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Abstract
Background—Aberrant electrophysiological and hemodynamic processing of auditory oddball
stimuli is among the most robustly documented findings in patients with schizophrenia. However,
no study to date has directly examined linked patterns of electrical and hemodynamic differences
in patients and controls.

Methods—In a recent paper we demonstrated a data-driven approach, joint independent
component analysis (jICA) to fuse together functional magnetic resonance imaging (fMRI) and
event-related potential (ERP) data and elucidated the chronometry of auditory oddball target
detection in healthy control subjects. In this paper we extend our fusion method to identify
specific differences in the neuronal chronometry of target detection for chronic schizophrenia
patients compared to healthy controls.

Results—We found one linked source, consistent with the N2 response, known to be related to
cognitive processing of deviant stimuli, spatially localized to bilateral fronto-temporal regions.
This source showed significant between-group differences both in amplitude response and in the
fMRI/ERP distribution pattern. These findings are consistent with previous work showing N2
amplitude and latency abnormalities in schizophrenia, and provide new information about the
linkage between the two.

Conclusions—In summary, we use a novel approach to isolate and identify a linked fMRI/ERP
component which shows marked differences in chronic schizophrenia patients. We also
demonstrate that jointly using both fMRI and ERP measures provides a fully picture of the
underlying hemodynamic and electrical changes which are present in patients. Our approach also
has broad applicability to other diseases such as autism, Alzheimer’s disease, or bipolar disorder.
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INTRODUCTION
Key biological associations of schizophrenia include abnormalities in brain function as
revealed by event-related potentials (ERPs) and functional magnetic resonance imaging
(fMRI). These techniques are essential tools used to illuminate the temporal sequence and
cerebral locations of cognitive and information processing deficits of schizophrenia patients.
One of the most robust probes for aberrant brain function in schizophrenia is the auditory
oddball task 1-4

The processing of auditory stimuli presented during an oddball task requires detection of
infrequent target stimuli within the context of frequently presented standard stimuli 5, 6.
Brain activity during oddball tasks is frequently measured by averaging task-related
electroencephalogram (EEG) recordings to produce event-related potentials (ERPs). Over
four decades ago it was reported that low probability, task relevant auditory stimuli elicited a
characteristic ERP waveform that includes several meaningful components, including the
mismatch negativity 7 related to sensory trace memory, the N2 related to matching stimuli to
an internally-generated contextual template 8, 9, and the P3, which is generally thought to
reflect directed, effortful processing 10 and contextual updating of working memory
processes 11. ERPs reveal multiple abnormalities of sensory and cognitive processes in
schizophrenia. The major ERP research measures associated with schizophrenia are the
MMN (subcategory of the N2) 12, 13 and P3 4, 14-17. Also, the P3 abnormalities are
identified as candidate biomarkers in other diseases, e.g. depression, Alzheimer’s,
alcoholism and epilepsy 18-20. Although P3 is well-studied, it lacks consistency and
specificity to schizophrenia. In contrast, abnormality of the N2 component is much less
explored or understood. The relative neglect by schizophrenia researchers of N2 is mainly
due to the lack of knowledge regarding the clinical and neuropathological significance of N2
abnormalities 21. The N2 potential is a potentially important index of schizophrenia,
because it is connected to initial stimulus categorization in the selective attention stream 9,

21-26. Under the N2 category (which peaks at approximately 200ms), the mismatch
negativity (MMN or N2a) subcomponent originates in generators located in frontal-central
and temporal lobes 27-29. And the N2b (or N2/P3) subcomponent, overlapping with MMN,
is linked to neuronal activity of fronto-central, fronto-temporal, and parieto-temporal regions
25, 26, 30

EEG/MEG and functional magnetic resonance imaging (fMRI) have complementary
strengths and weaknesses. The advantages of techniques such as EEG and MEG are their
millisecond temporal resolution and ability to measure neuronal activity directly. In contrast,
fMRI has excellent uniform spatial resolution but measures an indirect metabolic correlate
of neuronal function - the blood oxygenation level dependent (BOLD) signal, over a
considerably longer time period of seconds. To date, over a dozen fMRI experiments have
employed oddball paradigms to examine target-related neural activity 31-33. A recent large
scale (n=100) auditory oddball fMRI study found highly reliable activation in 38 regions for
target detection 34. Regions activated during processing of target stimuli included portions
of bilateral temporal, lateral frontal, and lateral parietal lobes, thalamus, amygdala,
cerebellum, as well as motor-related areas 34. The temporal resolution of fMRI, though
limited by the slow hemodynamic response, has been used to examine delay differences on
the order of 100-200ms 35, 36 which is informative, but much less precise than the temporal
information provided by EEG. In summary, though fMRI and ERP both provide spatial and
temporal information, the strengths of each technique differ in a complementary manner.
Thus an approach which combines fMRI and ERP can draw potentially on the strengths of
each and provide additional information not afforded by either technique alone. Despite this
obvious motivation combining these two measures has proven technically challenging, and
is an ongoing effort that employs a variety of approaches.
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Our work 37-40 focuses on developing an effective multivariate fMRI/EEG data strategy
aiming at a systematic group separation/diagnosis using independent component analysis
(ICA), which maximizes the independence between components and has been used on both
fMRI and EEG data separately. The ICA approach models spatiotemporal data as a linear
combination of maps and time courses while attempting to maximize the independence
between either the maps (spatial ICA) or the time courses (temporal ICA). The first
application of ICA to fMRI data used spatial ICA 41 to determine spatially distinct brain
networks. It is possible to perform ICA in either the temporal or spatial domain 42. For EEG
and ERP data, it is more common to use temporal ICA whereas for fMRI data it is more
common to use spatial ICA for various reasons, but primarily because of the larger number
of data points in these domains 42. However, a joint estimation of the spatial components
revealed by fMRI 31 and of the temporal components of the ERP response 43, 44 has
seldom been attempted. In addition to extracting obvious joint sources that are also
accessible to constraint or prediction based methods of multimodal integration, such an
approach has the potential to reveal electrical sources which may not be readily visible in
scalp ERPs or to expose brain regions that have participatory roles in source activity, but
may not themselves be generators of the detected electrical signal 45.

This work extends our previous studies detecting the spatiotemporal relationship for healthy
human subjects 38, 39 or for phantom simulation 37, in that we emphasize the detection of
group differences between patients and controls, by jointly performing spatial ICA of fMRI
data and temporal ICA of ERP data. We apply this approach to a group of twenty-three
healthy participants and sixteen chronic schizophrenia patients in order to derive a
spatiotemporal decomposition consisting of fMRI and ERP components, both indicating
when the respective signal is changing with a specific focus upon joint differences between
patients and healthy controls. Consistent with our previous work 2, 46, we hypothesized that
a small number of joint components would capture differences between the patients and
controls and reveal a joint network present in both groups. From previous work 2, 25, 46,

47, we predicted that this network would show both decreased activation and decreased ERP
amplitude in patients. Our proposed approach provides a technique to examine linked
hemodynamic and electrical sources which reveal significant differences between patients
and controls.

METHODS
Participants

Participants were recruited via advertisements, presentations at local universities, and by
word-of-mouth. Twenty-three healthy participants (15 males, 8 females, Age 41±14 years)
and sixteen outpatients (11 males, 5 females, Age 38±11 years) with chronic schizophrenia,
currently in complete or partial remission and on stable medication regimens, provided
written, informed, Institutional Review Board (IRB)-approved consent at Hartford Hospital
and were compensated for participation. See demographic details in Table 1. Prior to
inclusion in the study, healthy participants were screened to ensure they were free from
DSM-IV-TR Axis I or Axis II psychopathology, assessed using the SCID 48 and also
interviewed to determine that there was no history of psychosis in any first-degree relatives.
Patients met criteria for schizophrenia in the DSM-IV-TR Axis I disorders based on a
structured clinical interview (SCID) and review of the case file. All participants had normal
hearing (assessed by self-report), and were able to perform the task successfully during
practice prior to the scanning session.
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Experimental design
The auditory oddball task required subjects to press a button when they detected an
infrequent sound within a series of regular and different sounds. Three stimuli were
presented; frequent low-tone stimuli (standards), infrequent task-irrelevant stimuli (novels)
and infrequent task-relevant stimuli (targets) requiring a button-press response. In the
present experiment, the standard stimulus was a 500 Hz tone, the target stimulus was a 1000
Hz tone, and the novel stimuli consisted of non-repeating random digital noises (e.g., tone
sweeps, whistles) (Figure ). Two runs of auditory stimuli were presented to each participant
by a computer stimulus presentation system via insert earphones embedded within 30 dB
sound attenuating MR compatible headphones for fMRI recording and standard headphones
for EEG recording.

The target and novel stimuli each occurred with a probability of 0.10; the standard stimuli
occurred with a probability of 0.80. The stimulus duration was 200 ms with a 2000 ms inter-
stimulus interval (ISI). The intervals between stimuli of interest (target/novel) were
allocated in a pseudorandom manner. All stimuli were presented at approximately 80
decibels above the standard threshold of hearing. All participants reported that they could
hear the stimuli and discriminate them from the background scanner noise. Prior to entry
into the scanning room or ERP booth, each participant performed a practice block of 10
trials to ensure each subject understood the instructions. The participants were instructed to
respond as quickly and accurately as possible with their right index finger every time they
heard the target stimulus and not to respond to the nontarget stimuli or the novel stimuli. An
MRI compatible fiber-optic response device (Lightwave Medical, Vancouver, B.C.) was
used to acquire behavioral responses for the task in both the fMRI and the ERP experiments.
The stimulus paradigm, data acquisition techniques, and previously found stimulus-related
activation are described more fully elsewhere 4, 31, 49.

Data acquisition
FMRI and ERP data were acquired on the same day in two different sessions, at the Olin
Neuropsychiatry Research Center at the Institute of Living, using identical stimuli and
counterbalancing the order of the fMRI or ERP sessions between individuals. The fMRI data
were collected on a Siemens Allegra 3T dedicated head scanner equipped with 40mT/m
gradients and a standard quadrature head coil. The functional scans were acquired using
gradient-echo echo-planar-imaging with the following parameters (repeat time (TR)=1.50s,
echo time (TE)=27ms, field of view=24cm, acquisition matrix=64×64, flip angle=70°, voxel
size=3.75×3.75×4mm, gap=1mm, 29 slices, ascending acquisition). Six “dummy” scans
were performed at the beginning to allow for longitudinal equilibrium, after which the
paradigm was automatically triggered to start by the scanner. The ERP data was collected
using an SA bioelectric amplifier system capable of amplifying electrical activity from 64
separate single-ended channels. Amplifiers were connected to a 16-bit A/D conversion using
a custom program (Digitize) implemented on a Pentium II microcomputer running Solaris
for Intel. The Digitize program recorded the EEG data and all stimulus and behavioral
response codes for later analysis.

Preprocessing
FMRI—FMRI data were preprocessed using the software package SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Images were realigned using INRIalign – a motion
correction algorithm unbiased by local signal changes 50. Next, data were spatially
normalized into standard Montreal Neurological Institute space 51, spatially smoothed with
a 12×12×12 mm full width at half-maximum Gaussian kernel. The data (originally acquired
at 3.75×3.75×4mm) were slightly sub-sampled to 3×3×3 mm, resulting in 53×63×46 voxels.
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ERP—Scalp potentials were recorded from tin electrodes (ElectroCap International) placed
over 62 electrode sites according to the 10-20 electrode system placement and some
supplemental sites. Vertical and horizontal electro-oculograms (EOG) were monitored from
electrodes located on the lateral and supra-orbital ridges of the right eye. All electrodes were
referenced to the nose. Electrical impedances were maintained below 10 k-ohms throughout
the experiment. The EEG channels (SA instruments) were amplified (20,000 gain) with a
bandpass of 0.1 to 100 Hz, digitized on-line at a rate of 500 samples per second, and
recorded on computer hard disk. EEG data were preprocessed using ICA to remove ocular
artifacts from the EEG data 52. Data were then digitally filtered with a 20 Hz low pass filter
to reduce electromyographic activity and ERPs were constructed for trials in which
participants correctly identified target stimuli. The recording epoch was 1400 milliseconds
long with a 200 millisecond pre-stimulus baseline. Data from a midline central site (Cz) was
included in the ICA fusion analyses because it appeared to be the best single channel to
detect both anterior and posterior sources (results were nearly identical when scalp site Pz
was used instead of Cz).

Joint FMRI/ERP Data Fusion
Joint ICA analysis tries to explain between-subject variations in data features in terms of
underlying sources that cause those features. In this application, the data features include
both spatial (fMRI) and temporal (EEG) components. The spatial features were contrast
images of targets versus baseline for each subject generated using SPM2 software; providing
a spatial map of oddball responses. The temporal data features were the ERP feature selected
from the central electrode (Cz) from each subject; characterizing the temporal pattern of the
oddball response. Furthermore, because we included both control subjects and schizophrenic
patients in the analysis, an important source of variability in the underlying sources was the
between-group differences in the neuronal expression of the oddball responses. It was these
differences we wanted to assess.

We use an extended algorithm based upon the infomax principle 53, 54. The Infomax
algorithm employs a natural gradient ascent algorithm to maximize the entropy of the output
of a single layer neural network 54. We start with the assumption of joint spatial or temporal
independence of the fMRI and ERP sources approximately, respectively, using the following
generative model for the data, which maps from sources to observed data features: xF = AsF

and xE = AsE. For the case of two sources and two subjects,  is the mixed data

for the fMRI modality for the two subjects,  is the mixed data for the ERP

modality for the two subjects,  is a shared linear mixing matrix, and sF and
sE are the respective fMRI and ERP sources. Instead of running ICA on each modality
separately, we rewrite this as a single equation by forming a data vector for each subject as

, which includes both the spatial (fMRI) and temporal (EEG) features side by

side, and likewise for a source vector . If we imagine that there are only two
sources of the coupled data features, then the unknown sources would correspond to two
row vectors ( s1, s2) encoding the degree to which each coupled source was expressed in
each subject. The mixing matrix A (in this simple case) would be two column loading
parameters encoding the spatiotemporal pattern this coupled source would cause over
features. In reality, of course, there are many different sources of variability between
subjects. The resulting update equation for the algorithm to compute the shared unmixing
matrix W (i.e. the inverse of A ) and the fused fMRI and ERP sources, uF and uE , is as
follows:
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(1)

where yF = g (uF) , yE = g (uE) , and g (x) = 1 / (+1 e−x) is the nonlinearity in the neural
network 53. The basic idea underlying independent component analysis (ICA) is to assume
that these sources are independent and distributed sparsely, encoded by the cumulative
density function g . These assumptions allow one to estimate the unmixing matrix W in a
maximum likelihood sense, without knowing the sources. When applied to the data features
this provides estimates of the sources for each subject. Note that the sources have to explain
both the data modalities and therefore this estimation represents the inversion of a
multimodal fusion model, under sparsity and independence constraints. Notice also that this
procedure is entirely data-led in the sense that the model does not know whether each
subject belongs to one group or another. Therefore, it may identify group differences that
would be missed in conventional between-group comparisons. Meanwhile, our reason for
using a single optimal unmixing coefficient to maximize the joint likelihood function is that
it makes intuitive sense not to compute the parameters independently, because the ICA
results from the two different measures are derived from the same participant 2, 38, 46. We
thus have a single W that fuses together the joint source (or alternatively, the basis vector
common to the two measures). The main advantage of this approach is that maximizing the
joint likelihood function provides a different (and more reasonable) solution from one that
does not utilize the joint statistics.

Component Estimation
The number of independent components in the joint data was estimated to be twelve, using a
method based on the minimum description length criteria 55, 56. Independent components
were estimated, and ranked by their contribution to the average ERP time courses by first
regressing the components onto the average ERP data, then computing the maximum
absolute peak of the fitted time courses. A leave-one-out cross-validation approach 38, 57
was used to assess the robustness of the results; mean results are reported.

Analysis of Patient and Control Data
For comparison with the jICA results, we averaged the ERP data time locked to the target
stimuli and also carried out a standard random-effects analysis within SPM2 by computing
voxel-wise t-tests between the patient and control fMRI contrast images 58, 59. To ensure
similar consideration (weights) for both measures, the fMRI and ERP features were
normalized by dividing each modality by its average standard deviation and then the ERP
data (timecourses) were upsampled to the same level as the fMRI (voxels). We interpolated
the ERP data to provide a balanced representation of ERP and fMRI features. The fMRI
dimension is about 75000 voxels, while the ERP dimension is about 1000 timepoints. We
show in extensive simulations in 37 that this works well. The jICA procedure was then
performed on the fMRI/ERP joint data from the patient and control groups together.
Correspondingly, within the comparison groups (patient or control), the identification of
components with shared loading parameters, and the comparison of the associated maps,
becomes a key means to identify couplings between brain image components of different
measures of data; while between the comparison groups (patient and control), the
differences of amplitude, latency and location of each data component become a significant
evidence of the variation of schizophrenia patients from healthy controls. After the jICA
analysis, we tested within each component for a significant difference between patients and
controls using a two-sample t-test. Only one significant component was found and
interpreted (p<0.001, see ‘Joint ICA Analysis’) (Figure 3). We further examined the joint
data using a cross-modality 2D histogram analysis. Signals that were significant in the jICA
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analysis for either of the two measures were used to generate a joint histogram of the fMRI
and ERP data. These histograms were examined in group averages along with marginal
distributions (Figure 4).

RESULTS
Behavioral Data

Performance on the auditory oddball task was nearly identical within the fMRI and ERP but
differed between control and patient groups. The number of trials was 50 for both ERP and
fMRI sessions. Mean and standard deviations are reported for a) reaction time, controls
(fMRI 430.7±90.4ms; ERP 431.5±93.6ms, p>0.9 paired t-test) and patients (fMRI
518.3±116.5 ms; ERP 577.7±149.0ms, p>0.4 (0.3667) paired t-test) and b) accuracy for
target detection, controls (fMRI 99.5±0.01 percent; ERP 99.5±0.02 percent, p>0.99 paired t-
test) and patients (fMRI 88.9±16.5 percent; ERP 93.2±14.4 percent, p>0.4 (0.4390) paired t-
test).

Group Analysis
FMRI SPM contrast images (controls: Figure 2 Left, patients: Figure 2 middle) and ERP
group averaging (Figure 2 Right) are shown for the target stimuli. Translation and rotation
corrections for each participant did not exceed half a voxel (i.e., 2mm) or 2.0 degrees,
respectively. We also qualitatively examined each statistical contrast image to ensure there
were no obvious motion artifacts (i.e., edge artifacts were not apparent) 38, 46. There was
no significant difference in movement between patients and controls. We applied standard
random-effects analyses by entering the features into a voxel-wise one-sample t-test for
patients and controls separately (p<0.001, corrected for multiple comparisons using the false
discovery rate (FDR; 60). The ERP plot was generated by averaging the data time locked to
the target stimuli. Results are largely consistent with previous findings for both measures 4,

34, 61. The fMRI data show main reductions in bilateral frontal and temporal lobes, inferior
parietal lobe, cerebellum, plus motor planning and execution regions. The ERP data show
significant reductions at N1, N2 and P3 peaks (marked on the figure).

Joint ICA Analysis
Results from the jICA analysis of both measures are presented in Figure 3. Among twelve
components for both groups, only one joint component was found to distinguish groups
using a two-sample t-test (p<0.001) on patient and control loading parameters, which we
interpret as a difference in the degree/magnitude of two linked brain functional features
(fMRI/EEG) in the two groups. This identified component shows a clear difference in fMRI
at bilateral fronto-temporal regions implicated in schizophrenia (Figure 3 left) and in ERP in
times during the N2 (MMN/N2b, see in the discussion) peak (Figure 3 right) which have
been previously implicated in patients. It is important to note that the maps of controls and
patients separately show a main effect, whereas the statistical comparison for the joint
analysis is testing for a difference between groups. Talairach coordinates for the fMRI/ERP
jICA analyses are presented in Table 2.

To examine the joint task activity in more details, a joint histogram was computed as
follows, a similar strategy that applied in our old studies 2, 46. Signals surviving the
threshold for the fMRI of the joint source were sorted in descending order by the component
voxel values (the same was done for signals in the ERP part of the joint source). This
procedure resulted in two sets of signal coordinates. Histograms were then generated by
pairing these two signal sets. For example, the first point for Participant 1 is the voxel value
for the fMRI activation data (at the position that is maximum in the fMRI part of the jICA
source) versus the signal value for the ERP activation data (at the position that is maximum
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in the ERP part of the jICA source). Then, we computed the within-group average of the
histograms for the control and the patient groups (shown in Figure 4 with the controls in the
top middle and the patients in the top right). The 2-D histogram can be considered an
estimate of the joint distribution function for the two measures (e.g., p(ffmri, ferp), where
ffmri,erp indicates the signal amplitude for the fMRI or ERP, respectively). We also
computed the marginal estimated distributions p(ffmri) and p(ferp) (Figure 4 top left,
bottom). Note that both fMRI and ERP are showing a group difference as seen by the
marginal distributions for the two modalities. In the marginal histograms it is clear that
controls (yellow) tend to have higher fMRI activation, whereas patients (cyan) tend to have
higher ERP (positive) values. This is also visible on the group average 2D histograms in
Figure 4 (the control histogram is located above and to the left of the patient histogram).

DISCUSSION
Schizophrenia is hypothesized to be a disease involving impaired brain interaction 62. A
number of explanatory models have been proposed, with many studies implicating regions
in temporal lobe, cerebellum, thalamus, basal ganglia, and lateral frontal regions 62-66.
Discoordination 63, heteromodal association67, 68 as well as fronto-temporal disconnection
models 69 have been suggested. Recent work attempts to capture both spatial and temporal
properties of neuronal activity and shown promising results 70-75. Examining the
correspondence between fMRI and EEG (ERP) combines the strengths of both techniques
and provides a more detailed probe into human brain function. However, the gap between
these two different measures still presents an issue due to the technical difficulty and
computational complexity. Here, we demonstrate a new technique for studying the linked
fMRI/ERP signals impacted by schizophrenia, using joint independent component analysis
(jICA) of separate recordings of the same subjects. Our previous work 38 focused on using
this approach for localization and chronometry of target detection in healthy participants. In
this work, using the jICA algorithm, we focus upon joint ERP/fMRI sources which
differentiate schizophrenia patients from healthy controls during the performance of an
auditory oddball task. It is important to emphasize is that in this paper we are studying the
linkage between ERP/fMRI signals (specifically we identify linear relationships between the
two data sets using a data driven approach) and there has been very little work on this in
schizophrenia.

Our novel joint spatiotemporal analysis revealed several interesting findings compared to
traditional analyses. First, consistent with our hypotheses, the jICA results identified fMRI
group differences in bilateral temporal and frontal regions activated by the auditory oddball
target stimulus, tightly associated with the N2 complex in ERP time course. The N2 peak
latency was between 180-200ms window, and likely contains contributions from both the
MMN and the N2b subcomponents 25-30, 76, 77 as well as the possible latency shifts of the
those peaks 78. Schizophrenia patients demonstrated significant decreased amplitude for the
linked fMRI spatial component and ERP temporal component. This finding suggests that
bilateral fronto-temporal neuronal activity may serve as a pathophysiological substrate for
changes in the N2 peak of ERP as probed by the auditory oddball target stimuli in
schizophrenia. This idea is consistent with previous research 21, 79, 80. Additionally, the
region showing the largest group difference is associated with the N2 component in the jICA
analysis (the second largest is associated with the P3 component, although it did not reach
significance). This finding emphasizes the pathological importance of N2 generators. To
date, schizophrenia, researchers have focused mainly on the P3 as the most significant
biomarker of decision making, with many reports, especially in chronic schizophrenia 4, 14,

15, 17, 81. The N2 performs a variety of functions in mismatch detection and cognitive
control 9, and although likely serving as a marker of psychosis classification, remains
largely unstudied in this group 21. Our finding suggests that the N2 component is an
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electrophysiological marker of disturbance in stimulus classification and attention processes
in schizophrenia. Our results are consistent with O’Donnell and Kayser’s reports 21, 25, 26.

Our approach provides several advantages. 1) Compared to the traditional fMRI activation
region and direct EEG peak inspections, our method cuts down the spatial and temporal
overlaps of different brain areas at different time course activities. 2) Contrasted with other
common methods, e.g. PCA, the derived joint fMRI/ERP components from our approach
have spatial/temporal projections that are maximally higher-order independent, distinct but
not necessarily orthogonal. 3) Our approach does not require the use of a threshold for the
fMRI data nor assumptions about the number of dipoles or the modeling of dipole fitting for
EEG, which relaxes the constraints of the algorithm and is computationally straightforward
4) We illustrate an approach for combining data from fMRI and ERP measures, two
methods with different strengths and advantages, in a symmetric analytic framework that
does not favor one modality, but reveals changes which may manifest in fMRI only, ERP
only, or both fMRI and ERP. 5) We perform a joint decomposition of both measures which
are linked or fused by a common mixing parameter. This enables investigators to explore the
relationship between electrophysiology and hemodynamic cognitive processes. 6) Our
approach also separates the data into joint components, each with an fMRI and an ERP
portion. Decomposing the data into joint components may provide a useful way to examine
component specific differences, e.g., patient vs control groups or modified task versions.
Here, we utilize a feature-based approach, providing a straightforward way to take
advantage of data modeled at the subject level. These features are then queried for shared
dependence, which is not detectable with a simple voxelwise subtractive or conjunction
approach. 7) The shared mixing coefficient provides a way to examine individual or group
differences in coupling. Currently, we chose a priori to analyze only the component(s) that
revealed a statistical difference between groups. In future work it would be interesting to
develop approaches for understanding the full ICA decomposition (e.g., to examine all the
components). Additionally, given previous interest in laterality differences in schizophrenia
82, 83, it would be interesting to examine the laterality of these joint sources.

There are some limitations to our approach. First, given the heterogeneity of the spatial and
temporal data in schizophrenia, it is important to address issues of statistical power for a
joint analysis, which may be different than for an individual analysis. This is especially
important if findings from a joint analysis are to become clinically relevant 84. Second, the
potentially useful information from the first level may be not neglected in the source
separation when we are carrying out a joint second-level (group) analysis of features, and we
have begun working towards 1st level single trial analysis with parallel and joint ICA models
(Eichele IJP 2008, Moosmann IJP 2008). Third, in the current framework, for practical
reasons, we assume that both voxels and timepoints are independent and identically
distributed. Although, most ICA models for fMRI/ERP data perform quite well under this
assumption, it can be potentially useful to incorporate some additional prior information
(such as correlation) as well as to include different distributions for different features into
the model. We incorporated this attempt in our recent papers 85, 86. Fourth, in this work we
analyze data from a single electrode. We have extended our methods to incorporate multiple
EEG electrodes in some prior work 37, 39, 40. Fifth, we focus on analyzing target response
in this study, it would be reasonable to compare the responses to target tones with those of
non-target tones (standard and novel) in future, in order to delineate brain regions which are
specically related to attending and responding to target tones. Sixth, the ERP and fMRI data
were acquired in two separate sessions, instead of a concurrent session, which might induce
the differences into the analysis. In order to minimize the difference, we collected the fMRI
and ERP data on the same day, using identical stimuli and the order of the sessions was
counterbalanced between individuals; and we verified that all subjects had nearly identical
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performance on the task for both the ERP and fMRI sessions. The same strategy has been
used successfully in several other published studies (see, e.g. 38).

It is interesting to observe the differences between separate and joint analyses. When
analyzing the fMRI and ERP data separately, fMRI activity shows significant reductions in
frontal and temporal lobes plus cerebellum, while the ERP data show significant reductions
at N1, N2 and P3 peaks (see Figure 2). In the jICA analysis, we see only one significant N2
reduction associated with the fMRI activity reduction in fronto-temporal regions.

In summary, we have demonstrated a novel method for examining joint hemodynamic and
electrical data to visualize the neural systems involved during different portions of the
auditory “oddball” target detection response. This approach has enabled us to ask novel
questions about fMRI/EEG data and revealed several interesting findings in an application
to data collected from healthy controls and patients with schizophrenia that were missed by
a standard analysis approach, which may greatly help us diagnose/understand the
pathophysiology of schizophrenia. The development of models for jointly analyzing
multimodal data has been largely overlooked and may be a useful tool for assessing how
brain function during different cognitive probes and in different regions can vary
systematically between measures.
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Figure 1.
Auditory oddball paradigm: auditory oddball event-related fMRI task.
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Figure 2.
FMRI and ERP group analyses : Group fMRI SPM contrast images(left) and ERP (right)
results for the target response. The SPM2 software was used to generate a contrast image of
target-related activation for each subject. These images are then entered into a one-sample,
voxelwise t-test and thresholded at p<0.001 (corrected for multiple comparisons) to produce
the resulting image with T-values shown in color. The ERP plot was generated by averaging
the data time locked to the target stimuli. Standard error is shown and peaks are labeled with
the standard naming convention (e.g. N1 is the first negative peak).
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Figure 3.
FMRI/ERP jICA analysis: The only joint component which showed significantly different
loading parameters (p<0.001) for patients versus controls. Left: thresholded fMRI part of the
joint component showing bilateral temporal and frontal lobe regions. Right: average ERP
(yellow) plots along with the ERP part of the identified joint component (pink).
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Figure 4.
Cross-modality 2-D histograms: Joint 2-D histograms for ERP/fMRI identified in the joint
independent component analysis (jICA). Group average histograms (with controls in the top
middle and patients in the top right) are provided along with the marginal histograms for the
ERP (top left) and for the fMRI (bottom). In the marginal histograms it is clear that controls
(yellow) tend to have higher fMRI activation, whereas patients (cyan) tend to have higher
ERP (positive) values.
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Table 1

Demographic details.

Controls Patients

Age (years [mean (SD)] 41 (14) 38(11)

Gender (male : female) 15:8 11:5

Mean NART IQ (SD) 106.20 (6.09) 99.72 (9.37)

Handedness (R : L) 21:2 13:3

L, left; R, right; NART, national adult reading test; IQ, intellignece quotient.
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Table 2

Talairach coordinates for auditory oddball fMRI/ERP jICA analysis

Anatomic label Brodmann area* Volume (cc): L/R Max T (x,y,z): L/R

Increases

 Superior frontal gyrus 6 0.5/2.6 4.3 (−3, 38, 62)/5.5 (24, 1, 69)

 Superior temporal gyrus 21, 22, 38, 13 1.9/2.8 4.0 (−53, 2 −10)/4.4 (62, −12, −4)

 Middle temporal gyrus 21, 22 0.9/1.9 4.0 (−50, 2, −10)/4.4 (62, −15, −4)

 Middle frontal gyrus 6, 46, 10, 47 0.0/1.1 na/4.0 (33, 0, 64)

 Inferior frontal gyrus 45, 47, 46 0.9/0.3 3.9 (−65, 18, 2)/3.3 (56, 53, 6)

 Precental gyrus 44 0.1/0.1 3.8 (−65, 15, 2)/3.2 (62, 12, 5)

Decreases

 Middle frontal gyrus 6, 9 0.0/0.2 ns/3.6 (50, 2, 41)

 Precental gyrus 6 0.0/0.2 ns/3.4 (50, 2, 44)

 Thalamus 0.1/0.0 3.1 (−3, −20, 7)/ns

 Cingylate gyrus 31 0.0/0.0 3.0 (−24, −39, 38)/ns

Voxels above the threshold for Fig. 2 were converted from the Montreal Neurological Institute to Talairach coordinates and entered into a database
to provide anatomic and functional labels for the left (L) and right (R) hemispheres. Both increasing (top) and decreasing (bottom) voxels are
reported. The volume of activated voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum t value and its
coordinate are provided.

NS, not significant.

*
Brodmann areas (BA) are only approximate, based upon the Talairach Atlas.
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