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Angle Imaging: Advances and Challenges
Glaucoma is the second leading cause of blindness worldwide, 
affecting 60.5 million people in 2010, increasing to 79.6 million 
by 2020.[1] Asians will represent 47% of those with glaucoma 
and 87% of those with primary angle closure glaucoma (PACG). 
Bilateral blindness will be present in 3.9 million people with 
PACG in 2010, rising to 5.3 million people in 2020.[1] PACG has 
a mean annual age-and-sex-adjusted incidence of up to 8.3 per 
100,000,[2] and is a major form of glaucoma in East and South 
Asia.[3-7] Aggressive and visually destructive, it is responsible 
for the majority of bilateral glaucoma blindness in Mongolia,[3] 
Singapore,[4] China[8] and India.[5] In China, an estimated 28 
million have appositional angle closure, the anatomical trait 
predisposing to PACG, which blinds more people than open 
angle glaucoma in China.[7] The high prevalence of PACG in 
the populous nations like China and India ranks it as a major 
cause of significant visual morbidity on a global scale.

There exists a spectrum of stages in the PACG disease 
process. At the earliest stage (termed primary angle closure 
suspect, PACS), eyes have narrow or occludable angles 
without raised intraocular pressure (IOP) or glaucomatous 
optic neuropathy. Primary angle closure (PAC) is said to occur 
in eyes with narrow angles and the sequelae of apposition, 
peripheral anterior synechiae (PAS) and/or raised IOP but 
without glaucomatous optic neuropathy. PACG is reserved for 
cases of PAC with glaucomatous optic neuropathy. Although 
the natural history and clinical course of eyes with angle closure 
are not well established, PACS are anatomically predisposed 
and considered the “precursor” to PAC and PACG. It has 

been estimated that 22% of the eyes with PACS progress to 
PAC[9] and 28.5% progress from PAC to PACG over 5–10 
years.[10] Prophylactic laser iridotomy performed as the first-line 
treatment for narrow angles may halt the progression of the 
angle closure process and prevent development of PACG,[11] 
but it is less effective in controlling IOP if optic nerve damage 
with PAS has already occurred.[12,13]

Many cases of PACG are asymptomatic and often present 
with severe to end-stage visual field loss at the time of the 
first presentation. The high visual morbidity from PACG is 
related to the destructive nature of the asymptomatic form of 
the disease.[14] Hence, early detection of anatomically narrow 
angles is important and the subsequent prevention of visual 
loss from PACG depends on an accurate assessment of the 
anterior chamber angle (ACA).

Gonioscopy
Dynamic indentation gonioscopy is the current reference 
standard for assessing ACA structures and their configuration. 
The identification of regions of apposition of the iris to the 
trabecular meshwork enable the diagnosis of angle closure to 
be sought. However, gonioscopy is unfortunately plagued by 
subjectivity, with only moderate agreement reported among 
the observers.[3,4,15] The varying annotation of angle findings 
across different grading schemes,[16,17] varying gonioscopic 
findings with different gonioscopic lenses and the alteration of 
the angle configuration by light, placement of the lens and/or 
mechanical compression of the eye lead to significant variability 
in the assessments.[3,4,18-23] The definition of what constitutes an 
occludable angle also ranges from 180 to 270 degrees of angle, 
in which the trabecular meshwork is not visible.[24]

Ultrasound biomicroscopy
Ultrasound biomicroscopy (UBM), a technique first developed 
in the 1990s, is an objective alternative for ACA assessment. 
Electric signals are converted, by a radiofrequency signal 
generator coupled to a piezoelectric transducer, into 50 MHz 
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frequency ultrasonic sound waves, which are transmitted to 
the eye via saline solution that is held in a cup reservoir or 
within the end of a probe on which the transducer is mounted. 
These sound waves travel at different speeds through the eye 
as they encounter tissues of varying acoustic impedance and 
are reflected at differing time intervals. A computer system 
collates and magnifies these reflected sound waves, providing 
a high-resolution B scan image.

Studies comparing UBM to gonioscopy have found a 
high agreement between the two modalities when both are 
performed in a completely dark room.[25] UBM is sufficiently 
sensitive such that significant differences among the mean 
UBM measurements (angle-opening distances at 250 µm and 
500 µm from the scleral spur and trabecular meshwork–ciliary 
process distance) of each angle grade estimated by gonioscopy 
can be detected [Fig. 1].[26] Although subjective gonioscopic 
assessment occasionally resulted in an overestimation of the 
angle width as compared with the UBM values in eyes with 
occludable angles,[27] angle dimensions measured by UBM 
correlated significantly with gonioscopy in general.[26]

UBM allows for the acquisition of real-time images, with 
lateral and axial resolutions of 50 µm and 25 µm, respectively.[28,29]

In addition, its ability to visualize posteriorly located structures 
such as the ciliary body, lens zonules and anterior choroid 
puts it at an advantage over other modalities, especially for 
the investigation of the mechanisms behind angle closure. 
This includes anterior rotation of the ciliary body in plateau 
iris, iridociliary masses causing secondary angle closure or 
choroidal effusions.[28,30] Additionally, UBM may also play a 
role in the evaluation of certain types of secondary glaucoma, 
such as pigment dispersion[31] (posteriorly bowed, causing iris 
pigment shaffing) and assessing for a tilted or subluxed lens 
in the exfoliation syndrome.[32]

When performing UBM, the requirement for a saline bath, 
through which sound waves are transmitted, necessitates 
contact with the eye, usually in the form of a scleral cup or a 
corneal probe [Fig. 2]. This introduces discomfort, the need 
for a supine position, risks of mechanical corneal abrasion 
and infection and the likelihood of angle distortion due to 
inadvertent indentation.[33] Optimal UBM imaging requires a 
skilled operator and cooperative subject and, even then, the 
process can be time consuming.

Scheimpflug photography
The Scheimpflug principle describes the change in focal plane 
that occurs when the film plane is tilted, such that the focal, lens 
and film planes are not parallel, shifting the plane of sharp focus 
to the intersection point of the film and lens planes and allowing 
slit images of the anterior segment of the eye that retain depth 
to be obtained. Commercial devices based on this principle 
now take up to 50 images in 2 s, using a rotating camera, which 
are reconstructed into a 3-dimensional image, enabling a rapid 
assessment of the anterior chamber. Semi-automated analysis 
of angle width requires the user to determine the iris plane and 
plane of corneal curvature by placing up to 10 marks on the 
corneal endothelium, from which the angle width is measured. 
Although subjective, this fast and non-contact method of 
ACA assessment has been previously reported to be highly 
reproducible, at least in eyes with open angles.[34-38]

Scheimpflug photographic techniques, however, have 
not been documented to reliably image a variety of angle 
configurations. In addition, the ACA cannot be entirely 
visualized and only the angle approach can be photographed as 
light is unable to penetrate to the angle recess. User definition of 
the iris plane necessarily uses a straight line to describe a curved 
plane, leading to inaccuracies in angle width measurement. 
Comparing ACA width measurements using Scheimpflug 
photography and UBM revealed only moderate correlation,[39] 
with Scheimpflug images being of a much lower resolution. 
In addition, one study found that angle measurements 
from Scheimpflug images were less sensitive to changes in 
illumination compared with those obtained using UBM.[40] 
In a recent study, Scheimpflug photography was reported to 
provide insufficient detail of the angle for assessment of angle 
anatomy, with limited agreement existing between gonioscopy, 
Scheimpflug photography and UBM.[41]

Anterior segment optical coherence tomography
Anterior segment optical coherence tomography (AS-OCT) 
is a rapid, non-contact imaging device that acquires high-
resolution cross-sectional images of the anterior segment 
structures and allows for their objective and quantitative 
evaluation. This imaging technology uses low-coherence 
interferometry to measure the delay and intensity of light 
reflected from tissue structures and comparing it with light 
that has traversed a known reference path length by using a 
Michelson-type interferometer.[42] The A-scans in this time-
domain OCT technology are produced by varying the position 
of the reference mirror. Although this principle was originally 
employed for the retinal OCT using light of wavelength 830 
nm,[43,44] it was later modified and refined to image the anterior 
segment[45] by altering the light to a longer wavelength of 1310 
nm.[46] This increases the depth of penetration by reducing the 
amount of light scattered by the sclera and limbus, allowing 
for visualization of the ACA morphology in greater detail. In 
addition, the 1310 nm light incident on the cornea is strongly 
absorbed by water in the ocular media, with only 10% reaching 
the retina.[47] This enables the AS-OCT to utilize higher power, 
enhancing imaging speed and eliminating motion artefacts.

Visante and slit-lamp AS-OCT
The Visante AS-OCT (Carl Zeiss Meditec Inc., Dublin, CA, 
USA) obtains scans at a rate of 2000 A-scans per second, 
with an axial and transverse resolution of 18 µm and 60 
µm, respectively. It requires minimal experience for image 
acquisition [Fig. 3]. Slit-lamp OCT (SL-OCT) (Heildelberg 
Engineering, Heildelberg, Germany) is the other commercially 
available AS-OCT device that is incorporated into a modified 
slit-lamp biomicroscopy system. Compared with the Visante 
OCT, the SL-OCT has a slower image acquisition speed and 
a lower axial and transverse resolution of <25 µm and 20–100 
µm, respectively. Furthermore, the SL-OCT requires manual 
rotation of the scanning beam.

The AS-OCT devices provide anterior segment, angle and 
corneal scans and pachymetry maps and can also be used to 
calculate the depth, width and angle of the anterior chamber. 
Customized software devices have also been developed to 
quantitatively assess, in greater detail, angle parameters, 
namely trabeculo-iris space area (TISA), angle recess area 
(ARA) and angle opening distance (AOD).
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Figure 1: Angle parameters on ultrasound biomicroscopy, showing 
the trabeculo–iris space area at 500 µm (TISA500), angle recess area 
at 500 µm (ARA500) and angle opening distance Figure 2: Ultrasound biomicroscopy procedure
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Comparison studies between Visante AS-OCT and 
gonioscopy found the AS-OCT detected greater closed angles 
than gonioscopy [Fig. 4], particularly in the superior and inferior 
quadrants.[48,49] Using gonioscopy as the reference standard, 
the sensitivity and specificity of AS-OCT to identify angle 
closure were 98% and 55.4%, respectively, using a definition 
of one or more quadrants of non-visibility of the trabecular  
meshwork.[48] Several explanations have been suggested for 
the disparate findings between gonioscopy and AS-OCT. 
Inadvertent pressure on the globe and too much exposure 
of the pupil to visible light during gonioscopy may alter the 
configuration of the angle, leading to spurious widening of the 
angle. Another reason could be a difference in the definition 
and description of the landmarks used to define angle closure. 
On gonioscopy, angle closure was defined as the apposition 
between the iris and the posterior trabecular meshwork, 
whereas on the AS-OCT, it was defined as any contact between 
the iris and the angle structures anterior to the sclera spur.

Comparison of ACA dimensions by SL-OCT and Visante 
AS-OCT found a poor correlation, suggesting that angle 
measurements obtained by the two devices cannot be used 

interchangeably.[50] The authors attributed the poor agreement 
to differences in the choice of refractive indices in the calculation 
of anterior segment dimensions, differing algorithms for image 
dewarping, software for image analysis, exact scan location 
and use of internal fixation in Visante OCT and external 
fixation in SL-OCT. Another study comparing the two AS-OCT 
devices found that both detected more closed angles than  
gonioscopy.[51] However, there was a better agreement between 
SL-OCT and gonioscopy, which can be attributed to the use of 
visible light during both examinations. The study also found 
discrepancies in the ACA quantification with each device, 
confirming the findings of Leung et al.[50] that the measurements 
are not interchangeable.

In a comparison between low-resolution (20 µm) and 
high-resolution (8 µm) AS-OCT, Wang et al. found that 
higher-resolution OCT produced larger-angle width 
measurements, which they attributed to the different image-
processing algorithms, where dewarping procedures were 
not implemented for the high-resolution images.[52] Moreover, 
sclera spur location was more accurately determined in the 
images obtained by the higher-resolution mode.

The major advantages of the AS-OCT devices include 

Figure 3: Visante anterior segment optical coherence tomography 
procedure

Figure 4: Visante anterior segment optical coherence tomography 
image showing closed angles
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ease of operation and rapidity of image acquisition. The 
non-contact method eliminates patient discomfort and 
inadvertent compression of the globe, which is especially 
useful in the immediate post-operative period or after trauma. 
The incorporation of automated analysis software allows for 
rapid estimation of the various anterior segment parameters, 
including corneal thickness, anterior chamber depth and ACA 
indices. In addition, customized image analysis software can 
be also be used to quantify other angle parameters.

The main disadvantage of these devices is the inability to 
distinctly detect and measure structures posterior to the iris 
as well as peripheral anterior synechiae. Currently available 
software analysis programs require the manual localization of 
the scleral spur, which can at times be difficult, especially in 
closed angles or where there is a smooth transition from cornea 
to sclera. Sakata et al. found that the sclera spur could not be 
detected in approximately 30% of the ACA quadrants, this 
problem being worse in the superior and inferior quadrants.[49] 
While gonioscopy allows concurrent and dynamic visualization 
of the entire angle quadrant, AS-OCT images should only be 
interpreted for the particular section of the ACAs scanned. 
Lastly, the high cost of these devices may be a limiting factor 
for their use in routine clinical set-up or screening purposes.

Spectral domain OCT
Fourier or Spectral domain OCT (SD-OCT) differs from time 
domain OCT (TD-OCT) by utilizing light of shorter wavelength 
(830 nm) and having a fixed reference mirror, which allows 
higher scanning speed and more images to be taken in a 
single pass.[53] It scans at a rate of 26,000 A-scans per second, 
producing detailed cross-sectional images of structures at an 
axial resolution of 5 µm and a transverse resolution of 15 µm  
[Fig. 5]. However, the shorter wavelength of the SD-OCT 
reduces the depth of penetration of the anterior segment 
structures, making it useful for imaging the corneal region and 
less useful for the iris and more posterior areas. The RTVue 
(Optovue Inc.,Fremont, CA, USA) is an SD-OCT system that can 
be used for either retinal or anterior segment imaging (when 
used with a corneal adaptor module, CAM).

The Cirrus high-definition OCT (HD-OCT) 4.0 (Cirrus; Carl 
Zeiss Meditec Inc.) is used for in vivo viewing, axial cross-
sectional and three-dimensional imaging and measurement 
of the anterior and posterior ocular structures.

Stehouwer and colleagues recently described a novel 
technique of integrating a combined anterior and posterior 
segment SD-OCT (SLSCAN-1) onto a slit-lamp, with the 
aim of improved efficiency in the clinical evaluation of a 
patient.[54] With regards to anterior segment scan, the authors 
acknowledge that the images were not comparable to the 
commercially available TD-OCT devices.

In a recent study, Wong and colleagues modified a 
commercially available SD-OCT device with a 60 diopter lens 
to acquire high-resolution images of the ACA.[55] In addition to 
the sclera spur, they were able to identify new angle imaging 
landmarks such as the Schwalbe’s line in 93.3% and trabecular 
meshwork in 62.2% of the images. Although the device also 
showed a good correlation with gonioscopy findings (kappa = 
0.65), better than that obtained by AS-OCT (AC1 = 0.35–0.47),[51] 
it detected fewer closed angles compared with gonioscopy. 

Figure 5: High-resolution spectral domain optical coherence 
tomography image showing angle structures: trabecular meshwork, 
Schwalbe’s line and scleral spur

Figure 7: Image of an open angle obtained using EyeCam, detailing, 
clearly, the Schwalbe’s line, pigmented trabecular meshwork, scleral 
spur and iris processes

Figure 6: EyeCam procedure
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Wylegala and colleagues compared anterior segment imaging 
and measurements obtained by the TD- and SD-ASOCT 
systems.[56] Quantitatively, they found no statistical difference 
between the mean TISA and AOD values measured by the 
two devices.

The SD-OCT devices seem to allow better structural 
delineation and visualization of novel ACA landmarks such as 
Schwalbe’s line, trabecular meshwork and Schlemm’s canal.[55,56]

EyeCamTM

The EyeCamTM (Clarity Medical Systems, Pleasanton, CA, 
USA) is a new technology originally designed to yield wide-
field photographs of the pediatric fundus for the diagnosis 
and management of posterior segment diseases.[57] With 
modifications in the optical technique and the inclusion of a 130 
degree lens, the device can be used to visualize angle structures 
in a manner similar to direct gonioscopy.

For imaging, patients are positioned supine and the lens 
probe is placed on a coupling gel without direct contact onto 
the cornea, minimizing alteration of angle configuration due 
to compression artefact and causing less discomfort than 
gonioscopy [Fig. 6]. To image a particular angle quadrant, the 
patient is instructed to look in the direction of that angle. The 
probe is positioned at the opposite limbus to the angle being 
photographed and light from the fiber optic probe is directed 
toward the angle of interest and then tilted downward, to bring 
the angle structures into view while minimizing pupillary 
constriction.

The EyeCam™ is thus a new and objective way of 
documenting angle configuration, using a photographic 
method similar to goniophotography. The images produced 
are easy for clinicians to interpret as the angle appears similar 
to what is seen during gonioscopy [Fig. 7]. Images recorded 
by the EyeCamTM can be saved on a computer thus allowing 
comparisons to be made over time. Such “goniographic” 
documentation by EyeCam™ allows for monitoring of angle 
changes over time, tracking of angle changes with disease 
progression as well as treatment effects[58] and use as patient 
education tools.

A preliminary study comparing EyeCam™ “gonio-graphy” 
with conventional gonioscopy in 60 eyes, with angles ranging 
from a Shaffer grading of 0 to 4 on clinical gonioscopy, 
demonstrated that results from the EyeCam™ are accurate and 
reliable.[59] In another study comparing these two modalities, 
Perera et al. (2009, in press) found that the agreement between 
EyeCam™ and gonioscopy in detecting closed quadrants in the 
superior, inferior, nasal and temporal quadrants based on AC1 
statistics was 0.73, 0.75, 0.76 and 0.72, respectively. EyeCam™ 
had 76% sensitivity and 81% specificity for detecting eyes with 
angle closure using the two-quadrant definition of angle closure 
to categorize each eye.

Although the EyeCam™ is as yet unable to provide 
quantitative measurements of anterior chamber depth like 
the AS-OCT or UBM, it provides a 360-degree visualization of 
the entire ACA compared with the ASOCT and UBM, which 
provide only cross-sectional views.

The device has some limitations: imaging of the ACA using 
EyeCam™ takes longer than gonioscopy (about 5–10 min 

per eye). The device is more expensive than gonioscopy and 
additional space is required for supine examination. It is not 
known if supine positioning would widen the angle due to the 
effect of gravity on the lens–iris diaphragm. The light source 
from the EyeCamTM, delivered via a fiber optic cable, may 
cause pupil constriction, artificially altering ACA configuration. 
Unlike with dynamic gonioscopy, it is difficult to discern 
the presence of PAS due to the inability to indent the angle. 
Similarly, determination of iris configuration is difficult with 
the two-dimensional EyeCamTM images. Reproducibility may 
also be compromised as, with repeat imaging, each photograph 
may be slightly rotated and images may not be obtained over 
the exact same location, unless certain landmarks on the iris 
are used as anchors.

Conclusions
New methods of imaging the angle have been introduced, 
offering advantages of being more objective, reproducible and 
non-contact, rapid image requisition and storage, quantitative 
analysis and the ability for anterior segment imaging despite 
corneal opacities results in their easy incorporation into clinical 
practice and research. While none of these new devices, 
singly, can replace conventional slit-lamp biomicroscopy and 
gonioscopy, these new techniques of anterior segment and 
ACA imaging are useful in complementing clinical practice, 
particularly when gonioscopy is difficult. While attempting 
to address the shortfalls of gonioscopy, these devices are not 
without their own limitations and, until the ultimate imaging 
tool is invented, clinical dynamic indentation gonioscopy 
remains the current reference standard.
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