gamma distribution is equivalent to the exponential
distribution when α = 1). The parameter of the expo-
nential prior is fixed such that the marginal likelihood
is maximized under the no common mechanism model
(implemented with the Jukes and Cantor [1969] model).

The GTR model has 8 additional parameters com-
pared with the Jukes and Cantor (1969) model. We
implemented two variants of the GTR model when
allowing branch-length parameters to vary indepen-
dently of one another. Our first attempt allowed the ex-
changeability parameters (rAC, rAG, rAT, rCG, rCT, rGT) and
base frequencies (πA,πC,πG,πT) to vary independently
for each branch and site. This implementation is in the
spirit of the no common mechanism model. The total
number of parameters in this model is (2N − 3)× L× 8.
Our second implementation of the GTR model assumed
a common parameterization for the GTR parameters.
This model is more in the spirit of the traditional pa-
rameterization of the GTR model, which has a common
set of parameters for all the observations. The total num-
ber of parameters for our second implementation of the
GTR model is (2N − 3)× L + 8.

In our second set of analyses, we calculated the
marginal likelihoods for models intermediate between
the traditional branch-length parameterization and the
no common mechanism model. We allowed the branch-
length partition to be considered a random variable
but fixed the degree of the partitions considered. The
degrees of the simplest, traditional, and no common
mechanism branch-length parameterizations are D = 1,
D = 2N − 3, and D = (2N − 3) × L, respectively. The
degree of the partitions explored in the second set
of analyses were intermediate, with 2N − 3 < D <
(2N − 3)× L.

In our third set of analyses, we compared the marginal
likelihoods for the traditional branch-length parameteri-
zation to random permutations of the traditional param-

eterization. Returning to the example of branch-length
partitions discussed above, the traditional branch-
length parameterization for an alignment of N = 4
sequences each of length L= 5 is

1, 1, 1, 1, 1
︸ ︷︷ ︸

Branch 1

, 2, 2, 2, 2, 2
︸ ︷︷ ︸

Branch 2

, 3, 3, 3, 3, 3
︸ ︷︷ ︸

Branch 3

, 4, 4, 4, 4, 4
︸ ︷︷ ︸

Branch 4

, 5, 5, 5, 5, 5
︸ ︷︷ ︸

Branch 5

.

Note that each branch has a common length parameter
that is shared by all the sites. Random permutations of
the tradition branch-length parameterization include

1, 2, 3, 4, 3, 5, 2, 5, 2, 4, 1, 1, 3, 4, 2, 4, 5, 1, 2, 5, 5, 3, 3, 4, 1
1, 2, 3, 4, 2, 1, 1, 1, 4, 5, 4, 3, 5, 5, 1, 3, 2, 3, 2, 4, 2, 5, 5, 3, 4

1, 1, 2, 3, 4
︸ ︷︷ ︸

Branch 1

, 3, 4, 3, 5, 5
︸ ︷︷ ︸

Branch 2

, 5, 2, 3, 4, 2
︸ ︷︷ ︸

Branch 3

, 1, 4, 5, 5, 3
︸ ︷︷ ︸

Branch 4

, 1, 2, 4, 1, 2
︸ ︷︷ ︸

Branch 5

.

The number of branch elements in each subset (i.e., the
number of 1s, 2s, etc.) is maintained, but their assign-
ment to branch/sites is random.

We estimate the branch-length partitions and branch-
length parameters using Bayesian inference. Specifi-
cally, we calculate the joint posterior probability dis-
tribution of the branch-length parameters, conditioned
on the alignment (A), a phylogenetic tree (τ), and the
degree of the partition (D). Assuming independence
of the substitutions at different sites and branches, the
likelihood can be calculated as the product of the site
likelihoods. We use the usual method for calculating
site likelihoods described by Felsenstein (1981).

The joint posterior probability distribution of the
branch-length parameters cannot be calculated analyt-
ically, except in the maximally parameterized case of
the no commonmechanism model (Huelsenbeck et al.
2008). We use Markov chain Monte Carlo (MCMC)
to approximate the posterior probability distribution
(Metropolis et al. 1953; Hastings 1970). Our MCMC pro-
cedure works as follows. First, a branch/site element is
removed from its current subset. The likelihood is then
recalculated when the branch/site element is placed in
each of the D subsets (including the subset from which
it was removed); the branch/site element is assigned
to a new subset with a probability proportional to the
likelihoods. This MCMC procedure is similar to the one
proposed by Pritchard et al. (2000) for analysis of popu-
lation structure. We did not constrain the MCMC in such
a way that every subset had at least one branch/site
element. Another MCMC proposal mechanism we im-
plemented proposes a new branch length for each of the
D subsets, accepting or rejecting the proposed branch
length according to the Metropolis–Hastings acceptance
probability. Each MCMC iteration included a scan of
all (2N − 3) × L branch/site elements and an update
attempt for each of the D branch-length parameters.
Markov chains were run for a total of 1,000,000 itera-
tions. Each analysis was repeated.

We examined 6 alignments on fixed (maximum par-
simony) phylogenetic trees: 1) gophers (N = 5, L = 379;
Hafner et al. 1994), 2) fish of the family Labridae (N=17,
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L= 443; Westneat and Alfaro 2005), 3) seed plants of the
family Ericales (N = 4, L = 170; Geuten et al. 2007), 4)
primates (N= 6, L= 768; Drummond et al. 2006), 5) ver-
tebrate ATPase8 gene (N = 10, L = 162; Cummings et al.
1995), and 6) vertebrate ND4L gene (N=6, L=294; Cum-
mings et al. 1995). We compared the different models us-
ing the marginal likelihoods. Marginal likelihoods were
computed from the output of the MCMC analysis (New-
ton and Raftery 1994). We also evaluated the marginal
likelihoods of several biologically inspired models of-
ten used in maximum likelihood and Bayesian analy-
ses. These models—the JC69 (Jukes and Cantor 1969),
F81 (Felsenstein 1981), GTR (Tavaré 1986), and GTR+Γ
(Tavaré 1986; Yang 1993)—have far fewer parameters
compared with the no common mechanism model.

RESULTS AND DISCUSSION

Figure 1 plots the marginal likelihoods for the mod-
els examined in this study. (Table 1 also summarizes
the main results of the first analysis.) We do not expect
the no common mechanism model, itself, to perform
well when compared with the biologically inspired
models we examine, as the no common mechanism
model is also equivalent to a model with equal branch
lengths, where the branch-length parameters are not es-
timated from the data (Huelsenbeck et al. 2008; Holder
et al. 2010). However, the submodels of the no common
mechanism model are not as severely overparameter-
ized and merit considerable interest. As expected, the
marginal likelihood is largest for a degree intermediate
between the two extremes of the parameter-rich no com-
monmechanism model and the oversimplified model
where all branch/site elements share a single branch-
length parameter (Kim and Sanderson 2008). Unexpect-
edly, however, the biologically inspired parameteriza-
tions used in parametric inference of phylogeny, such as

TABLE 1. The marginal likelihoods for some of the models exam-
ined in this studya

Model A B C D E F

JC69 −1345 −2319 −460 −1981 −1553 −1779
F81 −1328 −2320 −435 −1959 −1497 −1737
HKY85 −1279 −2233 −432 −1820 −1469 −1733
GTR −1266 −2231 −437 −1822 −1463 −1726
JC69+Γ −1308 −2211 −460 −1968 −1530 −1768
F81+Γ −1286 −2213 −435 −1946 −1465 −1720
HKY85+Γ −1225 −2118 −433 −1797 −1421 −1714
GTR+Γ −1223 −2120 −438 −1799 −1421 −1716
NCM-JC69 −1345 −2398 −471 −2024 −1563 −1804
NCM-GTR −1266 −2314 −449 −1869 −1477 −1752
NCM-GTRC −1353 −2419 −473 −2035 −1572 −1811

aThe columns give the results for the sequence alignments of (A) go-
phers, (B) fish of the family Labridae, (C) seed plants of the family
Ericales, (D) primates, (E) vertebrate ATPase8 gene, and (F) vertebrate
ND4L gene. The three variants of the no common mechanism model
are: NCM-JC69, the parameterization discussed by Tuffley and Steel
(1997); NCM-GTR, the no common mechanism model implemented
with the GTR model with the parameters of the GTR model shared
across sites and branches; and NCM-GTRC, the no common mecha-
nism model with independently estimated GTR parameters for each
site and branch.

the GTR + Γ (Tavaré 1986; Yang 1993) and GTR (Tavaré
1986) models, fit the data much better than even the
submodels of the no common mechanism model (im-
plemented with the JC69 model) that we examined.

The marginal likelihoods under the no common
mechanism model implemented with a common set of
GTR parameters was larger than the no common mech-
anism model implemented using the JC69 model (and
described by Tuffley and Steel 1997). In fact, the GTR
version of the no common mechanism model was better
than many of the traditional models that we examined.
However, the details of the implementation of the GTR
model were quite important. The marginal likelihoods
were high only when the GTR parameters were shared
across sites/branches; the marginal likelihood was low
when each site/branch had independently estimated
GTR parameters. Clearly models that allow parame-
ters to be shared across sites/branches are favored.
Many other ways of allowing the GTR parameters to
be shared—that are intermediate between the two ver-
sions of the GTR no common mechanism model we
examined—can be imagined but were not implemented
in this study.

We also compare the traditional branch
parameterization—in which each branch of the phy-
logenetic tree has a single length parameter (i.e., the
Jukes and Cantor 1969 model)—against random per-
mutations of the traditional model. Figure 2 shows the
frequency histogram of the marginal likelihoods for ran-
dom permutations of the branch parameters and also
plots the marginal likelihood of the traditional branch
parameterization. The traditional branch parameteriza-
tion does a much better job of explaining the sequence
alignment than randomly permuted partitions of the
same size.

The no common mechanism model would seem a
good one to use in a phylogenetic analysis because of
the model’s many parameters and their many oppor-
tunities to explain an alignment of DNA sequences.
By contrast, the biologically inspired models used in
parametric inference of phylogeny have few parameters
and, to a first approximation, appear to be too simplis-
tic. However, model choice is not simply a matter of
choosing the model with a greater number of parame-
ters. There is a tradeoff between the bias and variance in
parameter estimates caused by subtracting and adding
parameters from a model. Here, we show, through a
direct comparison of the no common mechanism model
and the more carefully crafted (and, ironically, more
parsimonious) models typically used in phylogenetic
analysis of molecular data, that the biologically inspired
models strongly outperform the no common mech-
anism model (and its submodels) in a classical model-
choice framework. First, the marginal likelihoods for the
biologically inspired phylogenetic parameterizations,
such as the GTR + Γ model, are many orders of mag-
nitude higher than under the no common mechanism
model, or under its submodels. Second, the widely used
idea of assigning one branch-length parameter to every
branch of the tree, with all the sites in the alignment
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FIGURE 1. The marginal likelihoods for various submodels of the no common mechanism model and several common parametric models
used in phylogenetic analysis. The graphs depict the results for the sequence alignments of a) gophers, b) fish of the family Labridae, c) seed
plants of the family Ericales, d) primates, e) vertebrate ATPase8 gene, and f) vertebrate ND4L gene.

sharing that parameterization, is substantially better
than random assignments of branch-length parameters
to sites.

No statistical model can perfectly reflect reality. The
models used by evolutionary biologists to estimate phy-
logeny and to examine questions in molecular evolution
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FIGURE 2. Comparison of the marginal likelihood for the traditional method for assigning branch-length parameters to a tree (arrow) versus
random permutations of the traditional method, each of which does not take into account the varying opportunities for substitution along long
and short branches of the tree. The graphs depict the results for the sequence alignments of a) gophers, b) fish of the family Labridae, c) seed
plants of the family Ericales, d) primates, e) vertebrate ATPase8 gene, and f) vertebrate ND4L gene.

are no exception and, at best, only approximate the un-
derlying processes of interest. That said, this study sug-
gests that evolutionary biologists have been on the right
track all along by devising models that are biologically
inspired.
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