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ABSTRACT

Toward the goal of identifying complete sets of tran-
scription factor (TF)-binding sites in the genomes of
several gamma proteobacteria, and hence describing
their transcription regulatory networks, we present a
phylogenetic footprinting method for identifying
these sites. Probable transcription regulatory sites
upstream of Escherichia coli genes were identified
by cross-species comparison using an extended
Gibbs sampling algorithm. Close examination of a
study set of 184 genes with documented transcrip-
tion regulatory sites revealed that when orthologous
data were available from at least two other gamma
proteobacterial species, 81% of our predictions
corresponded with the documented sites, and 67%
corresponded when data from only one other
species were available. That the remaining predic-
tions included bona fide TF-binding sites was proven
by affinity purification of a putative transcription
factor (YijC) bound to such a site upstream of the
fabA gene. Predicted regulatory sites for 2097 E.coli
genes are available at http://www.wadsworth.org/
resnres/bioinfo/.

INTRODUCTION

Understanding the regulation of gene expression, and tran-
scription regulation in particular, is one of the grand challenges
of molecular biology. While transcription is regulated by
several mechanisms, the binding of transcription factors (TFs)
to their cognate sites is the dominant mechanism and the iden-
tification of these sites is indispensable to a comprehensive
understanding of gene expression. The experimental methods
for TF-binding site identification that have been developed
include electrophoretic mobility shift and nuclease protection
assays. Despite the fact that gene regulation has been intensely
studied in the gamma proteobacterium Escherichia coli,
experimental methods have identified TF-binding sites for
only a fraction of the estimated 300–350 TFs (1) in the
promoters of only a few hundred E.coli genes (2,3).

The three main computational methods that have been devel-
oped to identify and characterize TF-binding sites in promoters
are: a consensus building greedy algorithm (4), an expectation
maximization algorithm (5–8) and a Bayesian Gibbs sampling
algorithm (9,10). These methods all identify a collection of
aligned sites from multiple sequences and a corresponding site
model called a motif. Until recently these methods required the
identification of a set of genes for which there is experimental
evidence of co-regulation (4,11–13). These computational
methods have also been useful for predicting additional
binding sites for known, characterized TFs in recently
sequenced genomes (3,11,12). With the advent of whole
genome sequencing, computational phylogenetic footprinting
methods, involving cross-species comparison of DNA
sequences, have emerged (12–14). This method allows for the
identification of a TF-binding site(s) upstream of a single gene
given the promoter sequence of that gene from a number of
species, thus eliminating the need for the identification of a set
of co-regulated genes. The recent availability of genomic
sequence data for several gamma proteobacteria encouraged us
to examine the utility of genomic scale phylogenetic foot-
printing.

MATERIALS AND METHODS

Identification of data sets

We applied TBLASTN (15) with stringent criteria to identify
probable orthologous genes in nine gamma proteobacterial
species (listed below) for which at least partial genomic
sequence data were available. Orthologous gene sets were
identified using the E.coli ORF translations from GenBank
(U00096) as the queries against a database consisting of the
available genome sequence data for all nine species. Selection
of the orthologous sequence in each species from a collection
of significant TBLASTN hits (which may contain strong para-
logs) employed a number of heuristics. The most significant
TBLASTN hit from each species was considered the true
ortholog if it satisfied the following constraints: (i) the expectation
value was <10–20; (ii) the expectation value was less than, and the
raw BLAST score more than, the second best hit in E.coli
(i.e. true orthologs should have a score more significant than
any paralogs present in E.coli); (iii) the TBLASTN hit must
start within the first 20 amino acids of the E.coli query
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sequence. The promoter data sets consisted of the regions
upstream of the identified orthologs. For E.coli these data were
limited to the intergenic region, with a minimum of 50 bp and
up to a maximum of 500 bp. We also used TBLASTN to deter-
mine if gene order was conserved in the other species and, if
so, limited the upstream data for those species to intergenic
regions. If, however, TBLASTN did not reveal a similar gene
order in other species, 500 bp upstream of the orthologous
gene were used in the data.

The availability of genomic sequence data for several related
species was important for several reasons. (i) The genomic
sequence data were incomplete for several of the species, so
even for a gene with an ortholog in every species it was
possible that sequence data for that gene may have only been
available for a few species. (ii) Ortholog identification is diffi-
cult, and by including data for several species we allowed
some uncertainty that true orthologs had been identified in
every species for every gene (i.e., even if some orthologs were
identified incorrectly, we had enough data from species with
correctly identified orthologs for a reliable prediction of the
TF-binding site). (iii) Orthologous genes may be regulated
differently in some species. By using data from many species
we increased the likelihood of having data from enough
species with similar gene regulation that TF-binding sites
could be identified.

Bayesian Gibbs sampling

An advanced Gibbs motif sampler (9,10) with the following
important extensions was utilized. (i) A motif model that
accounts for palindromic patterns in TF-binding sites was
employed (5). (ii) Because DNA sequences tend to have
varying composition (e.g. regions that are G-C rich or A-T
rich), a position-specific background model, estimated with a
Bayesian segmentation algorithm (16), was used to decide
whether a given segment should be judged as being a binding
site or as belonging to the background. (iii) The empirical
distribution of spacing between TF-binding sites and the trans-
lation start site, observed from the E.coli genome sequence,
was incorporated, to improve the algorithm’s focus on more
probable locations of binding sites (W.Thompson, unpublished
results). (iv) The algorithm was configured to detect 0, 1 or 2
sites (repeats) in each upstream region in a data set
(W.Thompson, unpublished results).

Iterations of the Gibbs sampler were performed under four
conditions: with even (16 bases) or odd (17 bases) palindromic
models and with or without the distribution of spacing model.
The models were allowed to fragment up to a total width of 24
bases (17). Additionally, after each iteration of the sampler
under a given condition the identified site(s) was replaced with
Ns and the data set re-analyzed for additional sites. The
predicted motifs for each data set were then ordered according
to the maximum a posteriori probability (MAP) value to deter-
mine the most probable motif. The MAP value is measured
relative to an empty or ‘null’ alignment. Therefore, a MAP
value >0 indicates that the alignment is more likely than the
unaligned random background. A more detailed description of
the MAP value is available at http://bayesweb.wadsworth.org/
gibbs/gibbs.html.

Affinity chromatography and mass spectrometry

For each site complementary oligonucleotides were synthe-
sized with a duplex region of 16–18 bp carrying the predicted
binding site and 5–7 bp of flanking sequence. In addition, each
oligonucleotide had a 5′-GAAC single-stranded extension to
facilitate coupling to Sepharose beads via the amino groups of
those bases. The top strand for each duplex is shown with the
predicted binding site underlined and the single-stranded
extension in bold. Predicted sites: fabA, 5′-GAACTTGTTCA-
GCGTACACGTGTTAGCTATCCTG-3′; fabB, 5′-GAACT-
TGTTCGGCGTACAAGTGTACGCTATTGTG-3′; yqfA, 5′-
GAACTATTTTAGCTAACAGGTGTTCACTGGAACT-3′.
Control sites: FadR site upstream of fadB, 5′-GAACGACTC-
ATCTGGTACGACCAGATCACCTAA-3′; PurR site
upstream of purH, 5′-GAACGCATTGTAACGAAAACGTT-
TGCGCAACG-3′.

The oligonucleotides were annealed and coupled to CNBr-
activated Sepharose beads (Amersham Pharmacia Biotech,
Piscataway, NJ), essentially as described by DiRusso et al.
(18) except that no aminoethyl group was added to the oligo-
nucleotides. For each column 54 nmol DNA duplex was
coupled to ∼2.5 g (wet) Sepharose beads to generate a bed
volume of ∼3 ml. Crude extracts were prepared from soluble
cell lysates of E.coli MG1655 grown to mid-log phase in LB
medium. Cell pellets were resuspended in 20 mM Tris–HCl,
pH 7.5, 10 mM NaCl, 1 mM EDTA, 1 mM DTT, sonicated and
clarified by centrifugation. Proteins were precipitated with
60% saturated ammonium sulfate and the precipitate was
dissolved and dialyzed against column buffer (10 mM Tris–
HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl, 0.1 mM DTT,
10 mM NaN3). Extracts from up to 6 l of cultured cells were
passed through a 20 ml pre-column containing an unrelated
control sequence (purH) to reduce the presence of non-specific
DNA-binding proteins and thereby increase the yield of
specific TFs. Extracts were then passed over 3 ml experimental
columns and DNA-binding proteins were eluted sequentially
with TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA)
containing 0.2 or 0.8 M NaCl.

Column fractions were subjected to SDS–PAGE, from which
protein bands were subjected to in-gel tryptic digestion and
MALDI-TOF mass spectrometry analysis (19,20). Comparison
of tryptic peptide masses to predicted peptide masses of all of the
E.coli proteins in the SWISS-PROT database was done with the
ProteinProspector MS-Fit software at the University of Cali-
fornia at San Francisco Mass Spectrometry Facility (http://
prospector.ucsf.edu/).

Genome sequence data

Escherichia coli genome sequence data (U00096) were
obtained from GenBank (http://www.ncbi.nlm.nih.gov/
Genbank/index.html). Complete genome sequence data for
Haemophilus influenzae and preliminary sequence data for
Shewanella putrefaciens, Thiobacillus ferrooxidans and Vibrio
cholerae were obtained from The Institute for Genomic
Research (http://www.tigr.org/). Salmonella typhi (ftp://
ftp.sanger.ac.uk/pub/pathogens/st/) and Yersinia pestis (ftp://
ftp.sanger.ac.uk/pub/pathogens/yp/) preliminary genome
sequence data were produced and obtained from the respective
Sequencing Groups at the Sanger Centre (http://
www.sanger.ac.uk/Projects/). Actinobacillus actinomycetem-
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comitans preliminary genome sequence data were obtained
from the Actinobacillus Genome Sequencing Project at the
University of Oklahoma (http://www.genome.ou.edu/
act.html). Pseudomonas aeruginosa preliminary genome
sequence data were obtained from the Pseudomonas Genome
Project (http://www.pseudomonas.com).

Availability

A web server for the Gibbs motif sampler with the extensions
described, a list of the genes used in our study set with a refer-
ence for the known TF-binding sites and our results for all data
sets are available at our web site (http://www.wadsworth.org/
resnres/bioinfo/).

RESULTS AND DISCUSSION

Analysis of the study set

Using data available from DPInteract (11; http://
arep.med.harvard.edu/dpinteract/), RegulonDB (21; http://
www.cifn.unam.mx/Computational_Biology/regulondb/) and
the literature, we identified a study set of 190 genes in the E.coli
genome for which TF-binding sites have been identified by
nuclease protection or mobility shift experiments. Sequences
upstream of the orthologous genes were extracted into 190 data
sets for analysis (see Materials and Methods). For six of the
190 E.coli genes no orthologs were detected. For these we
could not perform cross-species comparisons, leaving 184 data
sets in our study set. The upstream regions for these 184 E.coli
genes contained documented binding sites for 53 different TFs
(Table 1).

A subset consisting of 24 data sets was used as the training
set to tune the parameters of a Gibbs sampling strategy
(9,10,17) to identify TF-binding sites in these data. We
performed several iterations of the Gibbs sampler in order to
identify the most probable motif for each data set, i.e. the motif
with the highest MAP value (see Materials and Methods).
Using these parameters 20 of the 24 most probable motif
predictions (83%) corresponded to previously documented TF-
binding sites. Although it is not uncommon for a gene to be
regulated by more than one TF, and different TF-binding sites
were identified during multiple iterations of the Gibbs sampler,
we restricted the analysis described below to the most probable
motif for each data set.

For the full study set (184 data sets), 146 of the most probable
motif predictions corresponded with documented transcription
regulatory sites (Table 1). A single ortholog was identified for
18 of the 184 genes, which allowed only limited cross-species
comparison. For these data the predictions were less reliable,
as evidenced by lower MAP values and a lower correspond-
ence with previously documented TF-binding sites (12 of 18,
or 67%). However, when at least two orthologous genes were
identified (166 data sets) 81% of the most probable motif
predictions corresponded with previously documented tran-
scription regulatory sites: 131 corresponded to TF-binding
sites and an additional three corresponded to known stem–loop
structures involved in attenuation or RNA stability. The
remaining 32 data sets contained several predictions with large
MAP values, suggesting the presence of undocumented regula-
tory sites in these data. The documented TF-binding sites for

these data were frequently detected as the second or third most
probable motif.

Because the majority of known prokaryotic TFs bind as
homodimers and recognize palindromic sites, the Gibbs
sampling parameters used to generate the results described
above specified palindromic models. Interestingly, Gibbs
sampling analysis of the same study set data without palin-
dromic models also performed well, detecting documented
sites in 138 of the 184 data sets. While our results with these
data clearly benefited from using palindromic models, the fact
that a significant number of sites were detected without them
indicates the power of this type of cross-species comparison
and suggests that this approach is applicable to eukaryotic data.

Identification of YijC-binding sites

Among the 32 undocumented sites identified in the study set
were several strongly predicted sites, including one upstream
of the fabA gene. A scan (10) of the E.coli genome with the
motif model revealed two additional occurrences of this site in
intergenic regions: one upstream of fabB and one upstream of
yqfA. To identify and characterize the transcription factor(s)
that binds to these predicted sites we used DNA sequence-
specific affinity chromatography of crude E.coli extracts from
exponentially growing cells (see Materials and Methods). A
protein bound specifically and with varying affinity to all three
of the sites, fabA, fabB and yqfA (Fig. 1, lanes 1–3), that did not
bind to affinity columns containing binding sites for FadR, a
transcriptional regulator of fatty acid metabolism genes
(22,23), or PurR, which negatively regulates genes involved in
purine nucleotide biosynthesis (24; Fig. 1, lane 4, and data not
shown). The protein bound to each of the predicted sites (fabA,
fabB and yqfA) was identified by mass spectrometry analysis
as YijC, an uncharacterized member of the TetR family of
transcription factors (25).

FadR is a known repressor of fatty acid degradation (fad)
genes and an activator of fatty acid biosynthesis (fab) genes
(23,26). Indeed, expression from the fabA promoter is known
to be activated 20-fold upon binding FadR (23). However,
FadR regulation does not completely explain the decrease in
transcription of fabA upon entry of cells into stationary phase
or that fadR mutant strains contain only one third less unsatu-
rated fatty acids than the wild-type (23). DiRusso and Nystrom
(26) have proposed that complex regulatory activities
responding to growth rate, growth phase and stringent response
must exist to coordinate fatty acid biosynthesis with phospho-
lipid synthesis and turnover. In addition, control of the relative
levels of fabA and fabB may be necessary to establish correct
saturated to unsaturated fatty acid ratios (26). The YijC-
binding sites we have identified upstream of fabA and fabB are
positioned between the –10 and –35 regions of these
promoters, suggesting that YijC represses expression of these
genes. The role of YijC as a repressor is supported by the posi-
tion of its helix–turn–helix motif at the N-terminus, the
position typical for repressors (1). Based on these data we
propose renaming this repressor FabR (fatty acid biosynthesis
regulator).

Genomic scale phylogenetic footprinting

We proceeded to apply our phylogenetic footprinting procedure
genome wide. We identified 2113 E.coli open reading frames
(ORFs) that were suitable for phylogenetic footprinting of their
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Table 1. Known E.coli TF-binding sites represented in the study set and predictions

aThe number of genes in our study set with documented binding sites for each TF. Of the 184 genes in the study set 118 had only one type of TF-binding site and
the remaining 66 genes had multiple types of TF-binding sites in the data analyzed (i.e. the upstream intergenic regions).
bThe total number of documented binding sites for each TF in our data for the study set.
cThe total number of predicted sites that corresponded to documented sites in the study set. The most probable motif predictions for 146 genes in the study set
corresponded to documented sites. Because many of these genes had multiple documented TF-binding sites and up to two E.coli sites could be identified in each
motif prediction, these results included a total of 187 predicted sites that corresponded to documented sites. Additionally, it is known that in some instances differ-
ent TF-binding sites overlap and their cognate TFs compete for binding, therefore, some sites identified in our predictions overlapped two or more different TF
binding sites. Overlap to all documented TF-binding sites was counted.
dThe number of probable sites detected by scan (10) for these known TFs from among the 2627 E.coli sites that did not correspond to documented TF-binding
sites (the most probable motif predictions for the 2097 genes included a total of 2814 E.coli sites: 2627 undocumented and 187 documented). An additional 187
were identified by scan as probable sites for these 46 TFs.
eThe most probable motif predictions for two genes (gcd and nanA) were detected by the Crp and GlpR models and the site for one gene (yjiT) was detected by
both the ArcA and NagC models. Because different TF-binding sites can overlap the same sequence, particularly global TFs like Crp and ArcA, this was not
unexpected and these sites were counted in both categories.
fFour genes in our study set (ilvB, ilvG, trpE and ompA) have upstream sequences that form stem–loop structures in the mRNA involved in attenuation or mRNA
stability. These genes were in the study set because they also have known TF-binding sites in their upstream intergenic regions.

Transcription factor No. of genes in the study set
with known sitesa

Total no. of known sites
in study setb

No. of sites detected in study
set predictionsc

No. of additional probable
sites in predictionsd

Ada 3 3 3 3
AraC 4 6 3 3
ArcA 9 13 5 7e

ArgR 7 15 13 7
CarP 1 2 0 –
CpxR 5 6 3 4
Crp 42 63 27 22e

CspA 2 3 1 0
CynR 1 2 1 1
CysB 2 3 2 0
CytR 8 8 3 2
DeoR 1 1 0 –
DnaA 3 5 0 –
FadR 5 7 3 5
FhlA 3 3 2 0
Fis 9 25 5 1
FlhCD 3 3 0 –
Fnr 9 14 6 13
FruR 10 11 5 7
Fur 6 9 8 18
GalR 4 5 4 1
GcvA 2 4 3 0
GlpR 3 11 7 6e

IciA (ArgP) 1 2 1 1
IclR 1 1 1 1
Ihf 14 22 5 1
IlvY 1 2 2 3
LacI 1 2 0
LexA 15 18 15 6
Lrp 6 29 5 2
MalT 3 10 1 0
MarR 1 2 2 5
MelR 1 5 2 2
MetJ 5 15 15 9
MetR 5 8 1 1
Mlc (DgsA) 4 5 5 3
ModE 3 3 2 4
NagC 3 6 5 5e

NarL 8 11 2 5
NarP 4 4 0 –
NtrC 3 5 4 5
OmpR 2 6 2 5
OxyR 3 3 3 4
PdhR 1 2 1 6
PhoB 5 12 8 3
PurR 16 16 9 4
RhaR 1 1 1 2
RhaS 2 2 0 –
SoxR 1 1 1 1
SoxS 4 7 1 3
TorR 1 4 3 5
TrpR 3 3 3 1
TyrR 8 16 8 3
Stem–loopsf 4 7 5 –
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upstream regions (Table 2); this group includes the study set
described above. Table 2 indicates the number of orthologs
detected by our criteria in each of the nine species, as well as
how frequently data from each species contributed to the most
probable motif predictions. Sites identified by our Gibbs
sampling strategy for 2097 orthologous sets are reported on our

web site; for the remaining 16 data sets no site was predicted in
E.coli (Table 2). Figure 2 illustrates the information available for
each gene at our web site. For every motif prediction two
sequence logos are given, one representing the motif model and
one representing the sites that were predicted. Specifying palin-
dromic models during Gibbs sampling effectively doubled the
amount of data by including in the model the reverse comple-
ments of the sites, leading to correspondingly tighter confidence
intervals. The palindromic models were perfectly symmetrical,
as illustrated in Figure 2B. The sites detected by the palindromic
models were not necessarily symmetrical, however (Fig. 2C). A
sequence alignment of the sites in each motif prediction is also
given, with an indication of which positions (*) contributed to
the model (Fig. 2D).

Figure 3 compares the distribution of MAP values for the
most probable motifs predicted in our study set, which was a
subset of the full set, to those of the full set; the distributions
include only those data for which a site was predicted in E.coli
(183 of the 184 in the study set and 2097 of the 2113 in the full
set). The mode of the MAP values for the full set of 2097
predicted sites was shifted somewhat to the left (lower MAPs)
relative to the mode for the 183 sites (Fig. 3A). This shift was
primarily the result of the presence of proportionally more
genes with low numbers of orthologs in the full set compared
to the study set (Fig. 3B and C). Two factors contributed to this
effect. (i) For a significant number of genes (472 of the 2113;
Fig. 3C) only one ortholog was detected, frequently from
Salmonella typhi, a close relative of E.coli. This was in part
due to our use of several partial genome sequences. We also
expected a significant number of genes to be unique to E.coli

Figure 1. SDS–PAGE gel showing affinity purification of YijC. Escherichia
coli MG1655 extracts, passed over a purH pre-column, were fractionated on
DNA affinity columns carrying sequences predicted to be TF-binding sites
upstream of the fabA, fabB or yqfA genes or a control column carrying a known
FadR site upstream of fadB (see Materials and Methods). A silver stained
SDS–PAGE gel of representative fractions eluted from the columns with 0.8 M
NaCl is shown. M, molecular weight markers; lane 1, fabA column; lane 2,
fabB column; lane 3, yqfA column; lane 4, fadB column. Mass spectrometry
analysis identified the 26 kDa protein bound specifically to the fabA, fabB and
yqfA columns as YijC and the protein bound to the fadB column as FadR.

Table 2. Number of orthologs and representation in the most probable motif predictions for each species

aOf the 4289 predicted ORFs in the E.coli genome (27) we eliminated from our analysis 1719 ORFs that
are encoded by IS elements or transposons or have upstream intergenic regions of <50 bp. For an addi-
tional 457 ORFs no orthologs were detected using our TBLASTN criteria, therefore leaving 2113 ORFs
for analysis by cross-species comparison. The number listed for each of the other species is the number of
orthologs detected in that species for those 2113 E.coli ORFs.
bThe number of times that data from each species contributed to the most probable motif prediction for
each gene. For 16 of the 2113 data sets analyzed no site was predicted in E.coli. The identified sites in all
species for the remaining 2097 data sets can be viewed at http://www.wadsworth.org/resnres/bioinfo/.

Species No. of orthologs
detecteda

No. of times represented in the
most probable motif predictionsb

Enterobacteriaceae

Escherichia coli 2113 2097

Salmonella typhi 1962 1835

Yersinia pestis 1442 1041

Pasteurellaceae

Haemophilus influenzae 677 472

Actinobacillus actinomycetemcomitans 585 376

Vibrionaceae

Vibrio cholerae 984 614

Alteromonadaceae

Shewanella putrefaciens 869 534

Pseudomonas group

Pseudomonas aeruginosa 963 363

Unclassified

Thiobacillus ferrooxidans 460 169
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or to have diverged sufficiently such that no ortholog was
detectable using our criteria. Accordingly, more reliable
predictions could be made for the 1641 genes with data for
E.coli and at least two orthologs than for those 472 genes (for
which, as expected, the predicted sites had lower than average
MAP values). (ii) The study set of 184 genes with known TF-
binding sites reflected a bias in the literature toward genes that
are more likely to be present in many species, i.e. those
involved in carbon and nitrogen metabolism, amino acid

biosynthesis, nucleotide biosynthesis, etc. Historically, genes
involved in these common metabolic pathways have been the
subject of intense research.

Additionally, the mode of the MAP values was likely influ-
enced somewhat by the inclusion of data sets from within
operons. Genes with upstream intergenic regions of <50 bp
were excluded from our analysis (see Materials and Methods
and Table 2) in order to limit the likelihood of including many
genes that are coded within operons and therefore less likely to
have a promoter or TF-binding sites immediately upstream. In
a subset of genes for which the operon structure is known, our
selection criteria excluded 63% of the intra-operon genes: of
75 operons encoding 267 total genes, upstream sequence data
from all 75 first genes and 71 intra-operon genes were included
in our analysis. For this subset the mode of the MAP values
was shifted toward lower MAPS for the predictions made
within operon regions as compared to the predictions made
upstream of operons (10.5 versus 18.9).

To determine how many of the E.coli sites predicted by this
genome-wide analysis were likely additional sites for known
TFs we constructed transcription factor motif models for each
of 46 known TFs (Table 1) to scan the E.coli sites identified in
the predictions. Specifically, the predicted sites from the study
set that corresponded to known TF-binding sites were grouped
(using data from all the species) and common models for each
TF made using the Gibbs site sampler (9). These models were
then used to scan (10) a data set consisting of the unknown
E.coli sites present in the most probable motif predictions from
the genome-wide analysis. Using a stringent expectation value
cut-off of 0.5 an additional 187 sites were identified as prob-
able sites for these 46 known TFs (Table 1). Under these strin-
gent conditions the remaining E.coli sites (and the motif
models) are expected to represent binding sites for the >250
uncharacterized transcription factors predicted in E.coli.

A

B

C

D

Figure 2. (Left) Snapshot from the fabA Gene Page on our web site illustrating
the data available. (A) At the top of each Gene Page are given the gene name
as it appears in both the E.coli genome GenBank entry (27) and in EcoGene
(28; http://bmb.med.miami.edu/EcoGene/EcoWeb/index.html), as is the name
of the divergently transcribed gene when one exists. The species in which
orthologs were detected for the gene are indicated (EC, E.coli; ST, Salmonella
typhi; YP, Yersinia pestis; HI, Haemophilus influenzae; AA, Actinobacillus
actinomycetemcomitans; VC, Vibrio cholerae; SP, Shewanella putrefaciens;
PA, Pseudomonas aeruginosa; TF, Thiobacillus ferrooxidans). For those genes
with a documented regulatory site(s), the reference(s), the genomic coordi-
nates of the site(s) and the site type(s) are given. Information from up to three
predictions (ordered by MAP value) are then described. For each prediction the
species in which a site was predicted are indicated, as are the total number of
sites and the number of sites in the E.coli data, followed by the MAP value of
the motif. Links are provided to the motif model (B), represented as a sequence
logo (29), and to two representations of the sites that were identified: a
sequence logo (C) and a sequence alignment with site probabilities (D). The
E.coli genomic coordinates of the site (an R indicates that the solution
sequence given is the reverse complement of that in the GenBank entry), as
well as the site sequence plus 5 flanking bp, are given. When a predicted site
overlaps a previously documented site the site type (TF name or stem–loop) is
indicated. If a predicted site overlaps an E.coli intergenic repeat (28), that is
also reported. While analysis of the study set for correlation to documented
TF-binding sites was confined to the most probable motif predictions, up to
three predictions (ordered by MAP value) are described on our web site for
each gene, since many genes are regulated by more than one transcription
factor. The most probable motif (the YijC-binding site) detected in the fabA
data is shown.
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Conclusions

Some caveats are appropriate to these findings. Analysis of the
results from our study set revealed that regulatory stem–loops
are also conserved across species. While stem–loops are a
source of transcription regulation and therefore of considerable
interest, they are also a source of false positive results when
searching for TF-binding sites. Because sequences within the
coding region of orthologous genes are highly conserved,
phylogenetic footprinting was restricted to intergenic regions;
therefore, TF-binding sites that occur within ORFs were not

detected. It should also be noted that intergenic regions
between divergently transcribed genes in E.coli were analyzed
with respect to both genes because gene order is frequently not
conserved across species. If, however, gene order for a given
pair of divergent genes was conserved in the other species, the
most probable motif predictions for both data sets often identi-
fied the same site (of 432 total divergent gene pairs, 267
identified the same site in E.coli), despite the distribution of
spacing models focusing at opposite ends of these intergenic
regions. This does not necessarily imply that the predicted site

Figure 3. Distributions of the MAP values for the most probable motifs from the study set (183 data sets) and the full set (2097 data sets). (A) The distribution of
MAP values for the full set compared to the study set, illustrating the shift to the left (toward lower MAPs) for the full set (see text) and indicating the relative
number in the study set of genes that have experimentally identified sites compared to the full set. (B) The distribution of MAP values for the study set broken down
according to the number of orthologs detected for each gene. (C) The distribution of MAP values for the full set broken down according to the number of orthologs
detected for each gene. Comparison of (B) and (C) again illustrates the shift toward lower MAP values for the full set compared to the study set, as well as the
observation that when data were available from only two species the predictions typically had lower MAP values.
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is a regulatory site that affects the expression of both genes.
Finally, because the available experimental data are biased
toward common metabolic pathways, results for the study set
may not be representative of all E.coli genes, even after adjust-
ment for the number of orthologs. The TF-binding site data we
collected from DPInteract, RegulonDB and the literature are
also incomplete, resulting in a bias toward underestimation of
the reliability of predictions from our study set. Indeed, our
identification of the YijC-binding site upstream of the fabA
gene proves that previously undetected TF-binding sites are
present even in well-studied promoters.

Previous efforts to identify TF-binding sites in the complete
genome of E.coli required that information be provided as to
known or likely sets of co-regulated genes. Most efforts have
focused on identifying additional binding sites for known TFs
(3,11,12). This approach requires that a set of binding sites for
a TF have been experimentally identified; these sites are then
aligned and weight matrices constructed to search the genome
or upstream regions for matches. Additional binding sites for
∼50 characterized E.coli TFs have been predicted in this
manner, albeit with typically high false positive rates. The
approach of McGuire et al. (13) used cross-species data, but
also required the prediction of regulons to provide sets of co-
regulated genes. Most of the highly significant motifs
predicted in E.coli in this manner were identified as sites for
known TFs and lower scoring motifs were prone to high false
positive rates. Strategies to reduce the number of false posi-
tives have varied from combining string matching with the
weight matrix search (3) to filtering the results by position in
the coding or non-coding regions (3,11) and base composition
(11,13). Our method eliminates the need to identify known or
likely sets of co-regulated genes, requiring only genome
sequence data for a set of related species, in this case the
gamma proteobacteria. In addition, the results presented here
benefited from directly incorporating into the Gibbs sampling
algorithm the distribution of spacing model to focus on the
most probable locations for TF-binding sites and the position-
specific background composition to account for heterogeneous
base composition.

Identification of motif models and the sites upstream of indi-
vidual genes is the first step toward understanding the tran-
scription regulatory network of E.coli. Clustering these models
to identify sets of co-regulated genes (regulons) is the next
critical step. Motif models identified from orthologous data
sets are typically more specific (i.e. have more highly
conserved positions) than motif models from data sets of co-
regulated genes. Therefore, clustering of these models is not
straightforward and we are currently developing a Bayesian
clustering algorithm to address these issues.

Cross-species comparison involves analyzing sets of inter-
genic sequences which are expected to have similar regulation
without having to assay for gene expression. By using this type
of data-driven approach that does not rely on prior knowledge
of co-regulation we have shown that such comparisons,
applied to a set of nine genomic sequences from gamma
proteobacteria, yielded footprint sites for thousands of genes
with significant accuracy. These results will also aid the
prediction of gene function for the >1600 uncharacterized
ORFs in the E.coli genome (27); based on the results presented
here, we predict a function for yqfA related to fatty acid meta-
bolism that requires its co-regulation with fabA and fabB.

Furthermore, as illustrated by the identification of YijC using
DNA sequences derived from these predictions, this approach
promises to open a new avenue for the identification of not
only TF-binding sites but also their cognate TFs. Finally, the
large number of predicted sites with significant MAP scores
(Fig. 3A) suggests that perhaps the core transcription regula-
tory network of E.coli is now within reach.
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