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Iron may play an important role in Parkinson’s disease (PD) since it can induce oxidative stress-dependent neurodegeneration.
The objective of this study was to determine whether the iron chelator, phytic acid (IP6) can protect against 6-hydroxydopamine-
(6-OHDA-) induced apoptosis in immortalized rat mesencephalic dopaminergic cells under normal and iron-excess conditions.
Caspase-3 activity was increased about 6-fold after 6-OHDA treatment (compared to control; P < .001) and 30 gmol/L IP6
pretreatment decreased it by 38% (P < .05). Similarly, a 63% protection (P < .001) against 6-OHDA induced DNA fragmentation
was observed with IP6 pretreatment. Under iron-excess condition, a 6-fold increase in caspase-3 activity (P < .001) and a 42%
increase in DNA fragmentation (P < .05) with 6-OHDA treatment were decreased by 41% (P < .01) and 27% (P < .05),
respectively, with 30 umol/L IP6. Together, our data suggest that IP6 protects against 6-OHDA-induced cell apoptosis in both

normal and iron-excess conditions, and IP6 may offer neuroprotection in PD.

1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disease affecting more than 1% of the US population over
50 years of age and causing an approximate economic loss
of $25 billion annually [1]. The loss of nigral neurons in
the substantia nigra results in severe dopamine depletion in
the striatum, and clinical signs of PD appear when striatal
dopamine is reduced by 80% [2].

Oxidative stress has been implicated in the neurological
degeneration associated with PD since oxidative stress can
cause damage to the proteins, DNA, and lipids and conse-
quently induce apoptosis [3]. Oxidative stress results from
increased production of reactive free radicals such as reactive
oxygen species (ROS). Brain tissue is highly susceptible to
oxidative stress because of its high polyunsaturated fatty
acids content. In addition, brain may be highly suscepti-
ble to oxidative damage because of low antioxidants and
high oxidative stress environment. Higher levels of protein

carbonyls, lipid hydroperoxides, and DNA damage, such as
8-hydroxyguanine, in PD brains compared to normal brains
supported the hypothesis [3]. In addition, the antioxidant
enzymes, superoxide dismutase, and catalase concentrations
were reported to be 7- and 140-fold lower in the brain than
in the liver [4, 5].

Role of iron in the pathogenesis of PD has gained
attention recently because of its involvement in oxidative
stress [6]. Iron is an essential nutrient for all living organisms
since iron plays an important role in many biological
processes [7]. However, it can also be involved in producing
hydroxyl radicals. In the brain, excess iron can interact
with neuromelanin to increase oxidative stress and induce
neurodegeneration [8]. Iron concentrations in the substantia
nigra of PD patients are higher than in age matched healthy
controls. Alteration in iron metabolism, such as distribution
of iron with transport and storage proteins, has also been
reported in PD [9, 10]. Although it is still not clear whether
iron accumulation is a cause or an effect, the use of
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antioxidant iron chelators as therapeutic adjuncts in the
treatment of PD provides hope to slow down the progression
of the neurodegeneration.

Phytic acid (IP6, myoinositol hexakisphosphate) is a food
component, that is, considered as an antinutrient due to
its ability to chelate divalent minerals and prevent their
absorption but also considered as an antioxidant due to
the same property in inhibiting hydroxyl radicals formation
[11, 12]. Phytic acid may also influence oxidative stress by
altering cell signaling pathways or influencing the activity
and expression of antioxidant enzymes and also may be
beneficial in preventing many types of cancers [13, 14].
However, its role in neurodegenerative disease is not well
studied. The current study was designed to determine IP6’s
neuroprotective effect on 6-hydroxydopamine- (6-OHDA-)
induced PD in a cell culture model.

2. Materials and Methods

2.1. Chemicals. The immortalized rat mesencephalic
dopaminergic neuronal cell line (1RB3AN27, generally
referred to as N27) was a kind gift from Dr. Kedar N. Prasad,
University of Colorado Health Sciences Center (Denver,
CO). Ferrous sulfate, 6-OHDA, IP6, and nitrilotriacetic acid
(NTA) were purchased from Sigma-Aldrich (St. Louis, MO).
Substrate for caspase-3, Acetyl-Asp-Glu-Val-Asp-AFC (Ac-
DEVD-AFC), was obtained from MP Biomedicals (Solon,
OH). Cell Death Detection (enzyme-linked immunosorbent
assay) Plus kit and Hoechst 33342 were purchased from
Roche Diagnostics (Indianapolis, IN) and Molecular Probes
(Eugene, OR), respectively. RPMI-1640 medium, fetal
bovine serum, L-glutamine, penicillin, and streptomycin
were obtained from Invitrogen (Carlsbad, CA). All the
solutions were prepared fresh prior to each assay.

2.2. Cell Culture. Cells were grown in RPMI-1640 medium
containing 10% fetal bovine serum, 2 mmol/L L-glutamine,
50 units penicillin, and 50 yg/mL streptomycin and main-
tained at 37°C in a humidified atmosphere containing 5%
CO; as described in previous studies [15, 16]. Cells grown
for 24 h were used for the following experiments.

2.3. Treatment. Based on the cytotoxic effects of phytic acid
and iron in the previous study [17], 30 and 100 umol/L
IP6 and 50 umol/L iron were selected in the experiments.
For determining the protective effect of IP6 in normal iron
conditions, cells were pretreated with 30 umol/L of IP6 for
24-h, followed by a 100 yumol/L 6-OHDA treatment for 6 h.
Iron-excess condition in the cells was induced by treating
the cells with 50 ymol/L iron for 24 h prior to IP6 (30 or
100 ymol/L) followed by 6-OHDA treatment for another 6
h. Treatments without iron, IP6, and 6-OHDA served as
controls for all the experiments.

2.4. Caspase-3 Activity. Caspase-3 was measured as described
previously [18]. After each treatment, the cell pellet after
centrifugation was lysed with Tris buffer (50 mol/L Tris-
HCL, 1 mmol/L EDTA, and 10 mmol/L EGTA at pH = 7.4)
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containing 10 ymol/L digitonin for 20 min at 37°C. Lysates
were subjected to a quick centrifugation at 20,000 X g
and cell-free supernatant was collected. After incubating
with a specific fluorogenic caspase-3 substrate (Ac-DEVD-
AFC, 50 ymol/L) for 1 h at 37°C, the caspase-3 activ-
ity was measured by florescence using microplate reader
(Model:Gemini XS, Molecular Devices) with excitation at
380 nm and emission at 469 nm. The caspase-3 activity was
expressed as fluorescent units (FUs)/mg protein.

2.5. DNA Fragmentation. DNA fragmentation assays were
performed using Cell Death Detection ELISA Plus Kit as
described previously [15]. After each treatment, cell pellet
was incubated with 40 uL of lysis buffer for 20 min at room
temperature. The lysates were then centrifuged and 80 uL
immunoreagent containing anti-histone-biotin and anti-
DNA-POD were added to 20 yL supernatant in streptavidin-
coated 96 well microtiter plates. The plates were incubated
at room temperature for 2 h and then washed twice with
incubation buffer. After adding 100 L of 2,2"-azino-di- [3-
ethylbenzthiazoline sulfonate] (ABTS) solution to each well,
the absorbance was measured at 490 nm and 405 nm using a
microplate reader. DNA fragmentation was measured by the
difference in absorbance at 405 and 490 nm and expressed as
absorbance units (AUs)/mg protein.

2.6. Hoechst Nuclear Staining. A fluorescent DNA-binding
dye, Hoechst 33342, was used to measure apoptosis. Cells
were grown on poly-l-lysine-coated cover slips for 24 h and
then subjected to treatments followed by fixing with 4%
paraformaldehyde. The nuclei were stained with Hoechst
33342 (10 ug/mL) dye for 5 min in the dark. Cells were
examined under fluorescence microscope (Nikon, Tokyo,
Japan) for image analysis. Nuclei of apoptotic cells were iden-
tified as heterogeneous patchy inclusions due to chromatin
condensation, while nuclei of the nonapoptotic cells were
identified as diffused and homogenous manner after staining
[16].

2.7. Statistics. Data were analyzed with Prism 4.0 software
(Graph Software, San Diego, CA). Caspase-3 activity and
DNA fragmentation were expressed as percentage of the
respective controls. The differences among the treatments
were compared with ANOVA with Tukey’s Multiple Compar-
ison test and considered significant at P < .05.

3. Results

3.1. Protection of IP6 against 6-OHDA-Induced Apoptosis.
The protective effect of IP6 against 6-OHDA-induced apop-
tosis was measured with caspase-3 activity (a) and DNA
fragmentation (b) and Hoechst nuclear staining (c) as shown
in Figure 1. Caspase-3 activity was about 6-fold (P < .001)
higher with 6-OHDA treatment, but significantly (P < .05)
reduced by 38% with IP6. Similarly, DNA fragmentation
increased by 3-fold (P < .001) with 6-OHDA treatment
compared to the control, and IP6 pretreatment completely
counteracted the effect (P < .001). The Hoechst nuclear
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FIGURE 1: Protection of IP6 (30 ymol/L) against 6-OHDA-induced apoptosis in vitro cell culture model. Cell apoptosis was measured as
caspase-3 activity (FU/mg protein, (a) n = 10 from two separate experiments) and DNA fragmentation (AU/mg protein, (b) n = 3 from
one experiment) and Hoechst nuclear staining (c). ANOVA with Tukey’s Multiple Comparison test was used to detect the differences among
the treatments in (a) and (b), and means with different letters were significantly different (P < .05). The top panel in C represents 20x
magnification and the bottom panel represents 60x magnification. Apoptotic nucleus is indicated with an arrow.

staining clearly shows cell apoptosis with 6-OHDA and
supports the caspase-3 and DNA fragmentation data on the
protective effect of IP6.

3.2. Protection of IP6 against 6-OHDA-Induced Apoptosis
in Iron-Excess Condition. Protective effect IP6 against 6-
OHDA-induced apoptosis in iron-excess condition was
shown in Figure 2. We also choose to test with higher con-
centration of IP6 (100 yumol/L) in the caspase-3 experiment
since we did not see a complete protection with 30 ymol/L.
Caspase-3 activity was not affected by iron alone treatment
in our previous study [17]; however, it was increased about
6-fold (P < .001) with 6-OHDA and iron (a). A 41%
(P < .01) protection was found with 30 ygmol/L IP6, but no
additional protection was shown at the higher concentration
of 100 ymol/L. DNA fragmentation (b) was increased by 42%

(P < .05) with 6-OHDA and IP6 at 30 umol/L counteracted
the effect (P < .05). Again, Hoechst nuclear staining supports
the protection of IP6 against 6-OHDA-induced apoptosis in
iron-excess conditions.

4. Discussion

Oxidative stress, which may be due to excess iron accumula-
tion, mitochondrial dysfunction, and decreased antioxidant
status [19], is attributed to the pathogenesis of nigral cell
death in PD. Nonferritin-bound iron may be involved in
oxidation of dopamine to release hydrogen peroxide and
highly toxic hydroxyl radicals [20, 21]. Iron may also increase
intracellular alpha-synuclein, the abnormal protein aggre-
gation associated with the pathophysiology of PD [22, 23].
Since IP6 is a natural antioxidant with iron chelating ability,
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FIGURE 2: Protection of IP6 against 6-OHDA-induced apoptosis in the iron-excess condition in vitro cell culture model. Cell apoptosis
was measured as caspase-3 activity (FU/mg protein, (a) n = 4-5 from one experiment) with 30 and 100 ygmol/L IP6. DNA fragmentation
(AU/mg protein, (b) n = 3-4 from one experiment) and Hoechst nuclear staining (c) were tested with only 30 ymol/L of IP6. ANOVA with
Tukey’s Multiple Comparison test was used to detect the differences among the treatments in (a) and (b), and means with different letters
were significantly different (P < .05). The top panel in C represents 20x magnification and the bottom panel represents 60x magnification.

Apoptotic nucleus is indicated with an arrow.

this study was aimed at determining the protective effect
of IP6 on PD. Although the data is very limited, one study
reported the protection of IP6 against 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine- (MPTP-) induced hydroxyl rad-
ical generation by chelating iron in rat striatum [24].

The neurotoxin, 6-OHDA, has been shown to cause
neural degeneration via hydroxyl radical in the presence
of iron [25] as well as inducing apoptosis via caspase-
3-dependent activation [26]. Exposure of 100 ymol/L 6-
OHDA for 24 h increased caspase-3 activity by 2.5-fold and
DNA fragmentation by 93% in one cell culture study [27].
Similarly, we showed a 6-fold increase of caspase-3 activity
and 3-fold increase of DNA fragmentation with the same
dose but shorter exposure (6h) in our study. Adding iron
did not further increase the toxicity induced by 6-OHDA.

The effectiveness of IP6 in deceasing caspase-3 activity was
not improved with higher dose. We did not test higher
concentration of IP6 in the DNA fragmentation experiment
because 30 ymol/L IP6 completely counteracted the increase
of DNA fragmentation induced by 6-OHDA and iron.

Since 6-OHDA may release iron from ferritin and pro-
mote lipid peroxidation [28], studies are aimed at using iron
chelators in attenuating 6-OHDA-induced neurotoxicity.
Desferrioxamine (DFO) and catechin, the major polyphenol
in green tea, were used to study the protective effects against
6-OHDA-induced toxicity in both in vivo and in vitro
studies [29, 30]. Prior injection of DFO to rats resulted
in a 60% protection in striatal dopamine content and a
normalization of dopamine release [30]. In another cell
culture study, catechin at the concentrations of 3.4 and



Parkinson’s Disease

34 umol/L significantly protected against 6-OHDA-induced
oxidative damage and cell death [29].

Although DFO is a well-known iron chelator, it may
cause some side effects such as seizures, wheezing, blurred
vision, and irregular heart beats in patients since it must be
administered at a high dosage to overcome its low ability
to cross the blood brain barrier [9, 31]. Our results suggest
that IP6 might be as effective but safer than DFO because
no toxicity was found with long-term administration [14].
Although neuronal toxicity was observed when 10 nmol/L or
50 nmol/L IP6 was directly injected into the hippocampus
[32], the cytotoxic effect may be due to the high dose of IP6.
However, the dose used in our study is within the normal
physiological range since we have shown that there was no
cytotoxicity induced by IP6 up to 600 ymol/L in our previous
study [17], and humans consume large amounts (2-3 g) of
this compound in their daily diet.

Showing neuroprotection of IP6 in our culture model
raises concern about its ability to cross blood brain barrier. It
has been demonstrated that IP6 is well absorbed in rodents
based on its distribution to various organs including brain
after 1 h of administration [33]. Although the absorption
of IP6 in humans is not well known, a recent study showed
a 28% absorption in ileostomy patients [34]. In addition,
10-fold higher concentration of IP6 in brain compared to
other tissues after feeding rats with 10 g phytic acid in AIN-
76A-purified diet [35] indicates that dietary IP6 might enter
the brain by crossing the blood brain barrier. There is no
evidence of IP6 metabolism in human brain, and methods
are available [36] to make possible candidates to cross the
blood brain barrier.

5. Conclusion

In conclusion, IP6 prevented against 6-OHDA-induced
apoptosis in our cell culture model in both normal and
iron-excess conditions. Since the dose of IP6 required to
reach target sites in the brain and to enter the dopaminergic
neurons remains to be established, future study is warranted
to determine the effect of IP6 in an animal model of PD.
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