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Allergy is on the rise worldwide. Asthma, food allergy, dermatitis, and systemic anaphylaxis are amongst the most common allergic
diseases. The association between allergy and altered behavior patterns has long been recognized. The molecular and cellular
pathways in the bidirectional interactions of nervous and immune systems are now starting to be elucidated. In this paper, we
outline the consequences of allergic diseases, especially food allergy and asthma, on behavior and neural activity and on the neural
modulation of allergic responses.

1. Introduction

The prevalence of allergic diseases is continuously increasing.
It is estimated that approximately one-third of the general
population is affected by allergic diseases. Asthma, food
allergy, dermatitis, and systemic anaphylaxis are amongst the
most common allergic diseases. The myriad of symptoms
observed may involve the airways, the gastrointestinal (GI)
tract, the skin, and other systems [1]. The underlying
mechanisms involved in the pathophysiology of classic
allergic reactions have been well characterized in humans
and experimental animal models [2–4]. Allergic reactions
might progress in two distinct phases: an early response,
which is characterized by mast cell degranulation and
release of inflammatory mediators as a consequence of
IgE antibodies cross-linked to their high-affinity receptors
(FcεRI) expressed on mast cells membranes, and a late phase
response, characterized by a T-helper type 2 (Th2) response,
with an increased secretion of cytokines such as IL-4 and IL-
13, which stimulate B cells to synthesize IgE; IL-5, necessary
for eosinophilic inflammation; IL-9, which stimulates mast
cell proliferation [5] (see Figure 1).

There is robust evidence indicating interactions between
the immune and nervous systems [6, 7]. There are three
types of interactions between the immune system and the
central nervous system (CNS); first, the immune system
regulates the CNS; second, the CNS drives immunity;

third, the CNS acts reciprocally with the immune system.
It is well established that these systems, along with the
endocrine system, share receptors for cytokines, neurotrans-
mitters, hormones, and neuropeptides. Molecules previously
reported as products of a particular system were shown
to be more broadly synthesized, such as cytokines being
synthesized in the CNS and hormones such as ACTH and
TSH being produced by lymphoid cells [8–14].

This paper will focus on the consequences of allergic
diseases, especially food allergy and asthma, on behavior and
neural activity and on the bi-directional interaction between
immune and nervous systems that culminates with neural
modulation of allergic responses.

2. Neural Activity in Allergy

A plethora of epidemiological and clinical data suggests
higher incidence of anxiety and increased emotional reac-
tivity in individuals suffering from allergies [15–21]. In
studies of food allergy, specifically, it has been shown that
the prevalence of anxiety or depression is higher in adults
with food allergy than in nonhealthy controls with lactose
intolerance or in healthy controls [22]. Increased anxiety
levels were also associated with food allergy in adolescents
[23], and other authors have reported that food allergic
children expressed higher levels of anxiety and fear associated
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Figure 1: Early phase and late phase of allergic hypersensitivity. Upon allergen challenge, sensitized individuals can present two distinct
phases: the early phase, which is characterized by mast cell degranulation and release of inflammatory mediators triggered by cross-linking
IgE antibodies present on mast cells membranes, and the late phase, that is characterized by the infiltration of Th2 cells that interact with
dendritic cells releasing type 2 cytokines responsible for tissue mast cell proliferation and eosinophil recruitment.

with managing their allergy than children with diabetes [24].
Nevertheless, other studies have failed to find association
between food allergy and behavioral changes [25, 26].
Asthmatics in crisis also experience changes in emotional
status and increased levels of anxiety [27]. Conversely,
sadness, stress, and other nervous stimuli can precipitate
acute symptoms of asthma [28]. A study using functional
magnetic resonance imaging has shown that the activity
in the anterior cingulate cortex and insula, in response
to asthma-relevant emotional stimuli, is associated with
inflammation markers and airway obstruction in asthmatic
subjects exposed to antigen [29].

Neuroimmune studies with humans are difficult to be
conducted due to the challenge on achieving a precise
diagnostic of allergy, the large range of allergic symptoms
and severity, artifact of referral bias in population studies,
the implication of putatively unrelated psychological factor,
psychosomatic aspects of the disease, and ethical issues
involved in submitting allergic patients to experimental
contact with the allergen [20, 25, 26, 30].

In animal models of allergy, some of the setbacks of
behavioral studies can be circumvented, and important
findings have been achieved in this area in the last few
years. The pioneer work evidencing behavioral changes as
consequence of allergic reactions was published by Cara et al.
[31]. It was shown that ovalbumin- (OVA-) allergic mice
avoid drinking the otherwise preferred saccharin-sweetened
solution containing the allergen (OVA) [31]. The protocol
used to test the feeding behaviour was based on a two-bottle
preference test, in which control or OVA-sensitized animals
received water and sweetened OVA-solution in two separate
bottles during 24 hours, with no previous conditioning or
learning sessions. The immunological aversive phenomenon,
known as food aversion, was shown to be abolished by
the induction of immunological tolerance [31]. It was also

demonstrated that food aversion can be transferred from
OVA-allergic to naı̈ve mice by passive transfer (injection of
hyperimmune serum) or by adoptive transfer of spleen cells
[32]. The immunological aversive behavior was shown to
be specific, since peanut- or wheat-sensitized mice, when
offered with a mixture of the grains in natura, avoided the
ingestion of grains containing the allergen that they were
sensitized but not other grains [33].

In view of what is known about food and behavior,
including the evolutionary aspects involved with taste recog-
nition [34], a finely constructed system of communication
between the digestive system and the brain is entirely plausi-
ble. In line with this assumption, it was further demonstrated
that OVA-sensitized mice orally challenged with the allergen
present increased levels of anxiety, evidenced by shorter time
of exploration in the open arms of an elevated plus maze
and strong activation of specific brain areas, evidenced by
enhanced c-fos expression in the paraventricular nucleus
of the hypothalamus (PVN), central nucleus of amygdala
(CeA) [35], and nucleus of the solitary tract (NTS) [36]
(see Figure 2). Likewise, a different study showed that
intestinal anaphylaxis induced important c-fos expression in
the PVN, NTS, and lateral parabrachial nucleus (LPB) in
mice [37]. PVN and CeA are brain areas related to emotional
and affective behavior, and they are amongst the main
areas containing corticotropin-releasing hormone- (CRH-)
expressing neurons. CRH is a key peptide in co-ordinating
the behavioral, neuroendocrine, and autonomic responses
to stress [38]; being involved in processes of depression and
anxiety [39, 40]. Indeed, clinical and animal studies with
different CRH antagonists have evidenced antidepressant
effects [41–43] and reduction of stress-elicited secretion
of cortisol [41]. The activation of CeA [44] and PVN
[45, 46] has also been observed in animal models of
conditioned taste aversion (CTA), in which animals avoid
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Figure 2: Activation of specific brain areas by c-fos expression. Representative brain coronal sections of nonallergic (nonsensitized) and
allergic (OVA-sensitized) mice after (oral or nasal) challenge with OVA. Fos staining in neurons of (a) the paraventricular nucleus of the
hypothalamus (PVN), (b) nucleus of the tract solitary (NTS), and (c) central nucleus of the amygdala (CeA). Adapted from Basso et al. 2004
[36] and Costa-Pinto et al. [47].

the consumption of saccharin (conditioned stimulus) after it
had been paired with an intraperitoneal injection of lithium
chloride (unconditioned, noxious stimulus).

In summary, data on food allergy and nervous system
demonstrate that, when forced to ingest the allergen (gav-
age), allergic animals present activation of emotion-related
brain areas and increased levels of anxiety [35]. When the
option of drinking or not the allergen solution is offered in
a two-bottle preference test, allergic animals avoid drinking
the allergen solution and prefer drinking water [32, 35].

3. Role of IgE and Mast Cells in
Neural Activation

The question that remained to be elucidated is how does
the immunological information reach the brain culminating
with the neural activation and behavioral change observed?
Few studies have focused on this aspect of neuroim-
munomodulation; however, some significant findings have
been described. The role of IgE in brain activity was
determined by the administration of nonanaphylactic anti-
IgE antibodies to OVA-sensitized animals. Depletion of IgE
prevented c-fos activation in the CNS and food aversion in
allergic mice [35]. These results highlight the importance
of the early phase of immediate allergic response in the
neural/behavioral responses observed. IgE-dependent mast
cell activation leads to the secretion of preformed mediators

(vasoactive amines, neutral proteases), de novo synthesized
proinflammatory lipid mediators, and the synthesis and
secretion of other mediators (growth factors, cytokines,
and chemokines) [48]. It has been shown that the pre-
treatment of OVA-sensitized mice with a mixture containing
antagonists of serotonin, via 5-HT2 receptor (methysergide),
and histamine, via H1 receptor (mepyramine), inhibited
intestinal edema but food aversion was maintained [32].
The pre-treatment with a glucocorticoid (dexamethasone)
inhibited both intestinal edema and food aversion [32].
Similar results were observed in rats [49]. This data suggests
that the pharmacological effects of histamine or serotonin
are not essential to the development of immunological food
aversion. The role of dexamethasone may not be directly
correlated to immunological aversion since it is known
that corticosteroids may have other immunological, anti-
inflammatory [50], and psychological effects [51]. The role
of other mast cell mediators in the development of food
aversive behavior remains to be determined.

Consistent data demonstrates that mast cells are closely
apposed to nerve endings [52–57], giving anatomical sup-
port for the role of mast cells in the interaction between
immune system and CNS. Neural pathways most likely to
mediate this interaction are the autonomic nervous system,
via the vagal nerve and sympathetic nerve fibers to the
main sites of the immune system, and afferent nerves that
convey visceral sensory information to the CNS [58, 59].
Indeed, mediators such as cytokines released by immune cells



4 Journal of Allergy

have been shown to sensitize afferent neurons [60]. In this
vein, neonatal treatment with capsaicin, a neurotoxin derived
from chilli pepper (plants from the genus Capsicum) that
promotes a selective dysfunction of sensory fibers such as C-
fibers [61], completely blocked c-fos expression in the PVN
[36] and diminished food aversion in OVA-sensitized mice
[62]. The treatment with antagonist of 5-HT3 receptors,
expressed in sensory C-fibers [63], diminished the expression
of food aversion behavior in sensitized rats [49]. Altogether,
these results corroborate the hypothesis that mediators
released by mast cell degranulation could stimulate the
nerve endings of the C-fibers that, in turn, would transmit
the sensory information to the CNS. The presence of IgE
receptors (FcεRI) on sensory neurons in mice has been
described [64, 65], and this could represent an alternative
way of neuron activation, independent on mast cell or
basophils. The implications of the direct SNC activation via
IgE-antigen interactions should also be considered in the
investigations of the role of neural pathways in allergy.

In the theory of taste aversion, the aversive behavior is
related to abdominal discomfort [66]. Animals innately seek
pleasure and avoid unpleasant sensations. When motiva-
tional conflicts between fundamental goals occur, an animal
must either endure unpleasant stimulus to attain pleasure
or relinquish pleasure to avoid unpleasant situations. We
have approached this question by evaluating the behavior of
OVA-sensitized mice when facing a conflicting situation in
which the aversive stimulus (allergen) was offered associated
with an attractive sweet taste (increasing concentrations
of sucrose). We found that food aversion was positively
correlated with the levels of OVA-specific IgE and inversely
correlated with the animal preference for sucrose sweet-
ened solutions. The aversion behavior was abolished by
increasing the sucrose concentration (palatability) of the
allergen solution [67]. In a broader scenario, this animal
model evidenced a complex crosstalk, in which the very
sensorial response triggered by a taste preference could be
modulated by an immune response. Thus, food aversion is
a behavioral adaptive response resultant of a complex and
finely controlled process.

In order to determine the effect of allergic asthma on
brain activities, parallel studies investigated allergic aversion
behavior in an experimental model of allergic lung disease.
Using a dark-light box, it was shown that OVA-sensitized
mice, differently from control animals, hesitated entering
the attracting and supposedly safer, dark chamber in which
the allergen had been previously nebulized, preferring the
lit (usually aversive) side of the box. Increased activity of
the PVN and CeA was also observed in OVA-sensitized mice
following a nasal OVA challenge [47].

Using the same experimental model of atopic asthma,
it was further demonstrated that the brain and behavior
changes observed in OVA-sensitized mice nasally challenged
with OVA were (i) IgE dependent, being abrogated by anti-
IgE treatment; (ii) mediated by mast cell degranulation,
being blocked by the use of sodium cromoglicate (cromolyn,
an inhibitor of mast cell degranulation); (iii) not related
to airway inflammation, since sensitized C3H/HeJ mice,
which did not present pulmonary inflammatory infiltrate,

exhibited brain and behavioral changes similar to BALB/c
animals [68].

Altogether, the findings described above reinforce the
fundamental role of the early phase of allergic response on
the brain activation and behavior changes associated with
avoidance behavior towards allergen exposure. Also, they
highlight the sensory function of the vagus nerve in allergic
inflammation.

4. The Serotonergic Pathway in
Airway Allergic Inflammation

Atopic asthma is a chronic inflammatory lung disease
mediated by Th2 cells, characterized by airway eosinophilia,
airway hyperreactivity (AHR), mucus hyper secretion, and
elevated levels of IgE. In addition to the roles of classic
mediators of allergic inflammation in asthma-like responses,
increasing attention is being given to serotonergic receptors
in the airways. Plasma levels of serotonin (5-HT) are
elevated in symptomatic asthmatic patients [69]. Moreover,
5-HT receptors (5-HTRs) appear to mediate the secretion
of cytokines, prostaglandins, and chemokines by alveolar
epithelial cells that may aggravate an already complex
inflammatory scenario. The mRNA for several 5-HTRs,
such as 5-HTR1, 2A, 4, 6, and 7 (seven-transmembrane
domain receptors), and 5-HTR3 (ligand-gated ion chan-
nel) have been shown in human type-2 alveolar epithelial
cells. 5-HT leads to a calcium-mediated, dose-dependent
increase in the secretion of IL-6 and IL-8 [70]. Recently,
the expression of several 5-HT2 receptor subtypes has
been confirmed in mouse alveolar epithelial cells and
macrophages by quantitative PCR [71]. In addition, sero-
tonin binding to 5-HT2C receptors in alveolar macrophages
leads to increased expression of CCL2 [71]. In a murine
model of OVA-induced asthma-like responses, bronchocon-
striction can be mediated by 5-HT2 receptor activation
in parasympathetic cholinergic neurons, leading in turn
to acetylcholine (ACh) release from nerve terminals and
smooth muscle contraction [72]. This points to yet another
short-loop neuroimmune interaction mediated by 5-HT
in allergic asthma. These data altogether strongly suggest
a role of 5-HT in the asthmatic inflammatory responses.
The increase of ACh and its consequences in airway
inflammation will be further discussed in the following
sections.

5. The Autonomic Nervous System (ANS) and
Immune Responses

The brain and the immune system are hardwired through the
autonomic nervous system (ANS), which is composed by the
sympathetic nervous system (SNS) and the parasympathetic
nervous system (PNS). Description of the innervation of
lymphoid organs by the ANS built a solid ground for
understanding their implications in health and disease [73].

The role of SNS in modulating inflammatory pro-
cesses is well described [74, 75]. The SNS has pro- or
anti-inflammatory functions depending on factors such as
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Figure 3: The cholinergic pathways in allergic lung. During allergic reactions, the inflammatory mediators released in the tissue activate the
sensory afferent fibers, which convey information to the CNS. The CNS sends information back to the inflammatory site by increasing ACh
release from efferent vagus nerve. The neurotransmission in the parasympathetic ganglia is mediated by acetylcholine (ACh) via nicotinic
(nAChR) or type 1 muscarinic (m1AChR) receptors. The stimulus generated induces ACh release in the pos ganglionic nerve fiber endings.
Type 2 muscarinic receptors (m2AChRs) are autoinhibitory, and the dysfunction of this receptor, observed in allergic asthma, induces
increased release of ACh. Increased ACh results in augmented mucus secretion via m3AchR expressed in the glandular epithelium, increased
airway smooth muscle contraction (bronchoconstriction) via m3AchR expressed in muscle cells, and decreased inflammatory mediators
production via a7nAChR receptor expressed on immune cells.

neurotransmitter concentration, receptor affinity, timing of
SNS activity in relation to the inflammation course, and
others [76]. The SNS richly innervates all lymphoid tissues,
including bone marrow, thymus, spleen, mucosal-associated
lymphoid tissues, and lymph nodes (for review see [77]). The
neurotransmitter released by sympathetic nervous pathways
is norepinephrine (NE) although adrenergic neurotrans-
mitters released by the adrenal medulla such as NE and
adrenaline also modulate inflammation [75].

The expression of adrenergic receptors in cells of the
immune system has been thoroughly reported over the past
decades [78]. Noradrenaline, adrenaline, and other ligands
estimulate alfa and beta cell surface adrenergic receptors
with varied affinities and on several cell types. Beta-2
adrenoceptores are the most commonly found amongst
adrenergic receptors in almost all cells of the immune
system [79, 80], a noteworthy exception being Th2 clones
[81]. Decreased density and signaling via these receptors
is usually seen at the peak of T-cell activation, which
may be relevant to unleashing these cells to their full

potential [82, 83]. Additionally, agonist binding to beta-2
adrenoceptors expressed by B cells, natural killer (NK), and
macrophages lead to changes in their activity [84–86]. Early
evidence of the participation of sympathetic innervation
in immunity comes from reports showing a reduction in
catecolamine concentration in lymphoid organs following
immunization [87]. Several other groups then tackled the
issue of NE availability, concentration, and effects during
immune responses [74, 88–90]. Innervation by the SNS has
been fully demonstrated in all lymphoid organs [91–94].

Evidence for parasympathetic (cholinergic) innervation
of the same sites as those described for SNS is more elusive.
Cholinergic innervation is undoubtedly present in the thy-
mus and spleen; however, there is no evidence of parasym-
pathetic innervation of the bone marrow and lymph nodes.
Nonetheless, it is now clear that non-noradrenergic neurons
enter the parenchyma of lymphoid organs, suggesting several
other sources of nervous modulation on immunity [95, 96].
The neurotransmitter released by parasympathetic nervous
pathways is ACh.
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Contrarily to the well-established role of the SNS in
disease, the parasympathetic control of inflammation has
only been recently described. The anti-inflammatory role
of vagal ACh was shown in animal models of pancreatitis
[97], inflammatory bowel disease [98], postoperative ileus
[99], lethal endotoxemia [100], and hemorrhagic shock
[101]. This phenomenon was named “cholinergic anti-
inflammatory pathway” [100].

Besides the ACh released from parasympathetic nerves,
it is relevant to mention that there is increasing evidence
for extraneuronal ACh signaling, which has been referred
to as a “nonneuronal cholinergic system” [102]. In the
airways, non-neuronal ACh producer cells include mast cells,
monocytes, macrophages, neutrophils, smooth muscle cells,
epithelial cells, and lymphocytes [102, 103].

Receptors for various neurotransmitters beyond the
sympathetic mediators [79, 104, 105] or parasympathetic
[100, 106] are present on immune cells. These neurotrans-
mitters include vasoactive intestinal peptide (VIP), pituitary
adenylate cyclase-activating polypeptide [107–109], calci-
tonin gene-related peptide (CGRP), substance P [110, 111],
histamine, and serotonin [112, 113]. Likewise, receptors for
neuroendocrine mediators, including CRH [114, 115], α-
melanocyte-stimulating hormone (α-MSH) [115–118], and
leptin [115, 119–123] are found on lymphoid tissue. These
circuits may be also involved in inflammatory response
modulation.

6. The Cholinergic Pathway in
Airway Allergic Inflammation

Asthma is also associated with increased activity of the
parasympathetic nervous system that might underline AHR,
one of the hallmarks of asthma. An increase in pulmonary
cholinergic nerve activity is associated with asthma, and
asthmatic patients are known to be hypersensitive to cholin-
ergic agonists [124]. In fact, the dominant autonomic control
of airway smooth muscle in the lungs is provided by the
parasympathetic nervous system, and ACh release represents
a major bronchoconstrictory pathway. ACh can bind to
nicotinic receptors (nAChRs), ligand-gated ion channels
comprising 17 different subunits (α1–10, β1–4, γ, δ, ε)
[103, 125–128], or muscarinic receptors (mAChRs), seven-
transmembrane G-protein-coupled receptors that comprise
5 subtypes (M1–M5) [129]. The control of ACh release by the
vagus nerve involves autoinhibitory muscarinic M2 receptors
expressed on the pos-ganglionic nerve fibers [130].

Interestingly, experimental and clinical data on asthma
have evidenced dysfunction of muscarinic M2 autoreceptor,
which, in turn, contributed to increased release of ACh
from airway parasympathetic nerve endings [131–135].
The dysfunction of muscarinic M2 receptor appears to be
mediated by eosinophilic major basic protein (MBP), which
allosterically blocks muscarinic M2 receptor [130, 136]. The
enhanced release of ACh due to M2 dysfunction results
in increased airway smooth muscle contraction and mucus
secretion via m3AchR present in airway smooth muscle
cells and glandular epithelium [137]. Although the increased

cholinergic activity of allergic lung contributes to airway
flow obstruction, it might have a beneficial effect via the
“cholinergic anti-inflammatory pathway.” In this pathway,
ACh binds to α7nAChR receptor expressed on immune cells
such as macrophages, eosinophils, lymphocytes, and den-
dritic cells [138]. It has been shown that the activation of this
receptor attenuates proinflammatory cytokines release by
inhibiting NFκB activation, or via activation of Jak2/STAT3
signaling. The later pathway can negatively regulate NFκB
binding to DNA or increase the activity of suppressor of
cytokine signaling 3 (SOCS3) that results in inhibition
of pro-inflammatory cytokine production (for review see
[139]). The involvement of nAChRs other than α7 subtype
by the cholinergic anti-inflammatory pathway is suggested by
the study of Matsunaga [140]. These authors proposed a role
for α4 β2 subunits in the downregulation of IL-6, IL-12, and
TNF from murine alveolar macrophages after infection with
L. pneumophila [140]. Moreover, α5 nicotinic acetylcholine
receptor knockout mice have a more severe experimental
colitis than wild-type controls [141]. Finally, it was shown
that the vagal inhibition of T-cells proliferation and cytokine
release was mediated by an nAChR other than α7 [142].

Notwithstanding the possible participation of other
subtypes of nAChRs in asthma, an in vivo model of asthma
demonstrated that the activation of α7nAChR reduced the
numbers of lymphocytes and eosinophils in the bronchoalve-
olar lavage (BAL) [143]. Experiments with eosinophils
obtained from allergic patients demonstrated that activation
of α7nAChR reduced the production of leukotriene C4 and
matrix metalloprotease-9 (MMP-9), mediators related to the
pathogenesis of asthma [144].

7. Concluding Remarks

In summary, this paper showed that allergic inflammation
conveys information to the CNS that, in turn, sends
information back to the inflammatory site by releasing
neural mediators such as ACh. In asthma, this contributes
in smooth muscle contraction (bronchoconstriction) and
increased mucus secretion. Similar phenomena occur in the
GI tract with increased peristaltism and mucus production.
In both cases, these activities that are usually considered as
pathologic processes can be viewed as an attempt of the
organism to eliminate the irritant stimuli. Therefore, the
scenario that emerges from the interaction between immune
and nervous systems underscores the robust homeostatic
pathways of the brain to allergic inflammation.
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[143] M. R. Blanchet, E. Israël-Assayag, and Y. Cormier, “Modu-
lation of airway inflammation and resistance in mice by a
nicotinic receptor agonist,” European Respiratory Journal, vol.
26, no. 1, pp. 21–27, 2005.

[144] M. R. Blanchet, A. Langlois, E. Israël-Assayag et al., “Modu-
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