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Glaucoma is a complex disease that comprises a group 
of heterogeneous optic neuropathies characterized by a 
progressive degeneration of the optic nerve head and visual 
field defects.[1] It affects 70 million people and is the second 
leading cause of blindness worldwide. It is estimated that by 
the year 2020, this number would rise to around 79.6 million.[1] 
The prevalence of glaucoma varies widely across the different 
ethnic groups and is significantly higher in blacks (4.7%) than 
in the white population (1.3%).[2] In India it is estimated that 
glaucoma affects 12 million people and causes 12.8% of the 
total blindness in the country. It is considered to be the third 
most common cause of blindness with a prevalence ranging 
from 2.6-4.1%.[3-5] 

Elevated intraocular pressure (IOP) is a major risk factor in 
glaucoma, and experimental elevation of IOP has resulted in 
glaucoma in animal models.[6] The other common risk factors 
include age, race, family history, thin cornea, myopia and 
oxidative stress.[7] Family history of glaucoma is estimated to 
account for a risk of 1-10 folds among the first-degree relatives 
of an affected individual.[8]

Glaucomas are categorized into primary and secondary 
based on their etiology and aqueous humor dynamics.[9] Based 
on gonioscopy, primary glaucomas are further classified 
as primary open angle glaucoma (POAG) and primary 
angle closure glaucoma (PACG). POAG may be associated 
with or without an elevated IOP and has an adult onset 
(usually >35 years) or juvenile onset (usually <35 years).[9] 

Secondary glaucomas are characterized by the involvement 
of predisposing ocular or systemic diseases such as uveitis, 
trauma, and diabetes thereby resulting in an alteration of 
aqueous humor dynamics. These include pseudoexfoliation 
glaucoma (XFG) and pigmentary glaucoma (PG).[9] The mode 
of inheritance in adult-onset POAG and PACG is complex in 
nature. This has limited the identification of large affected 
families for gene mapping by linkage analysis. On the other 
hand, the hereditary component in juvenile-onset POAG has 
facilitated mapping of some candidate loci.[10] 

Developmental glaucomas include primary congenital 
glaucoma (PCG) and glaucoma-associated syndromes (Aniridia 
and Axenfeld Rieger syndrome).[9] These glaucomas largely 
follow a Mendelian pattern through autosomal dominant and 
autosomal recessive modes of inheritance. Thus, co-segregation 
of candidate gene mutations or the disease-susceptible alleles 
among the affected subjects in such families are relatively easy 
to determine.[11] 

Among these glaucoma subtypes, primary glaucomas 
(largely POAG) are the most common form and are attributed 
to multiple genes with varying magnitudes of effect.[12] 
Gene mapping in these disorders pose a major challenge 
but the success of new-generation technologies and high-
throughput screening platforms have provided some hope 
in understanding their underlying molecular mechanisms. 
Herein, we present an update on the molecular genetics of 
primary glaucomas, particularly POAG.

Chromosomal Loci Mapped in POAG 
Glaucoma being a complex disorder is attributed to several 
genes, the majority of which are yet unidentified. Until now, 
linkage analysis in large affected families has yielded 25 
chromosomal loci linked to POAG. Of these, 15 have been 
designated as GLC1A to GLC1O by the HUGO genome 
nomenclature committee (www.gene.ucl.ac.uk/nomenclature) 
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and mutations in only four genes have been identified in 
POAG. These include myocilin (MYOC, GLC1A), optineurin 
(OPTN; GLC1E), WD repeat domain 36 (WDR36, GLC1G) and 
neurotrophin-4 (NTF4, GLC1O). Further details are provided 
in Table 1. Although these genes harbor POAG-associated 
mutations, they exhibit a high degree of allelic heterogeneity 
in different populations. The mutation spectra in these genes 
do not indicate their overall involvement in the disease 
pathogenesis. The problem of understanding the underlying 
molecular mechanism is additionally compounded by the 
variable penetrance and expressivity of these gene mutations. 
The other loci that were mapped in POAG are yet to be 
characterized for the disease-association mutations.

Candidate Genes in POAG

a) Myocilin (MYOC)
The first evidence of linkage in a large German family with 
juvenile open angle glaucoma (JOAG) was demonstrated by 
Sheffield et al,[10] on Chromosome lq21-q31 (GLC1A). Later 
Myocilin/TIGR (accession numbers: Nucleotide AH006047, 
Protein NP_000252) on this locus was characterized to be 
causative for POAG.[33] This gene is also termed as trabecular 
meshwork-induced glucocorticoid receptor (TIGR) as it 
overexpresses due to the induction of glucocorticoid to the cells. 

It consists of three exons that code for an mRNA of about 2.5 kb 
and encompasses a 57-kDa glycoprotein of 504 amino acids.[34]

Mutations in MYOC have been reported from different 
populations and account for 2-5% of POAG patients 
worldwide.[35] Around ~72 mutations have been reported till 
date and the Gln368Stop mutation is the most common mutation 
observed across multiple populations except the Japanese.[36] 
In the Indian scenario, the Gln48His was the predominant 
mutation observed in cases of JOAG, POAG and PCG.[37] Along 
with the coding region mutations, a few polymorphisms have 
been identified, of which the -1000C>G was referred to very 
frequently with variable degrees of association.[38] The probable 
disease-causing and benign variations in MYOC are available 
in the Myocilin allele-specific phenotype database (http://www.
myocilin.com/variants.php).[39] 

Genotype-phenotype correlation has been demonstrated 
with some MYOC mutations. It has been observed that 
individuals with the T377M mutation usually have an onset 
in their fourth decade whereas those with P370L and Y437H 
mutations were diagnosed in the first and second decades 
with severe clinical presentations. The predominant mutation 
Q368X had an average onset in the fifth and sixth decades[40] 
and the C433R mutation exhibited an onset between 17 and 58 
years and was largely associated with a higher IOP and vertical 

Table 1: List of candidate loci identified in glaucoma

Chromosomal location Phenotype Locus name Candidate gene Reference
1q24.3–q25.2 JOAG, Adult onset GLC1A MYOC Sheffield et al.[10] 

2cen–q13 Adult onset GLC1B Stoilova et al.[13] 

3q21–q24 Adult onset GLC1C Wirtz et al.[14] 

8q23 Adult onset GLC1D Trifan et al.[15]

10p15–p14 Adult onset, NTG GLC1E OPTN Sarfarazi et al.[16] Rezaie et al.[17]

7q35–q36 Adult onset GLC1F Wirtz et al.[18]

5q22.1 Adult onset GLC1G WDR36 Monemi et al.[19]

2p16.3–p15 JOAG, Adult onset GLC1H Lin et al.[20] Suriyapperuma et al,[21] 

15q11–q13 Adult-onset POAG GLC11 Allingham et al.[22]

9q22 JOAG GLC1J Wiggs et al.[23]

20p12 JOAG GLC1K Wiggs et al.[23]

3p21–p22 Adult onset GLC1L Baird et al.[24]

5q22.1-q32 JOAG GLC1M Pang et al.[25]

15q22-q24 JOAG GLC1N Wang et al.[26] 

19q13.3 POAG and NTG GLC1O NTF4 Ip et al.[27] Pasutto et al.[28]

2q33.1-q33.3 POAG Nemesure et al.[29] 

10p12.33–p13.3 POAG Nemesure et al.[29]

2p14 POAG Wiggs et al.[30]

14q11 POAG Wiggs et al.[30]

14q21–q22 POAG Wiggs et al.[30]

17p13 POAG Wiggs et al.[30]

17q25 POAG Wiggs et al.[30]

19q12-14 POAG Wiggs et al.[30]

1p 32 POAG Charlesworth et al.[31]

10q 22 POAG Charlesworth et al.[31]

2p14 Elevated IOP Duggal et al.[32]

19q12–q14 Elevated IOP Duggal et al.[32]

IOP: Intraocular pressure, POAG: Primary open angle glaucoma, JOAG: Juvenile open angle glaucoma, NTG: Normal tension glaucoma
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cup/disc ratio compared to those without this mutation. Other 
mutations have exhibited variable clinical manifestations.[41

Structure, properties and expression of MYOC
MYOC is a glycoprotein and consists of two major domains: 
A myosin-like domain near the N terminal region and an 
olfactomedin-like domain near the C terminal. The N-terminal 
region of MYOC contains leucine zipper motifs within two 
coil–coil domains that are important for its interactions with 
intracellular, extracellular and cell surface proteins, whereas 
leucine zipper motifs are important in regulating protein 
function. The olfactomedin-like domain of MYOC has a 
homology to a family of olfactomedins with a high degree of 
conservation across species. The presence of >90% glaucoma-
associated mutations in this domain indicate its potential 
functional importance.[40]

In humans the MYOC mRNA is expressed in a number 
of tissues which include both non-ocular and ocular tissues 
including the trabecular meshwork (TM) that exhibits the 
highest level of expression, followed by the sclera, ciliary body, 
choroid, cornea, iris, lamina cribosa, retina, and optic nerve. The 
non-ocular tissues include mammary gland, small intestine, 
thymus, prostate, testis, colon, stomach, thyroid, trachea, bone 
marrow, and brain.[42]

Function of MYOC protein
The normal physiological function of MYOC is still unclear 
but insights from the knockout animal models indicate that 
the disease-causing MYOC in humans may act by gain of 
function. In vitro studies have shown that MYOC is involved 
in the cytoskeletal organization and extracellular matrix (ECM) 
remodulation.[43] Mutations in MYOC may not directly affect its 
expression but it may interfere with protein folding or stability 
of the folded protein. The misfolded protein may not secrete 
and accumulate as soluble and insoluble aggregates but may 
associate with resident proteins of the endoplasmic reticulum 
(ER). This may lead to the activation of the unfolded protein 
response finally leading to apoptotic cell death.[44] The higher 
expression of MYOC in TM cells results in the intracellular 
accumulation of MYOC aggregates, which is deleterious to TM 
cells, thereby resulting in deterioration of their function and 
subsequent elevation of IOP.[44] Studies on the expression of 
normal and mutant MYOC in cultured ocular and non-ocular 
cells have suggested that while normal MYOC is secreted 
from the cultured cells, very little MYOC is secreted from 
cells expressing different mutations. Thus it can be surmised 
that glaucoma results either due to insufficient levels of 
secreted MYOC or compromised TM cell function caused 
by congestion of the TM secretory pathway.[45] MYOC is also 
known to be associated with the mitochondrial pathway and it 
has been shown that overexpression of MYOC carrying P370L 
mutation results in higher endogenous ROS (reactive oxygen 
species) production. This further suggests that mutant MYOC 
may cause mitochondrial defects which may lead to TM cell 
dysfunction and cell death.[46]

b) Optineurin (OPTN) 
Sarfarazi et al.,[16] identified the second gene in the GLC1E 
region (10p15-p14) called optic neuropathy-inducing protein or 
Optineurin (OPTN). Rezaie et al.,[17] initially reported mutations 

in 16.7% families with hereditary POAG of which most of them 
had low or normal tension glaucoma (NTG).  Subsequently, 
OPTN was screened across different populations that revealed 
few mutations implicated in NTG and POAG [Table 2]. Among 
these mutations, the E50K located in the putative bZIP motif 
appears to be most strongly associated with NTG. 

Structure and expression of OPTN
OPTN contains three non-coding exons in 5’-untranslated 
region (UTR) and 13 exons that code for 577 amino acids. 
Alternative splicing in 5’-UTR generates at least three different 
isoforms, but all have same reading frame (gene accession no: 
AF420371 to AF420373). The structure of OPTN reveals several 
motifs, including one bZIP motif, two leucine zippers, coiled-
coil motifs and a C-terminal C2H2-type zinc finger domain. 
OPTN is expressed in both non-ocular and ocular tissues that 
include the TM, non-pigmented ciliary epithelium, heart, brain, 
placenta, skeletal muscle, and kidney.[17]

Functions of OPTN
OPTN serves many cellular functions based on its interaction 
with a variety of proteins such as Rab8, Huntingtin, Myosin VI, 
RIP, transcription factor IIIA, metabotropic glutamate receptor 
and TBK1. Based on its interaction with Myosin VI, its role 
has been proposed in vesicular trafficking between the golgi 
and plasma membrane.[47] Overexpression of OPTN protects 
the cells from H2O2-induced cell death by inhibiting release of 
Cytochrome C from mitochondria. The common mutation E50K 
selectively induces the death of retinal ganglion cells (RGCs) 
due to TNFα-induced death of RGC.[48] Recently, it has been 
shown that OPTN negatively regulates TNFα-induced NFκB 
activation although the exact mechanisms by which these 
cytokines activate OPTN gene expression are yet unknown.[49] 
OPTN also plays an important role in the regulation of many 
genes which include MYOC although the mechanism involved 
is yet to be elucidated.[50]

c) WDR36
Based on a genomewide scan, Monemi et al., (2005) characterized 
the WDR36 located on GLC1G locus (5q22.1) to be involved in 
POAG. They identified four mutations in WDR36 among 
17 unrelated POAG subjects, 11 with high-pressure and six 
with low-pressure glaucoma.[19] The mutations were absent 
in 200 normal control chromosomes and their residues were 
conserved between WDR36 orthologs in mouse, rat, dog, 
chimpanzee and humans. Specific ocular expressions and the 
observed mutations were consistent with a role for WDR36 in 
the etiology of both high and low-pressure glaucoma. Analysis 
of WDR36 sequence revealed that several sequence alterations 
were exclusive to POAG patients and encoded predicted 
amino acid substitutions in conserved residues.[19] However, 
subsequent reports have revealed that the WDR36 may not be 
directly involved with POAG and may simply act as a modifier 
gene [Table 3]. 

Structure and expression of WDR36
The gene spans about 38.3-kb genomic region and contains 
23 exons expressed predominantly as two transcripts (5.9kb 
and 2.5kb). The full-length of this protein contains 951 aa 
harboring four conserved domains: (a) nine WD 40 repeat 
domain; (b) Utp21 domain;(c) AMP-dependent synthetase and 
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ligase domain, and (d) cytochrome cd1-nitrite reductase-like 
domain. WDR36 is widely expressed in several ocular and 
non-ocular tissues. 

Functions of WDR36
Skarie et al., (2008) studied the functional role of WDR36 in 
zebra fish and found that it is essential for nucleolar processing 
of 18s rRNA and is thus required for the biogenesis of 
ribosomes.[65] In zebrafish, loss of WDR36 function resulted in 
reduced levels of 18s rRNA and also in ocular dysmorphology 
leading to activation of p53 stress response pathway. This 
may indicate the possible role of WDR36 sequence variants in 
POAG pathogenesis. Since variations in p53 are also known to 
be involved in POAG, co-inheritance of both P53 and WDR36 
variations may thus be involved in the disease progression.[65] 

d) CYP1B1 
The first genetic locus (GLC3A) for PCG was mapped by 
Sarfarazi and co-workers in 1995 based on their study of 17 
Turkish families comprising 113 individuals that included 79 
offsprings, of which 40 were affected with PCG.[11] Stoilov et 
al., (1997) identified CYP1B1 as a candidate gene at this locus 
for PCG[66] and subsequently pathogenic mutations in CYP1B1 
have been identified in PCG with varying frequencies from 
20-100% across different populations.[67-72]

CYP1B1 has also been implicated in juvenile and adult 
onset forms of glaucoma, in various ethnic groups worldwide. 
Initially, Vincent et al., (2002) showed the involvement of 
CYP1B1 and MYOC in POAG through a digenic mechanism 
in a family of East Indian (Guyanese) origin. Based on these 

observations, it was suggested that PCG and JOAG are allelic 
variants of CYP1B1. It was also hypothesized that CYP1B1 and 
MYOC might act through a common biochemical pathway with 
CYP1B1 acting as a modifier for MYOC.[73] Later the association 
of CYP1B1 was reported across different populations ranging 
from 2.2%-23.3% with JOAG, POAG and PACG [Table 4].

Structure and expression of CYP1B1
CYP1B1 encodes a 543 amino acid dioxin inducible member 
of the cytochrome p450 gene superfamily and consists of three 
exons that span 8.5 kb of genomic DNA.[73] CYP1B1 is known to 
express both in ocular and non-ocular tissues. Animal models 
have shown that CYP1B1 deficiency leads to abnormality in 
the ocular drainage structures and TM that are similar to those 
observed in human PCG. 

Functions of CYP1B1
CYP1B1 is involved in the metabolism of steroids, retinol, 
retinal, arachidonate and melatonin. Although the exact role of 
CYP1B1 is unknown, their involvement in metabolizing these 
steroids may contribute to the regulation of IOP.[81]

e) NTF4 
NTF4 gene is located on Chromosome 19q13.33 and is 
translated as pre-pro-neurotrophin and cleaved to release the 
mature active protein. Lambert et al., (2001) have shown that 
cells within the lamina cribrosa (LC) express neurotrophins 
[NTs] and trk receptors. These NTs play an important role in 
neuronal development, survival and differentiation.[82] NTs 
constitute a family of polypeptide growth factors that promote 

Table 2: Distribution of OPTN mutations across the world

Country Phenotype % frequency of mutations Predominant mutation (%) Reference
China POAG Single family with 6 affected members K 322E Xiao et al.[51]

China POAG 1.6 E103D (0.8), H486R(0.8) Leung et al.[52]

Germany NTG 1.8 A336G (0.9),A377T (0.9) Weisschuh et al.[53]

India POAG/NTG 4.1 (POAG), 6.0 (NTG) M98K (4.1 (POAG), 6.0 (NTG)) Sripriya et al.[54]

India POAG 3 R545Q (3) Mukhopadhyay et al.[55] 

Iowa and Japan POAG 0.2 E50K (0.1),E142P (0.1) Alward et al.[56]

Japan POAG/NTG 1.1 (POAG) 1.5 (NTG) H26D (1.1),R545Q(1.5) Fuse et al.[57]

Japan POAG 0.5 H26D (0.5) Funayama et al.[58]

UK NTG 1.5 E50K(1.5) Aung et al.[59]

USA POAG/NTG 16.7 E50K(13.5) Rezaie et al.[17]

POAG: Primary open angle glaucoma, NTG: Normal tension glaucoma, UK: United Kingdom, USA: United states of America

Table 3: Distribution of WDR36 mutations across the world

Country Phenotype % Frequency of mutations Predominant mutation (%) Reference
China POAG 1.8 I713V (1.8) Fan et al.[60]

Germany POAG/NTG 1.7 P31T, Y97C, D126N, T403A, H411Y, H411L, P487R Pasutto et al.[61]

Germany NTG 9.8 A449T, D33E, A163V, H212P (1.7 each) Weisschuh et al.[62]

Japan POAG 0.7 S664L (0.7) Miyazawa et al.[63]

USA POAG 6.9 D658G (3.85) Monemi et al.[19]

USA POAG 11 M671V(3.3) Hauser et al.[64] 
NTG: Normal tension glaucoma, POAG: Primary open angle glaucoma
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development, survival and differentiation of neurons. Animal 
models have shown that elevated IOP, ischemia impairs the 
neurotrophins’ signaling thereby it leads RGC death.[83] A 
recent report by Pasutto et al., (2009) has shown that mutations 
in neurotrophin Factor 4 (NTF4) impairs the neurotrophins’ 
signaling in POAG. Screening of NTF4 revealed 1.7% of 
POAG patients of European origin carrying mutations in 
NTF4. Molecular modeling and in vitro studies have shown 
that the mutations reported in this study reduce the binding 
affinity of NTF4 to its target receptor TrkB thereby reducing 
the function of neurotrophins.[28] However, later studies have 
demonstrated the lack of involvement of NTF4 in Indian and 
Caucasian populations.[84,85]

Genome-Wide Association Studies 
Glaucoma being a complex disease, linkage studies were not 
very successful in identifying the genes responsible for raised 
IOP and RGC death. This was further compounded by the 
late onset of symptoms and the unavailability of large affected 
families. Genome-wide association studies (GWAS) represent 
a powerful approach for gene mapping in large cohorts using 
high-density markers like single nucleotide polymorphisms 
(SNPs) on microarray platforms. These have revealed several 
loci associated with several complex diseases like diabetes, 
rheumatoid arthritis and age-related macular degeneration 
(AMD).[86,87] 

Based on this approach, Thorleifsson et al., (2007) identified 
three SNPs (rs1048661, rs3825942 and rs2165241) in lysyl oxidase-
like protein 1 (LOXL1) gene on Chromosome 15q22 that were 
significantly associated with XFS/XFG.[88] Due to the association 
of POAG and XFS, further analysis of these SNPs in POAG 
in other populations revealed no significant association in 
POAG, PACG and PG indicating their exclusive involvement 
with XFS/XFG only.[89] 

A recent study by Nakano et al., (2009) demonstrated 
significant association of six SNPs located on three different 
chromosomal loci, viz. 1 (ZP4), 10 (PLXDC2) and 12 
(DKFZp762A217) in a Japanese population with both high and 
low-pressure glaucomas. All these SNPs exhibited significant 
association with combined P values ranging from 1.0X10-5 to 

9.0X10-5 along with an odds ratio (OR) of 1.33 - 1.49.[90] Replication 

of these SNPs in an Indian cohort with POAG and PACG 
indicated that these were not associated with IOP-related 
glaucomas.[91] The failure of replication may be due to inclusion 
of cases with high IOP unlike mixture of both high and low-
pressure glaucomas in the Japanese cohort. 

By using linkage and SNP mapping, Jiao et al., (2009) 
have identified a locus on Chromosome 2 associated with 
POAG.[92] The region was characterized on Chromosome 2p 
by performing linkage analyses in 146 multiplex families from 
Barbados Family Study of Glaucoma (BFSG). Case-control 
analysis on independent groups from BFSG participants 
identified a strong association with rs12994401 and POAG. 
This region overlapped with previous linkage studies in 
Chinese and African families, indicating that this locus 
could be a significant cause of glaucoma in the Chinese and  
Europeans.[20,21] 

Candidate Gene- Based Association Studies 
Association studies have suggested many genes in single 
studies while a few of them have been investigated in multiple 
studies with conflicting results. The variations in association 
could be due to racial differences, sample size, poorly 
characterized controls, and clinical heterogeneity between 
different populations. The POAG-associated genes include 
ANP, APOE, OPA1, P53, GST, Interleukins, and TNFα. The role 
of these genes in the etiology of POAG is still controversial 
[Table 5].

Interaction of Genes 
Glaucoma is a complex disorder in which a single gene may not 
contribute to disease progression. It has been demonstrated that 
Apolipoprotein E promoter SNPs previously associated with 
Alzheimer’s disease may also modify POAG phenotype. APOE 
(-219G) is associated with increased optic nerve damage. The 
interaction between APOE (−491T) and an SNP in the MYOC 
promoter, MYOC (−1000G) is associated with increased IOP 
and with limited effectiveness of IOP-lowering treatments 
indicating that APOE is modifier gene for the MYOC.[135] The 
interaction was also observed between TNF-α -863A/C and 
OPTN 603A/T (or met98Lys) and the carriers of TNF-α /-863A 
with OPTN /603A (or Lys98) had significantly worse (P = 

Table 4: CYP1B1 in adult-onset POAG worldwide

Country Phenotype % frequency of mutations Predominant mutation (%) Reference
Canada JOAG 3 (5) R368H, g.1546dup10, L345F (1.6 each) Vincent et al.[73]

France POAG 11 (4.6)) A443G (1.3) Melki et al.[74]

Germany
POAG
JOAG
NTG

3 (2.2)
3(8.5)
1(4.1)

Y81N (1.5) Pasutto et al.[75]

India POAG 9 (4.5) S515L (2) Acharya et al.[76]

India POAG 27 (10.8) R368H (4.0) Kumar et al.[77]

India POAG 18 (17.3) R368H (5.8) Chakrabarti et al.[78]

JOAG 7 (23.3) G61E (3.3)

PACG 10 (11.1) R368H (5.6)

Iran POAG 7 (11.1) R368H (4.7) Suri et al.[79]

Spain POAG 9 (10.9) Y81N (3.6) Lopez-Garrido et al.[80]

JOAG: Junvenile open angle glaucoma, NTG: Normal tension glaucoma, POAG: Primary open angle glaucoma, Figures given in parentheses are in percentage
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0.026) visual field scores than those only with OPTN /603A 
(or Lys98).[110] This interaction was consistent at the molecular 
level by inducing expression of OPTN by TNFα through NFκB 

pathway.[48] The interaction between MYOC, OPTN along 
with APOE has been suggested to contribute towards the 
progression of POAG. Common polymorphisms in MYOC, 

Table 5: Different candidate genes associated with glaucoma

Chromosomal location Gene name Phenotype Country Reference
1p36.2 ANP POAG

POAG
NTG

Australia
Australia

Korea

93
94
95

Xq22-q23 AGTR2 POAG
NTG

Japan 96

17q23.3 ACE POAG Turkey 97

6p21.2 P21 POAG China 98

9q32-q33 TLR4 NTG Japan 99

19q13.2 and q13.3 XRCC1 and XPD POAG Turkey 100

7q21.3-q22 PAI1 POAG Austria 101

20q11.2-q13.1 MMP9 PACG
PACG

China
Singapore

102
103

11q23 MFRP PACG China 104

5q31.1-q31.2 Hsp70 POAG Japan 105

14q32.1 CYP46A1 POAG France 106

5q32-q34 B2AR POAG Turkey 107

6p21.3 TNF alpha POAG
POAG
POAG

China
Austria
Japan

108
109
110

17p13.1 P53 POAG
POAG

HTG, NTG
POAG
POAG

POAG, NTG, OHT
POAG

UK
India

Tasmania
Brazil
China
Japan
Turkey

111
112
113
114
115
116
117

3q28-q29 OPA1` NTG
NTG and HTG

NTG
NTG

NTG and POAG

UK
Japan

UK
Korea

West Indies

118
119
120
121
122

1p36.3 MTHFR POAG
POAG and NTG

PACG and POAG
NTG

Germany
Japan

Pakistan
Korea

123
124
125
126

2q14
2q14

ILIβ
IL1α

IL-1β (-511) and IL-1β 
(+3953)

IL1A (-889C/T), IL1B 
(+3953C/T), and IL1B

(-511C/T)

POAG
POAG
NTG

POAG, NTG and PACG

China
China
China
China

127
128
129
130

1p13.3 (GSTM1)
22q11.2 (GSTT1)
 

GSTM1
GSTM1andT1
GSTM1andT1

GSTM1

POAG
POAG and PACG

POAG
POAG

Estonia
Saudi Arabia

Turkey
Swedon

131
132
133
134

19q13.2 APOE
POAG
NTG
NTG

POAG
POAG and PACG

POAG

France
Tasmania

UK
Japan

Saudi Arabia
UK

135
136
137
138
139
140

11p15.5 IGF2 POAG China 141
POAG: Primary open angle glaucoma, NTG: Normal tension glaucoma, HTG: High tension glaucoma, PACG: Primary angle closure glaucoma
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OPTN and APOE were identified that might interactively 
contribute to POAG.[50] Some studies also observed interaction 
between Noelin 2 (OLFM2/317A) and OPTN (OPTN/412A) 
and the OLFM2/1281T and OPTN/412A SNPs with OAG with 
elevated IOP.[142]

Gene Expression Studies
The TM tissue plays a key role in the regulation of IOP, and 
altered TM morphology and functions have been observed in 
POAG. The mechanisms of action in the TM as well as RGC 
and astrocytes are dependent on the expression of several 
genes. Gene expression analysis provides the identification of 
mechanisms which could be involved in the pathophysiology of 
POAG. Over the past few years several groups across the world 
have performed expression studies on TM, RGC and astrocytes 
that revealed several genes in these tissues. These findings 
support the existence of numerous regulatory mechanisms in 
the TM as well as in the optic nerve head (ONH). These genes 
are involved in the expression of ECM and its remodeling 
cellular metabolism, cell transport and cell defense.[2,143] 

Factors Involved in The Elevation of IOP
Elevated IOP is the most important risk factor in POAG and 
all current treatments for glaucoma involve the lowering of 
IOP. Despite its importance in clinical practice, knowledge 
of IOP regulation in the human eye is limited. Cells which 
are present in the outflow pathway play an important role 
in IOP regulation. Recent reports have shown that there are 
several factors which are involved in maintaining the TM 
physiology thereby regulating IOP. Some of the important 
factors involved in raised IOP are age, abnormal function of 
genes, alterations of ECM and oxidative stress. Age plays an 
important role in the regulation of IOP because decreased TM 
cellularity with age could alter the synthetic and catabolic 
control of the extracellular environment. As the TM cellularity 
decreases with age their phagocytic activity is lost and leads to 
accumulation of several toxic molecules within the drainage 
channels thereby obstructing outflow.[144] Studies have also 
shown that genetic factors play an important role in the 
regulation of IOP. Several in vitro and in vivo studies have 
shown that mutations in the MYOC are a known cause of the 
abnormal function of TM causing elevation of IOP.[44] Animal 
models have shown that BAX, SPARC, bestrophin-2 (Best2) and 
aquaporin deficiency limits elevation of IOP and these results 
indicate that multiple pathways regulate IOP.[145-148] Several 
other molecules like endothelial leucocyte adhesion molecule-1 
(ELAM), endothelins (ET), nitric oxide (NO) and modification 
of ECM molecules have been altered under oxidative stress 
and these are involved in raising of IOP.[149] ECM components 
of the TM play an important role in the regulation of IOP and 
several ECM molecules have been upregulated in TM of POAG 
patients. Along with oxidative stress, transforming growth 
factor beta (TGFβ) plays an important role in modulation of 
ECM molecules in TM. TGFβ2 is the predominant isoform 
in the eye and several groups have reported higher levels 
in the aqueous of POAG patients. Recently, adenoviral gene 
transfer of active human TGFβ2 has been shown to elevate 
IOP and reduces outflow facility in rodent eyes, indicating that 
increased levels of TGFβ2 play a major role in the elevation of 
IOP in POAG.[150]

Mechanism of RGC Death
Progressive loss of optic nerve axons and RGCs result in 
characteristic optic nerve atrophy and visual field defects 
in glaucoma patients. A number of hypotheses have been 
proposed to trigger ganglion cell injury and death in glaucoma. 
These include compromise to blood flow at the optic nerve, 
mechanical compression due to raised IOP, loss of neurotrophic 
factors, autoimmune mechanisms, nitric oxide-induced injuries 
to the optic nerve and glutamate excitotoxicity. A combination 
of these factors may be involved in causing glaucomatous RGC 
loss. Increased IOP is a major risk factor and is involved in the 
formation of mechanical stress on the ONH thereby inducing 
glaucomatous cell death. The ONH consists of axons which 
are projected from RGC, which exit the eye through the lamina 
cribrosa (LC), a collagenous structure with sieve-like openings. 
Elevated IOP causes mechanical stress on the LC which leads 
to decreased axonal transport which causes deprivation of 
neurotrophic factors. Animal models have shown that acute 
IOP elevation causes blockage of brain-derived neurotrophic 
factor (BDNF) transport and may contribute to neuronal death. 
Supplementation of neurotrophins transiently protect the 
retina from pressure-induced ischemic injury indicating that 
neurotrophin deprivation is involved in RGC death.[83]

Tissue hypoxia in the ONH and/or retina is thought to 
develop secondary to or independent from the elevated IOP in 
glaucomatous eyes and has been proposed to be associated with 
pathogenic mechanisms underlying optic nerve degeneration 
in glaucoma. Considerable evidence suggests that tissue 
hypoxia in the retina may adversely affect the survival of retinal 
ganglion cells by inducing apoptosis.[151] Brief preconditioning 
hypoxia induces HIF-1α expression in the retina, which 
accompanies the expression of adaptive proteins and provides 
resistance to cell death; however, exposure to hypoxia for a 
longer period initiates the cell death program.[151]

The eye is an organ that is predisposed to great levels of 
oxidative stress.[152] Oxidative stress evident in glaucomatous 
tissues is an important factor for the loss of neurons during 
glaucomatous neurodegeneration. RGC death induced by 
glaucomatous stimuli involves receptor-mediated caspase 
cascade, and mitochondria-mediated caspase-dependent and 
caspase-independent components of cell death cascade. TNF-α 
and hypoxia are two different stimuli known to preferentially 
trigger the receptor-mediated or mitochondria-mediated 
cell death pathways, respectively. Following oxidative 
modifications of retinal proteins in glaucomatous eyes, reduced 
ability of cells to cope with the glaucomatous tissue stress may 
result in impaired cellular homeostasis eventually contributing 
to neurodegeneration.[153-156]

Nitric oxide (NO) is another important mediator of glial 
cell-mediated apoptosis in neuronal cells. Under normal 
physiological conditions NO plays an important role in 
performing several physiological functions, including 
regulation of vascular tone, neurotransmitter release and 
synaptic plasticity. NO can be synthesized by three enzymes 
(NOS-1, NOS-2, and NOS-3) and elevated levels of NO have 
been observed in the AqH and genetic association of iNOS 
polymorphisms have been reported in glaucoma patients.[157]

Neurotrophins, particularly BDNF, are known to influence 
RGC survival in vitro, both during retinal development and 
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after lesioning.[158] Loss of physiological neurotrophin levels, 
particularly BDNF is consistent with known events in the 
clinical and pathological aspects of glaucoma. Overexpression 
of BDNF delays RGC death in experimental glaucoma. 

Immune Response
Increasing evidence from both in vivo and in vitro studies 
over the past few years strongly supports the presence of the 
immune system in glaucoma pathogenesis. Recent studies 
have shown increased expression of several autoantibodies 
against many optic nerve and retinal proteins. These antibodies 
include hsp60, hsp27, alpha crystallins, vimentin and HSP70. 
The direct application of Abs against these proteins at 
similar concentration found to induce RGC death in in vivo 
and in vitro conditions. Recent reports have also shown that 
complement cascades have been implicated in glaucomatous 
neurodegeneration. IOP also modulates the immune system 
by inducing several complement components like C3, C1q and 
C3r. Interestingly, it has been shown that complement factor 
H, a common regulator of the complement system is down 
regulated, while several other complements components are 
up-regulated, indicating an abnormal activation of complement 
system.[159,160]

The Future 
Glaucoma is a complex disease attributed to multiple genes 
with varying magnitudes of effect. Newer methods of gene 
mapping involving GWAS have revealed some interesting 
results over the last few years. However, many of these studies 
could not be replicated due to differences in phenotyping, other 
screening modalities and improper study designs. Several genes 
implicated through functional studies could not be associated 
in the genetic studies. Since the effect sizes of these genes would 
vary, there would be a need for precise characterization at the 
molecular level using multiple approaches. Whole genome 
sequencing would be an ideal choice for understanding the 
unknown genes involved in glaucoma pathogenesis. This 
would need to be supplemented with functional studies and 
further validation through proteomic approaches, animal 
models and replications in different ethnic populations. A 
collective effort including a multi-disciplinary approach 
involving the expertise of other branches of science is a must 
for unraveling the mystery and the underlying molecular 
mechanisms in glaucoma. 
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