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Abstract
Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination
(CSR), is critical for the immune response and depends on the extensive integration of signals
from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like
receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-
dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering
together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation
and antibody responses. The requirement of both BCR and TLR engagement would ensure
appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely
plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T
cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is
also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR
engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in
turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC)
reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration
with signals from the pathogen or immune cells and their products, determine the ensuing B cell
antibody response.
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I. B CELL DIFFERENTIATION VIA INNATE AND ADPAPTIVE IMMUNE
RECEPTORS
A. The Innate Immune Response

The protection from a nearly unlimited number of pathogens encountered during the lifetime
of an individual is achieved through the integration of innate and adaptive immune
responses, which are intrinsically linked by crosstalk through cells and molecules.1–6 The
immune system detects and eliminates invading pathogenic microorganisms, as well as
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infected and neoplastic self-cells, by distinguishing them or associated molecules from
“normal” self-cells and self-molecules. While lower organisms have only an innate immune
system, higher organisms, beginning with jawed vertebrates, in addition possess a more
sophisticated system: the adaptive, or acquired, immune system.7–10 Innate immunity
provides an early, though non-specific, initial response to pathogens.7,11–14 In contrast,
adaptive immunity requires a lag period for activation, is specific, diverse and highly
efficient in targeting of pathogens8,9,15,16 (Table 1).

The innate immune system is a universal and ancient form of host defense against infection.
7,10,17 In mammals, it is composed of diverse cell types, including macrophages, dendritic
cells (DCs), neutrophils, basophils, mast cells, eosinophils and natural killer (NK) cells, and
molecules and molecular systems, such as anti-microbial peptides, acute-phase proteins
(collectins, ficolins, and pentraxins) and complement. 8,9,13 Innate immune cells constantly
sample the environment for the presence of pathogens through their germline-encoded
pattern recognition receptors (PRRs).3,7,9,13,18 PRRs primarily bind to “non-self” molecules
that have conserved features known as microbe-associated molecular patterns (MAMPs); an
alternative term is pathogen-associated molecular patterns (PAMPs). MAMPs are unique
chemical structures found in the microorganism but generally absent in the higher hosts. For
example, LPS contains sugars and lipids composed of chemical bond arrangements not
found in higher eukaryotes, thereby constituting a unique MAMP. Another MAMP is
unmethylated, CG-containing DNA (CpG) from bacteria and viruses.19 LPS and CpG are
recognized by an important subset of PRRs known as TLRs.3,20–24 Other PRR classes
include NOD-like receptors (NLRs), CARD helicases, C-type lectins, and scavenger
receptors.3,10,25 (Table 2). Some of these receptors may be functional in B cells, however
their effects on B cell antibody responses are not known, and they will not be considered
further here. After sensing pathogens via their PRRs, macrophages and mast cells are
activated to phagocytose the pathogen, display peptide fragments on major
histocompatibility II (MHC II) receptors, and secrete pro-inflammatory cytokines and lipid
mediators. Likewise, stimulation of PRRs on immature DCs leads to their maturation and
activation, which in turn activates adaptive immunity.7,10,13,26

B. The Adaptive Immune Response
Evolutionarily, adaptive immunity emerged after innate immunity by the need to respond to
specific and changing antigens through the use of antigen-specific receptors on the surfaces
of B and T lymphocytes. 1,4,15,27,28 Even though only jawed vertebrates possess a true
adaptive immune system, recent evidence indicates that jawless vertebrates, such as lamprey
and hagfish, contain lymphocyte-like immune cells expressing variable leucine-rich
receptors (VLRs), which are triggered to rearrange upon infection with pathogen, and
display a specificity for antigen similar to antibodies of the jawed vertebrate adaptive
immune system.29–36 The adaptive immune response enables higher vertebrate animals to
adapt their response to a pathogen to be more specific and effective, and to mount a faster
and stronger response during subsequent encounters with the same pathogen (which is
referred to as immunological memory).

The mechanisms of generating antigen-specific receptors in the adaptive system involve
extensive variability and rearrangement of receptor gene segments. During their
development, B and T lymphocytes rearrange those portions of their genomes, which code
for BCRs and T cell receptors (TCRs), respectively. Lymphocytes display on the
extracellular surface of their plasma membranes multiple (hundreds to thousands) identical
copies of their BCR or TCR with unique antigen specificity among the pool of total
lymphocytes.37,38 The rearrangement and clonal distribution of antigen receptors is different
from the previously described PRRs, which do not rearrange and usually have the same
sequence in all cells that express them in an organism (Table 1). When antigen receptors
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bind an antigen on a bacterium, virus, or parasite, they cluster together, thereby bringing into
proximity membrane-associated and intracellular signaling molecules, contributing to
lymphocyte differentiation. Such an antigen receptor crosslinking process only occurs in
those B and T lymphocytes that express receptors with an above-threshold affinity for
antigen to ensure that only antigen-specific lymphocytes are amplified and differentiate into
effector and memory cells, which have the same specificity for the antigen that initiated and
drove the response.39,40 Antibodies (and BCRs) are further diversified by CSR and SHM.

C. B Cell Differentiation
B lymphocytes play major roles in the immune response by producing antibodies against
antigen, as well as by functioning as professional antigen presenting cells (APCs), and by
producing cytokines.41–44 B cells produce high-affinity antibodies which can directly
inactivate pathogens,45–47 can opsonize pathogens to assist innate immune cells in
eliminating pathogens, and, finally, can activate complement.8,9,48 Conversely, B cells are
directly and indirectly informed about the presence and nature of pathogens by innate
immune elements such as TLRs,10,13,49 and are indirectly informed by complement factor
C3d.50–52 Dysregulated and mis-targeted B cell antibody responses could result in
autoimmunity, whereas impaired antibody responses during an actual infection could result
in an immune deficiency.

In mammals, B cells begin their development in the bone marrow from lymphoid progenitor
cells, which in turn derive from pluripotent hematopoietic stem cells. B cells derive their
name from the Bursa of Fabricius in chickens, which is the equivalent organ of bone
marrow in mammals. Antibody diversification during B cell development occurs by
sequential Ig gene recombination where noncontiguous Ig variable (V), diversity, and
joining (J) gene segments are recombined into functional V(D)J genes.37,38 The
development of mature B cells and the generation of a diversified antigen receptor repertoire
are crucial processes, but they are beyond the scope of this review. Here, we will focus on
events that occur after B cells have completed their development in the bone marrow and
have matured in peripheral organs such as the spleen and lymph nodes, where they are ready
to respond to infection.

Upon encountering antigens, naïve mature B cells (IgMlo IgDhi) exit the resting state,
increase metabolic activity and enter the cell cycle to initiate proliferation and concomitant
differentiation, eventually leading to fully differentiated effector cells which produce high
affinity antibodies against pathogenic targets.53–56 Full differentiation of B cells typically
results in non-cycling short- or long-lived plasma cells (also referred to as plasmacytes, to
include cells at different stages of differentiation), which are specialized to produce large
amounts of antibodies, and memory B cells which can be quickly differentiated into plasma
cells upon reinfection.

Prolonged and continuous engagement of multiple receptor types is required for B
lymphocytes to be activated, to proliferate, to differentiate and to maintain their survival.
57,58 B cells begin to proliferate within 24 hours after induction from stimuli, such as BCR
crosslinking by antigens, and engagement of other surface receptors, including CD40 and
TLRs (Fig. 1); after the initial cell division B cells divide continuously every 6–8 hours.
55,59,60 DCs and T cells require prolonged stimulation before differentiation,61,62 whereas
innate immune cells, such as macrophages and neutrophils, respond faster upon sensing
pathogen and are attracted to pathogens via chemotaxis by following concentration gradients
of pathogenic components,63,64 reflecting the differential roles of different types of immune
cells in innate and adaptive immunity.
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The initial differentiation of naive B cells in secondary lymphoid organs upon antigen
recognition can result in their quick differentiation into short-lived plasmacytes, which
secrete a burst of mostly IgM antibodies, usually of low-affinity, to limit the spread of
pathogens and blunt the infection. Most activated B cells enter the GC reaction to undergo
CSR to generate antibody isotypes with different biological effector functions, and SHM to
generate antibody mutants as substrates for antigen-mediated positive selection of higher
affinity antibodies. Both CSR and SHM are initiated by the enzyme activation-induced
cytidine deaminase (AID),65,66 which is preferentially expressed in activated B cells,
especially those in GCs.

Activated DCs in the secondary lymphoid organs can process and present peptides to T
follicular helper cells (TFH)67 in GCs68–71 of spleen, lymph nodes, Peyer’s patches (PPs)
and isolated lymphoid follicles (ILFs) in the gut.72 Internalization and processing of
pathogenic proteins lead to the display of antigen-derived peptides on the MHC II receptors
of antigen-specific B cells, which then make cognate interactions with TFH cells (that are
specific for the same antigen) via MHC II-antigenic peptide-TCR interactions. In addition, B
cells and T cells further contact each other through the membrane protein receptor pairs
CD28:CD80/CD86, and inducible costimulator (ICOS): ICOS ligand (ICOSL), which are
located on the surfaces of T cells and B cells, respectively. Activation of TFH by DCs or
cognate B cells leads to upregulation of the membrane protein receptor CD154 (CD40L) on
T cells. The engagement of CD40, a member of the TNF family of transmembrane receptors
located on the surface of B cells,73,74 by CD154 results in vigorous B cell proliferation and
differentiation, as will be detailed in section II.C. In addition to membrane protein receptor
interactions, several types of interleukin (IL) molecules greatly influence the nature of the
differentiation program for T and B cells.

The clonal expansion of a few parental B lymphocytes that are activated, and their
concomitant differentiation to plasmacytes, which secrete thousands of antibodies per
second,75–78 leads to the secretion of millions of affinity-matured and class-switched
antibody molecules targeting specific antigens. Following antigen clearance, the expanded B
cell pool contracts, likely due to engagement of inhibitory Fc receptors (FcRs) on B cells by
excess antibodies,79–84 and by competition for homing in the bone marrow stromal
environment,85,86 thereby ensuring that optimal titers of high-affinity antibodies are
produced.

D. CSR in Humoral Immune Responses
The prominence of antibodies in immunity is illustrated by the fact that all current clinical
vaccines function at least in part by eliciting protective antibodies,87,88 which are usually
class-switched and of high affinity, similar to those generated during natural infections.
Naïve B cells display IgM and IgD on their surface, and CSR substitutes the original IgM
isotype with IgG, IgA and IgE by replacing the constant region of heavy chain (CH) of
antibodies65,89–97 (Fig. 2).

The first antibodies to be produced are of IgM class, and are likely encoded in the germline,
as the B cells that produce them have not yet completed the GC reaction and thus have not
undergone SHM. The intrinsic affinity of the initial IgM for antigen is relatively low,
however the overall avidity of IgM for antigen is relatively high, as its pentameric structure
containing a total of ten identical Fab arms results in a gain in local entropy when antigen
binding has been initiated in any one of the ten arms, enabling these early IgMs to efficiently
coat bacterial and viral antigens during the early stages of infection.98 99 The large size of
the initially produced pentameric IgM restricts its distribution mainly to the blood and
prevents it from crossing efficiently into extravascular spaces and binding pathogens
systemically.
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In contrast to IgM, all other antibody isotypes diffuse efficiently to extravascular sites, and,
therefore, their generation is critical during an infection. Class-switched antibodies possess
diverse biological effector functions, including direct pathogen or toxin/virulence factor
neutralization, opsonization, complement activation, sensitization of mast and NK cells,
extravascular diffusion, improved transport properties and longer half-lives.9,92,96,97,100,101

A deficiency in CSR, whether due to B cell intrinsic or extrinsic causes, would lead to an
impaired antibody response during an infection, as occurs in humans with the Hyper IgM
(HIGM) syndrome.97,100–102 These individuals are highly susceptible to infection and
require injections of IgG fractions from pooled sera of many healthy donors to provide
passive antibody-mediated protection against potential pathogens.

B cells express both the exquisite receptor for adaptive immunity, i.e. BCR, and receptors
for innate immunity, such as TLRs. In addition to being stimulated by T-dependent signals,
B cells can be directly stimulated by engagement of their TLRs by the respective ligands.
Innate and adaptive immune signals can therefore be integrated in the same B cell.17,54

II. THE ROLES OF BCR, CD40, TLRS AND CYTOKINE RECEPTORS IN CSR
Signaling pathways from BCR, CD40, TLRs, and cytokine receptors play dominant roles in
B cell antibody responses. While T cell help is critical for optimal B cell differentiation,
including CSR and SHM, recent evidence indicates that T-independent signals from BCR
and TLRs, also significantly contribute to the antibody responses against microbial
pathogens. Mutations that interfere with BCR signaling, such as those in genes encoding
several tyrosine kinases, phosphoinositide 3 kinase (PI3K), and phospholipase Cγ2 (PLCγ2)
and their several signaling adapters, while they result in varying deficiencies in B cell
development, compromise antigen recognition and subsequent signaling, resulting in severe
impairment of antibody production and CSR.16,103–105 Humans106–110 and mice111–114

carrying mutations in TLR genes or in genes encoding TIR-domain adapters (such as
MyD88115–118, TRIF119) and TLR regulatory molecules (such as CD14,120,121 which is a
co-receptor for TLR4, and Unc93b1,113,122,123 which is involved in correct endosomal TLR
trafficking) display varying impairments of innate and adaptive immune responses, as
reviewed recently.124–127 However, the extent to which the defect directly impairs B cell
responses remains unclear.20,49,128,129 While one signal alone can directly activate B cells,
the response is limited in terms of the antibody isotypes produced, and combining multiple
signals together broadens the scope of the antibody response by leading to increased B cell
differentiation. It is likely that B cells are optimally differentiated by more than one signal,
17,54 with BCR and TLR signaling contributing to the generation of optimal antibody
responses.

A. BCR Signals
One of the primary B cell activating signals is provided by BCR crosslinking, where several
BCR units composed of the membrane Ab, Igα, Igβ, CD19, CD21, CD81 and associated
adapters (Fig. 1) are brought together into close proximity to initiate downstream signaling.
104,130,131 BCR crosslinking leads to phosphorylation of immunotyrosine-based activation
motif (ITAM) receptors, which in turn activate several enzymes, in particular PI3K and
PLCγ2. These two enzymes generate second messenger molecules, such as phosphorylated
phosphotidylinositols (PtdIns) by PI3K, and inositol triphosphate (IP3) and diacylglycerol
(DAG) by PLCγ2, leading to the release of free intracellular calcium ions (Ca2+).
Subsequent nuclear factor bound to κB (NF-κB) activation results in an increase in the levels
of transcription factors required for entering the cell cycle and differentiation pathways.
However, in the absence of other stimulating signals, B cell proliferation is followed by
activation-induced cell death (AICD),56,132–135 a process probably involved in the
elimination of B cells activated by self-antigens in the absence of an infection. Thus, BCR
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signaling per se is insufficient for full B cell differentiation, including CSR, but it synergizes
with strong signals from different receptor families, such as CD40 or TLRs, to induce B cell
terminal differentiation, including CSR.

B. Cytokine Receptor Signals
Cytokines, such as IL-4, IFN-γ and TGF-β, influence B cell differentiation by combining
with other signals to direct the B cell response, such as CSR to specific isotypes.67,136–138

Cytokine receptor signaling in B cells acts in part by inducing IgH germline transcription
(IH-CH) of heavy chain (CH) regions participating in CSR. 91,92,96,136,138 Each CH gene
cluster consists of three distinct and sequential components: the IH promoters for germline
transcript initiation, the switch (S) regions where DNA breaks for CSR occur, and finally,
the CH genes themselves (Fig. 2B).

In the presence of CD40 or LPS engagement, IL-4 induces the activation of the transcription
factors NF-κB and STAT-6, whose DNA binding sites include those located in Iγ1 and Iε
promoters. After NF-κB and STAT-6 bind to these promoters, germline Iγ1-Cγ1 and Iε-Cε
transcription for IgG1 and IgE, respectively, is initiated. Likewise, Iγ2b and Iα promoters
contain binding sites for the transcription factors Smud and Runx, which are induced upon
stimulation with TGF-β to mediate CSR to these two classes.91,92,96,139 As cytokines are
mainly, although not exclusively, secreted by TH1 and TH2 cells, and can be classified into
TH1 (IFN-γ and TGF-β) or TH2 (IL-4) classes138, the antibody isotypes directed by
cytokines can also be classified, in the mouse, into TH1 (IgG2a, IgG2b, IgG3) and TH2
(IgG1, IgE) isotypes, with IgM and IgA not falling exactly into either category.

Germline IH-CH transcription plays a critical role in CSR, likely by either opening up DNA,
and/or by routing RNA polymerase II to deliver AID to S regions. S regions contain an
unusual abundance of the ‘5-WRCY-3’ hotspot,140,141 and particularly the ‘5-AGCT-3’
iteration. These sequences could play important roles in recruiting CSR factors, including
AID, and could also serve as the preferred substrate for AID142. In S regions, AID
deaminates cytosine (dC) to uracil (dU).96,142 dU can be excised by apurinic/apyramidinic
endonuclease (APE). Excision of nearby dUs on opposite DNA strands results in dsDNA
breaks, which are then thought to be re-ligated mostly by components of the nonhomologous
end-joining (NHEJ) machinery.96,143,144 The entire process replaces one CH gene with a
downstream CH gene, e.g. it replaces the Cμ gene with the Cγ1, in the case of CSR to
IgG195,96,141,145 (Fig. 2B).

C. TNFR Superfamily Signals
The TNF receptor (TNFR) superfamily consists of members such as CD40, B cell activating
factor of the TNF family receptor (BAFFR), B cell maturation antigen (BCMA), and
transmembrane activator and calcium signaling modulating and cyclophilin ligand [CAML]
interactor (TACI).146 Each member is a homotrimeric type II membrane protein consisting
of an extracellular ligand-binding domain, a membrane-spanning domain, and an
intracellular signaling domain. There is a difference in the ligands that these members bind,
with CD40 engaging CD154 on the surface of T cells, and BAFFR, BCMA and TACI
binding one or both of the soluble proteins BAFF and a proliferation-inducing ligand
(APRIL).

BAFF and APRIL are produced mainly by innate immune cells as well as by epithelial cells.
BAFFR binds BAFF, BCMA binds APRIL, and TACI binds both BAFF and APRIL.147,148

BAFF and APRIL function to promote the maturation of T1 immature transitional B cells to
mature B cells to maintain appropriate levels of mature B cells in a negative feedback
fashion, to help with the establishment of plasma cells to their niches in the bone marrow,
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147–150 and, finally, to induce or enhance B cell differentiation, including CSR.151–155 One
report suggested the direct induction of CSR by engagement of TACI or BAFFR,152

however, in our experiments, BAFF did not induce CSR, although BAFF enhanced LPS- or
CD40-driven CSR, in mouse B cells stimulated in vitro. Thus, BAFF may enhance CSR
when B cells are activated by an additional stimulus, as evidence suggests in the case of B
cell activation by viral components151,153,155 or epithelial cell-secreted BAFF and
APRIL156–159 as will be described in section D1 below. Finally, BAFF can be produced by
IgD-armed basophils upon binding bacteria, thus establishing a link between initial IgD
production and sustained, local B cell differentiation, including CSR.160

In B cells, the main stimulatory surface receptor belonging to the TNFR superfamily that
induces robust B cell differentiation is CD40. CD40 is found on the surfaces of other APCs,
and is generally required for their activation. This receptor has been found to be essential in
mediating a broad variety of immune responses, including T-dependent CSR, SHM, GC
reaction, and plasma and memory B cell formation.74,161–163 CD40 signals are transmitted
by interaction of CD40 cytoplasmic tail with TNF receptor-associated factor (TRAF)
adapter proteins, including TRAF2, TRAF3, TRAF5, TRAF6, and TTRAP,164,165 which
ultimately results in the activation of transcription factors such as NF-κB and activator
protein 1 (AP-1).163 The most important TRAFs that transduce CD40 signals are TRAF2
and TRAF6. These subsequently interact with germinal center kinase (GCK), which then
activates the c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK)
pathways.165 TRAFs mediate NF-κB induction by activating the inhibitor of NF-κB kinase
(IKK) complex to phosphorylate the inhibitor of κB (IκB) proteins, thereby releasing NF-κB
for nuclear translocation and binding to its target DNA166 (Fig. 1). NF-κB then orchestrates
a transcriptional program, which includes the induction of molecules necessary for B cell
differentiation, including induction of AID for initiation of CSR and SHM.164 As the T-
dependent B cell response in vivo is MHC-II restricted, in vitro studies of B cell
differentiation by CD40 should perhaps also involve simultaneous MHC-II engagement.167

D. TLR Signals
1. TLRs in Immune Cells—The involvement of TLRs in mammalian immunity was first
discovered based on their homology to the Drosophila Toll receptor, where Toll plays a dual
role in the dorso-ventral segmentation during development and in the production of
antifungal peptides during an infection.54,168,169 Most mammalian species contain ten to
fifteen different TLRs, each of which senses one or a limited number of MAMPs (Table 3),
and, in a few cases, host-derived molecules.21,170–172 TLRs are expressed in innate immune
cells, B cells and in some non-immune cell types, including epithelial cells. In particular,
epithelial cells sense bacteria via TLRs, and then secrete BAFF or APRIL, which activates B
cells residing in the periphery and promotes their CSR, thereby containing the bacteria.156–
159 Non-immune functions of TLRs, as in development, cancer or tissue injury173 are
outside the scope of this review.

TLRs consist of an extracellular or endosomal sensing domain that contains leucine-rich
repeats (LRRs), a transmembrane region, and a cytoplasmic Toll/interleukin I/resistance
protein (TIR) domain.23,174,175 LRRs fold into a sickle-shaped β-coil domain and confer
specificity in sensing a particular class of ligands, mainly through their concave, leucine-rich
surface.22 The intracellular and variable TIR domain confers signaling specificities to
different TLRs, enabling each of them to interact with a limited number of TIR-domain
signaling adaptor proteins via homotypic TIR-TIR interactions.21,22,24,174,176,177

Comparative sequence analysis of the human TLRs have revealed that the members of the
TLR family can be divided into five subfamilies, as represented by TLR2, TLR3, TLR4,
TLR5, and TLR9. The TLR2 family consists of TLR1, TLR2, TLR6, and TLR10; the TLR9
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subfamily consists of TLR7, TLR8, and TLR9; the other three subfamilies, TLR3, TLR4
and TLR5, contain only the one indicated member.178

Upon engagement by their ligands, TLRs are thought to dimerize and signal as homodimers
(or possibly homomultimers), with the exception of TLR1/TLR2 and TLR2/TLR6, which
signal as heterodimers. Signaling pathways emanating from different TLRs are complex and
often redundant (Fig. 1). It is generally accepted that there are two main transmission
pathways in the propagation of TLR signals, mediated by two TIR domain-containing
adaptors: the myeloid differentiation factor 88 (MyD88) pathway and the TIR domain-
containing adaptor inducing interferon-β (TRIF) pathway, respectively. The other three
known TIR domain-containing adapters are MyD88-adaptor-like (MAL, also known as Toll/
interleukin 1 receptor domain containing adaptor protein, TIRAP), TRIF-related adaptor
molecule (TRAM), and the recently discovered sterile and armadillo motifs (SARM). TLR4
signals through both the MyD88 pathway, as bridged by TIRAP, and the TRIF pathway, as
bridged by TRAM; TLR9 signals directly and only through the MyD88 pathway. With the
exception of SARM, the other four adaptors utilize IL-1 receptor associated kinases
(IRAKs) to transmit signals to TRAFs, which ultimately leads to the nuclear translocation
and target gene promoter binding of transcription factors such as NF-κB and AP-1, thereby
initiating gene transcription of IRF-3 and STAT-1, and to induction of AID expression to
mediate CSR and SHM in activated B cells.176,177 SARM has been suggested to negatively
modulate signaling,174 possibly to restore the pre-activation non-signaling state or to
dampen the response.

In monocytes, in which TLRs are highly expressed, TLR engagement induces their
differentiation into macrophages or DCs, and further TLR stimulation can modulate immune
functions of these cells, including enhancement of phagocytosis of pathogens.179,180 In DCs,
TLRs appear to be expressed in a cell subset-dependent manner: myeloid DCs in peripheral
tissues express most TLRs except TLR9, while plasmacytoid DCs in blood express mostly
TLR1, TLR6, TLR7, and TLR9.26,181,182 Binding of the appropriate ligand induces DC
maturation, including enhanced antigen presentation and cytokine secretion, and
upregulation of the stimulatory receptor CD86, all of which greatly influence the adaptive
immune response.181 The presence and potential function of TLRs in T lymphocytes, which
generally sense antigen presented by DCs and B cells, is currently unclear, though there is
some evidence indicating that TLR2 engagement may remove the Treg suppressive functions
during ongoing infection.183,184

2. TLR Signaling in B Cell Antibody Responses—B cells express high levels of
most TLRs and respond to stimulation by TLR ligands associated with pathogens, likely
those present in pathogens phagocytosed by B cells, as well as released, soluble TLR
ligands. The details of the TLR signal transduction pathways in cells such as macrophages
and DCs21,22,185 described in the previous section are likely relevant to B cells as well (Fig.
1). TLR engagement by MAMPs such as LPS or CpG induces potent B cell differentiation,
19 similar in magnitude to that induced by CD40, and much stronger than that induced by
BCR crosslinking alone. Even though direct B cell differentiation and antibody production
in response to TLR ligands, such as LPS or flagellin, was reported since the 1960s,17,54,186–
189 only recently has the significance and scope of these data received due attention.
10,17,20,49,54,177 While TLRs are clearly functional in B cells, relatively little is known about
how TLRs influence B cell differentiation, including CSR and SHM.176,177,190

The role of TLRs in B cell antibody responses has been somewhat controversial, at least in
part due to different outcomes from different experimental settings. In one study, TLR
signaling in B cells was found to be indispensable for optimal B cell antibody responses
against native proteins, using LPS or flagellin as TLR ligands in immunizations employing
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wild-type, TLR4- or MyD88-deficient B cells adoptively transferred into B cell-deficient
mice.49 However, in other studies, antibody responses to haptenated proteins mixed with
different adjuvants, many of which contain TLR agonists, was not significantly impaired in
mice doubly deficient in MyD88 and TRIF.128,175,191 One explanation for these data is that
antibody responses to haptenated proteins may be different from those against natural and
unhaptenated proteins, perhaps due to the alternation of the protein structures by the
haptenation process.175,191 Alternatively, it has been proposed that the repetitive arrays of
haptens cross-link BCR with high efficiency such that TLR signaling may not be essential
for the B cell responses, whereas soluble protein antigens that cannot efficiently crosslink
the BCR may require TLR stimulation to elicit a robust response.192 The fact that B cells
highly express most TLRs and are efficiently activated by engagement of their ligands
points to a role for TLRs in optimal B cell differentiation, as will be detailed in the
subsequent sections.

TLR stimulation of B cells in combination with cytokines has been used to drive CSR to
specific isotypes. In fact, well before the discovery of CD154 as one of the main TH cell
receptors, LPS was used to activate mouse B cells,187 and was subsequently found to do so
by engaging TLR4.111,193 LPS stimulation of B cells also led to the historical discovery of
NF-κB.194–196 Since LPS stimulation of B cells induces NF-κB and AID, and results in
CSR to IgG3, the specificity of CSR could be partially influenced by TLR ligands such as
LPS, but is greatly influenced by cytokines, as was mentioned earlier.

III. TLR AND BCR SIGNALING SYNERGIZE TO INDUCE CSR
A. Surface TLRs in the Induction of CSR

The surface TLR1, TLR2, TLR4, TLR5, and TLR6 bind MAMPs that are expressed on the
surface of microorganisms, while the endosomal TLR3, TLR7, TLR8, and TLR9 bind
nucleic acid MAMPs located inside microorganisms. TLR4, which is expressed on the
plasma membrane, binds LPS present on the surface of bacteria, and is internalized together
with LPS,197,198 which could be a general feature of TLR recognition and downstream
trafficking and signaling events.199–202 TLR agonists are potent drivers of B cell
differentiation, including NF-κB and AID expression, which coupled with cytokine-directed
germline IH-CH transcription, induces CSR to specific isotypes. Experimentally, LPS
stimulation of mouse B cells induces CSR to IgG3; LPS in combination with IL-4 induces
CSR to IgG1 and IgE; LPS in combination with IFN-γ induces CSR to IgG2a; finally, LPS
in combination with TGF-β induces CSR to IgG2b and IgA.91,92,96 Likewise, we have
recently found that stimulation of TLR1/6 by Pam3CSK4 results in CSR to the isotypes
specified by cytokines.203 Therefore, TLR signaling results in context-dependent
modulation of both the magnitude and the fine structure of the B cell antibody responses.

TLR ligands may stimulate not only their cognate TLRs, but they may also happen to bind
and crosslink the BCR in a small fraction of B cells, thereby activating an entirely different
stimulation pathway.204–206 In particular, TLR ligands are thought to behave in two
different ways: a T-independent type I (TI-I) and a T-independent type II (TI-II) way.
8,9,54,189,204,207 At saturating doses, TI-I antigens, including LPS, will bind all B cells via
their TLR4 and, therefore, virtually all B cells will be (polyclonally) activated (mitogenic
stimulation). At much lower LPS concentrations, those fewer B cells whose BCR also
happens to bind the O-saccharide component of LPS with high affinity, are thought to
receive enough signals from both TLR4 (engaged by the lipid A component of LPS) and
BCR, hence the name TI-II. Even though TLR4 engagement by LPS does not require BCR
crosslinking to induce B cell differentiation, BCR crosslinking can further enhance TLR4-
induced B cell differentiation198,208 and CSR;203 the same also holds for TLR1/6-induced
CSR.203 Furthermore, while in vitro stimulation of B cells with high (mitogenic) doses of
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LPS, in the presence of cytokines can induce CSR to specific isotypes, the contribution of
BCR crosslinking by LPS under these in vitro conditions may skew the response to a TI-II
response (TLR + BCR), which engages the BCR and thus results in the amplification of
antigen-specific B cells, rather than a genuine TI-I (TLR alone) response.

B. Endosomal TLRs in the Induction of CSR
The endosomal location of TLR3, TLR7, TLR8, and TLR9 may be optimal in allowing their
sensing of internalized nucleic acid MAMPs from viruses and bacteria bacteria, while likely
avoiding sensing host nucleic acids.202,209 While the dynamics of distribution and
maturation of endosomal TLRs is still a matter of active research,210 several reports indicate
that each endosomal TLR may not be located in exclusive endosomes, but rather they may
be located to common endosomes hosting several different TLRs, where each TLR senses
its respective ligand as it is gradually exposed in a disintegrating microorganism.211,212

Stimulation of the endosomal TLR9 by unmethylated CpG DNA has been thought to
suppress class switching to IgG1 and IgE isotypes but promote class switching to IgG2a in B
cells activated by LPS or CD154 and IL-4, likely by regulating germline transcription.213

However, there has been a great variability in the data of different research groups,
particularly in the magnitude and the identity of the TLR9-enhanced or -suppressed isotypes,
213–218 and the controversial involvement of T box expressed in T cells (T-bet),213,219–221 a
transcription factor important for TH1 cell polarization. CpG stimulation was reported to
suppress CSR to IgG1 and IgE induced by LPS or CD40 and the cytokine IL-4, and at the
same time promote CSR to the TH1 isotype IgG2a under these TH2 conditions,213

suggesting that CpG stimulation could somehow divert the CSR machinery to other target S
regions, which is a role usually played by cytokines.

CpG can also modulate B cell differentiation to plasmablasts/plasmacytes,86,222 thereby
resulting in complex changes in the titer of isotype-switched antibodies in culture
supernatants, and therefore complicating the monitoring of CSR. Furthermore, IFN-γ and
TGF-β, two cytokines critical for CSR to IgG2a and IgG2b, respectively, are known to
decrease B cell proliferation and survival, whereas CpG is a potent proliferation and survival
stimulus, which adds additional complexity to the overall antibody response.203

C. BCR signaling synergizes with TLR signaling
TLR-induced CSR depends on the correct cellular trafficking and localization of the
engaged TLRs, as well as whether other signals, particularly those from the BCR, are also
activated.6,199–202,223,224 TLR ligands such as LPS or flagellin, can elicit antibody
responses directed against them, complicating the delineation of the respective roles of BCR
and TLRs in anti-microbial antibody responses. B cells phagocytose antigen in a FcR- or
BCR-dependent way,225–228 efficiently process internalized antigenic proteins, as well as
sense various MAMPs present in the phagocytosed pathogen. BCR and TLR9 signaling
synergize in the induction of NF-κB in B cells,199,223,229 and BCR signaling recruits TLR9-
containing endosomes to autophagosomes,199,223 possibly as a way of efficiently
coordinating the sensing of nucleic acid TLR ligands present when a B cell internalizes
pathogens.

Signaling cross-talk between ITAM receptors and TLRs could modulate responses in
immune cells.6,224 For example, DCs responded to ssRNA by producing IFN-γ only if the
viruses had been previously opsonized with antibodies, which crosslink Fc receptors on the
DC membrane;230 crosslinking of activating FcRs in DCs and other cells can serve the same
function as the crosslinking of BCR on B cells, as both are ITAM-bearing receptors. In
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another study, vesicular stomatitis virus (VSV) induced IFN-α in DCs upon its
internalization to autophagosomes and simultaneous engagement of TLR7 by viral RNA.231

In our studies, we have found that CpG stimulation alone results in robust B cell
proliferation, but not in significant CSR, as indicated by the low frequency of B cells
expressing surface IgG, IgE, or IgA measured by flow cytometry.203 However, in the
presence of BCR crosslinking (and appropriate cytokines), CpG stimulation could lead to
robust CSR to all respective isotypes, as well as to plasma cell formation and antibody
secretion.203 Furthermore, contrary to previous reports,213,217,232 our data indicate that
TLR9 stimulation in the absence of BCR crosslinking suppresses LPS- (or CD154-) and
cytokine-induced CSR not only to TH1 but also to TH2 isotypes, and suppresses plasma cell
formation.203 However, in the presence of BCR crosslinking, LPS and CpG, as well as LPS
and Pam3CKS4, synergized in inducing CSR in a dose-dependent way.203 Similar
synergistic and antagonistic effects of have been reported for cytokine production by B
cells43 and PBMCs233 stimulated with specific pairwise combinations of TLR ligands.

CpG and other surface and endosomal TLR ligands, such as Pam3CSK4 and R848, might
not display a TH1 vs TH2 bias in inducing B cells to undergo CSR to specific Ig isotypes
(like cytokines do), but like LPS, these may act as inducers of NF-κB and AID, with the
latter initiating CSR to isotypes specified by cytokine-induced germline transcription. The
mechanism by which CpG antagonizes LPS- and CD40-induced CSR in the absence of BCR
crosslinking could be due to sequestration of signaling adapters, or due to signal paralysis.
Another possibility could be that in the absence of strong BCR crosslinking, CpG may enter
the cell via BCR-mediated uptake, setting off weak BCR signaling (low ITAM signaling),
which has been proposed to negatively regulate TLR and cytokine signaling in
macrophages.6,224 Conversely, during dual stimulation with BCR crosslinking and CpG
(mimicking the internalization of microorganisms by BCRs that have high-affinity for their
external epitopes), the strong ITAM signaling synergizes with TLR9 signaling, and results
in differentiation, as hallmarked by CSR (Fig. 3).

Considering CpG as a general inducer of B cells to undergo CSR to isotypes directed by the
different cytokines, without itself displaying an intrinsic TH1 vs TH2 isotype bias, does not
contradict the reported TH1 vs TH2 polarizing effect of CpG in other innate immune cell
types, and its use as a predominantly TH1 vaccine adjuvant.234–238 It is likely that cells such
as DCs and macrophages sense the pathogen type present in an infection by engagement of
various PRRs (including TLRs) by corresponding pathogenic MAMPs, and then produce
TH1 or TH2 cytokines that initiate the induction of TH1 or TH2 cells, which then amplify the
polarization and induce B cell differentiation and CSR to specific TH1 or TH2 isotypes.
13,26,239–241 Whether B cells, after directly sensing the type of pathogen via engagement of
their TLRs by the corresponding pathogenic MAMPs, can undergo CSR to the most
appropriate isotypes, as is the case for LPS-induced CSR to IgG3, remains to be determined.

While the role of TLRs in autoimmunity is beyond the scope of this review, the reader is
referred to several recent reviews on the subject.172,242–249 Briefly, it appears that under
conditions where TLRs sense host ligands that resemble MAMPs, such as phospholipids that
resemble LPS and could engage TLR4, or self RNA or DNA that could engage TLR3,
TLR7/8 and TLR9, B cells are activated to produce autoantibodies.250–253 This could be
particularly important in the generation of anti-DNA class-switched autoantibodies, which
are the main cause of systemic lupus erythrematosus (SLE).
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IV. TLR- AND BCR-INDUCED B CELL ANTIBODY RESPONSES AGAINST
MICROBIAL PATHOGENS
A. TLR Signaling in T-independent B Cell Differentiation

1. TLR Signaling During the Initial Phase of B Cell Differentiation—TLRs were
likely one of the first immune receptors that recognized conserved molecular patterns of
pathogens.4 A recent report described the rearrangement of lamprey antigen receptors,
where an APOBEC-related enzyme was found to deaminate the gene segments encoding
these receptors, leading to their rearrangement and thus diversification to a limited number
of configurations.32 Another report on lamprey immunity revealed the presence of B- and T-
like cells, which sense pathogens via membrane-expressed VLRs, with the B-like cells
progressing through blast formation and secreting soluble antigen-specific VLRs.36 Thus, it
is possible that TLRs, VLRs or related primordial PRRs were the original antigen receptors,
and during evolution were replaced by the newer and more and versatile BCRs, which are
based on the Ig domain fold. TLRs continued to provide information regarding the presence
and type of pathogen to innate immune cells and B cells.

TLR-mediated differentiation of B cells may be a critical component of T-independent, but
early and effective B cell clonal amplification and differentiation leading to the production
of class switched, potentially hypermutated, protective antibodies during early infection
when pathogen loads are relatively low and T cell help is not yet fully available. LPS
stimulation of mouse B cells in vitro results in IgM and IgG3 antibody production. The first
antibodies to be produced in vivo against an antigen encountered for the first time are IgM,
which can contain the pathogen in the first hours to days of infection. Studies in mice
selectively deficient in secreted IgM,254 suggest that the initial T-independent production of
IgM serves not only to contain pathogens, but by forming complexes with pathogens, serves
as an autocrine factor for continued local B cell proliferation via IgM-mediated
multimerization of soluble antigen that can now efficiently crosslink the BCR. In the
absence of timely T cell help, other cell types, such as follicular dendritic cells (FDCs), may
provide a level of stimulation sufficient for B cell activation and early IgM secretion.255

2. TLR Signaling During B Cell Differentiation in the Absence of T Cell Help—
Even though optimal CSR requires T cell help, some CSR does occur without T cell help
following challenge with viral, bacterial and fungal pathogens (Table 4). While the titers of
class switched antibodies in the absence of T cell help are usually much lower than the
optimal titers produced in the presence of normal T cell help, in several cases the titers are
enough to confer some protection against infection. Class-switched antibodies can be
generated against invading pathogens without T cell help because the enzyme AID can be
induced in part by the conserved homeodomain transcription factor HoxC4145,256,257 in a T-
independent fashion.17,54,176,177,189,192,258–260

CSR that occurs in the absence of TH cells261 is particularly applicable to antiviral antibody
responses.258,262 Immunization of T cell-deficient mice with polyoma virus resulted in the
production of virus-specific class switched IgG, although in lower titers compared to wild
type mice, whereas immunization with either a viral antigen or virus-like particles (VLPs)
did not result in IgG production, possibly due to the presence of dual TLR and BCR
engagement in the case of whole virus and lack of TLR engagement in the case of antigen
alone or VLP immunization.263 In other studies, natural IgA antibodies were produced in
response to TLR ligands of commensal gut bacteria,264 natural IgE antibodies were
generated to activate innate immune mast cells without T cell help,265 and IgG2a antibodies
were produced outside GC follicles three days after immunization.266 Considering the low
level CSR that occurs in the absence of T cell help, it is possible that this can have
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functional significance in helping to contain the low pathogen loads during the early stages
of infection when T cell help has not yet peaked198,267 (Fig. 4).

B. TLR Signaling may Play Roles During the T-Dependent Phase of B cell Differentiation
Initial IgM production by B cells is likely due to their activation by various TLRs and the
BCR, since antigen-specific T helper cell numbers do not peak until several days after their
initial activation. IgM production, in addition to providing some early and direct protection
by targeting pathogenic epitopes, also serves in the activation of complement, which then
results in microbe coating with C3d, which binds the CD21/CD35 receptors on the B cell
surface and enhances B cell activation. 267 The antibody-pathogen complexes are drained in
secondary lymphoid organs, where they are destroyed by professional phagocytes such as
macrophages, and in the process stimulate the T-dependent GC reaction.99

Direct TLR stimulation of B cells during the GC reaction, may help to sustain and shape the
processes of antibody affinity maturation, by acting as a reporter of pathogen load and
infection conditions.10,20,49,175,191 For example, initial TLR-mediated activation of B cells
leads to the upregulation of co-stimulatory CD80/CD86 and MHC-II receptors, thereby
priming B cells for more abundant and efficient interactions with T cells and DCs.268 T cell
help alone may not be sufficient for optimal antibody responses, with direct TLR stimulation
of B cells contributing to optimal antibody titers and CSR49, though this issue remains
unclear128,129,175,191. During the GC reaction, TLR signals in B cells are likely integrated
with signals from the BCR, T cells and DCs, eventually giving rise to plasma and memory B
cells, whose Ig genes encode antigen-specific, high-affinity and class-switched antibodies.
199,223,269

Immunization with CpG and hepatitis antigen resulted in higher antibody affinities than
immunization with antigen alone.270 When TLR ligands in a respiratory syncytial virus
(RSV) vaccine were inactive, the resulting antibodies were low-affinity due to impaired
SHM and were not protective.271 These reports suggest that TLRs play a role in SHM, since
their engagement contributes to the generation of high-affinity antibodies, though the
molecular and cellular mechanisms responsible have not yet been elucidated. The immune
system, including B cells, need to continually recognize and bind pathogens in order to
ultimately clear them. In particular, nucleic acid TLR ligands may be important signals for
SHM, since they would signal the presence of replicating, and potentially hypermutating,
microorganisms.272

C. TLR and BCR Signaling in Vaccine Research
1. Vaccine Adjuvants—Well before the discovery of the TLRs, vaccinologists
empirically used adjuvants such as Freund’s complete adjuvant (FCA), Freund’s incomplete
adjuvant (FIA) and Ribbi’s adjuvant, which, in addition to containing oils for forming
depots upon injection, also contain mycobacterial components (which include various TLR
ligands) in order to elicit robust immune responses to soluble protein antigens.7,10,175,273,274

Since the discovery of the crucial adjuvanting properties of TLR and other PRR ligands,
there has justifiably been an explosion in the application of defined adjuvants for use in
vaccine development.274–297

All current clinical vaccines elicit protective antibodies,87,88 frequently also eliciting the
mobilization of other immune cells, including NK cells, cytotoxic T cells, TH cells, DCs,
macrophages, etc. 274 As mentioned previously, several studies have reported that CpG or
antigen-CpG fusion immunization in humans and mice result in higher antibody titers, and/
or antibody affinities for antigen and/or longer-lasting protection,19,234,235,269,270,298–303

possibly due to enhanced CSR and SHM and expansion of high-affinity memory B cells.
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The reader may refer to a recent review for an extensive list of examples where prior CpG
administration has resulted in some protection before challenge with pathogens.304 A
comprehensive list of current clinical and experimental vaccines that target T-independent
bacterial antigens has also been recently reviewed.305

2. New Generation Modular Vaccines—Based on the promise of defined TLR agonists
for use in vaccines, a new generation of vaccines is currently being developed. These
vaccines employ particles made of biodegradable materials, lipid vesicles, or self-
assembling protein subunits, that in addition to containing protein antigen, are infused with
internal or external TLR ligands192,306–312 (Fig. 5). This approach allows for modular,
systematic and controlled testing of the best combinations of protein antigens from the
pathogens and natural or synthetic TLR agonists, taking into account the dual TLR and BCR
nature of B cell differentiation that was described in the previous section. Generally, a rigid
array of a minimum of 15–20 repeating antigens induces optimal BCR signaling.192

While modular vaccine design is still under development, as a general approach, the particle
and the TLR ligand combinations used should mimic the pathogen as closely as possible,
e.g. it may not be beneficial to use flagellin to develop modular viral vaccines since it does
not naturally occur in viruses. The TLR ligands can be LPS, Pam3CSK4, flagellin etc, which
should be incorporated on the outside of the vaccine particle, and CpG, ssRNA, dsRNA or
agonists such as imiquimod or R848, which should be best incorporated inside the particle.
Future studies may, however, report beneficial, synergistic combinations of TLR ligands
that are not normally found in the same pathogen, which may apply especially in the cases
of co-infection by two or more pathogens.

Taking this approach one step further, recent studies have explored the feasibility of
developing broad-spectrum vaccines, where immunity is provided against more than one
pathogenic strain, or against several related or even unrelated pathogens.313,314 In this case,
antigens from several different pathogens are incorporated in the same particle or separately
in mixtures of different particles, with TLR ligands typical of each pathogen also
incorporated in the particles. In principle, this approach should allow for mobilization of B
cells that produce antibodies specific for each pathogen. Issues remaining to be resolved
relate to the safety and efficacy of CpG and other TLR agonists in eliciting broad-spectrum
immunity to emerging and re-emerging pathogens.313,315

V. CONCLUSIONS
The synergy of BCR and TLR signaling critically regulates B cell antibody responses, and in
particular CSR. BCR crosslinking facilitates the encounter of endosomes containing TLR9,
and likely other TLRs, to autophagosomes as a way of surveilling the presence of nucleic
acid TLR ligands during an infection. BCR stimulation provides information on the affinity
of antigen for antibody, and the spacing and topology of antigenic arrays on the pathogen,
whereas TLR stimulation may instruct B cells on the nature of the pathogen, e.g., the
presence of a Gram+ve or Gram−ve bacterium or of an RNA or DNA virus. It would be
particularly useful for B cells to sense multiple TLR signals from a pathogen in a
combinatorial fashion, thereby leading to a more appropriate and specific response.

The dual presence of BCR and TLRs on B cells allows them to respond to a greater variety
and combination of signals than previously thought, including traditionally innate signals,
thereby allowing for fine-tuned responses that best deal with the pathogenic threat. The
interplay and synergy between BCR, TLRs, and T-dependent signals is also proving to be
both challenging and rewarding. The ultimate task remains to predict B cell behavior during
an infection in vivo based on studies of responses to defined combinations of stimuli under
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different conditions in vitro and in vivo. Knowledge of fundamental B cell signals and
typical responses would be beneficial for the design of therapies for immune deficiency or
autoimmunity, and for the development of effective vaccines.
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FIGURE 1.
Four main signals for B cell differentiation and antibody responses. During an infection,
naïve mature B cells receive several types of stimuli that are then summed up before
determining the appropriate response. DCs and TH cells interact with B cells via surface
receptors, such as CD40, and by cytokine receptors, such as IL receptors. A pathogen would
directly induce signals by crosslinking the BCR (as shown by the proximity of the O-
sccharide of LPS) and by activating innate receptors such as the TLRs (as shown by the
interaction of TLR4 with the lipid A component of LPS). TLR ligands are sensed by the
extracellular, or endosomal, sickle shaped domains, and signals are initially relayed to the
nucleus via homotypic TIR-TIR interactions (orange spheres) with TIR adapters. These
signals are integrated and initiate a response by inducing NF-κB and AP-1, inflammatory
gene transcription, IFN-inducible gene transcription, and induction of AID activity, leading
to CSR and SHM
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FIGURE 2.
Overview of CSR and SHM. a. Human B cells diversify the variable portion of their antigen
receptors during development in the bone marrow through V(D)J recombination, which is
mediated by recombination activating gene 1 (RAG1) and RAG2 recombinases. b. During
an infection, naïve mature B cells in the spleen and lymph nodes undergo rearrangement of
the constant portion of the IgH (i.e., CSR) to endow it with new biological effector
functions, as well point mutations in the variable regions (i.e., SHM) to further increase its
affinity, both of which depend on AID. Each CH region is indicated in blue color, beginning
with Cμ on the left. The intronic IgH enhancer (iEμ, light green color), which is essential for
optimal IgH gene expression, is located upstream of Cμ. The different orange colored thin
segments just upstream of each CH region are the IH promoters followed by the S regions. IH
promoters are activated in response to particular cytokines, and serve to drive germline
transcription through S and CH regions, possibly opening up local chromatin structure for
AID activity, or delivering AID to the S regions by RNA pol II or other trans-acting factors.
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FIGURE 3.
The interplay of surface TLR4 and endosomal TLR9 in CSR. a. LPS induces CSR to
isotypes, as directed by cytokines. b. CpG by itself does not induce significant CSR;
however, in the presence of BCR crosslinking (indicated by a virus which is bound by BCR;
experimentally it can be mimicked by reagents that crosslink the BCR polyclonally), it
behaves similar to LPS in inducing CSR to the isotypes specified by cytokines. c. CpG
suppresses LPS-induced CSR; however CpG synergizes with LPS in a dose-dependent way
in the presence of BCR crosslinking (d).
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FIGURE 4.
Model on the role of endosomal TLRs in B cell antibody responses. a. B cells in the
secondary lymphoid organs can be directly activated by viruses which crosslink the BCR.
This then leads to their phagocytosis, double membrane autophagosome formation, and
trafficking of the autophagosomes to TLR-containing endosomes. If any present viral TLR
ligands are sensed by TLR3, TLR7/8, or TLR9, an appropriate response is then mounted by
the B cells, which includes their differentiation (and in some cells, T-independent CSR), the
upregulation of receptors that interact with TH cells and DCs, thus enhancing the GC
reaction (b). The result of T-independent (a) and T-dependent (b) B cell differentiation is
the formation of antigen-specific plasma cells, and memory B cells, which can be quickly
differentiated to plasma cells upon subsequent re-infection (c).
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FIGURE 5.
The design features of modular vaccines. a. Virus-mimicking biodegradable particles with
favorable pharmacokinetics, which by themselves are not immunogenic, are used as
scaffolds for the incorporation of protein antigens from one or several pathogens. Initial
screens determine the most immunogenically suitable protein antigens (brown triangles) to
use. In addition, combinations of one or more natural or synthetic TLR ligands are included,
usually mimicking their occurrence in the actual pathogen(s). b. Particles mimicking
bacteria are coated with bacterial protein antigens as well as TLR ligands characteristic of
each bacterium. These composite vaccines (a, b) activate both innate immune cells as well
as B lymphocytes, which will differentiate to plasma cells that secrete antigen-specific
antibodies, as well as to memory B cells which can be activated upon potential future re-
infection. c. Legend indicates the protein antigens and the various TLR ligands used in
modular vaccines.
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TABLE 1

Features of innate and adaptive immunity

Feature Innate Immunity Adaptive Immunity

Specificity Low Very high

Receptor clonal distribution No Yes

Receptor diversity Encoded in germline Recombined gene segments

Response timeline No lag Lag time for induction

Efficiency of response Moderately efficient Highly efficient

Memory No Yes
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TABLE 2

Pattern recognition receptors

PRR Ligand(s) Immune Cells

TLRs Several surface and intracellular MAMPs Neutrophils; monocytes/Mφ; DCs; B cells

NLRs MDP; anthrax toxin; RNA; flagellin Monocytes/Mφ; DCs

CARD helicases dsRNA Neutrophils; monocytes/Mφ; DCs; B cells

C-type lectins Glycosylated microbial ligands Monocytes/Mφ; DCs

Scavenger receptors Lipid-containing microbial ligands Monocytes/Mφ; DCs

Mφ: macrophages
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TABLE 3

TLRs and their ligands

TLR Ligand(s) Microorganism TIR Adapters Immune Cells

TLR1 Triacyl lipopeptides, e.g.
Pam3CSK4

Bacteria, mycobacteria MyD88; TIRAP Neutrophils; monocytes/Mφ; mDC; B cells

TLR2 Diacyl lipopeptides, e.g.
Pam2CSK4; Lipotechoic
acid; Zymosan

Bacteria, mycobacteria, yeasts MyD88; TIRAP Neutrophils; monocytes/Mφ; mDCs; B
cells

TLR3 dsRNA Viruses TRIF mDCs; Mφ; B cells

TLR4 LPS Gram-negative acteria MyD88; TIRAP;
TRAM; TRIF

Neutrophils; monocytes/Mφ; mDCs; B
cells

TLR5 Flagellin Bacteria MyD88 Monocytes/Mφ; mDCs; B cells

TLR6 Diacyl lipopeptides Mycoplasma MyD88; TIRAP Neutrophils; monocytes/Mφ; mDCs; B
cells

TLR7 ssRNA Bacteria and viruses MyD88 Neutrophils; monocytes/Mφ; pDCs; B cells

TLR8 ssRNA Bacteria and viruses MyD88 Neutrophils; monocytes/Mφ; mast cells; B
cells

TLR9 Unmethylated CpG
containing DNA

Bacteria and viruses MyD88 Neutrophils; monocytes/Mφ; pDCs; B cells

TLR11 Profilin Toxoplasma MyD88 Monocytes/Mφ; B cells

Mφ: macrophages; mDCs: myeloid DCs; pDCs: plasmacytoid DCs.
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TABLE 4

T cell-independent anti-microbial class switched antibody responses

Pathogen/Antigen Mouse Model Ig produced Refs.

Polyoma virus TCRβ−/− x δ−/− IgM, IgG 316

B cell transfer in SCID IgM, IgG 317

CR2−/− B cell transfer in SCID IgM, IgG 318

VSV TCRα−/−; TCRβ−/− IgM, IgG2a 319

Rotavirus TCRαβ−/− x γδ−/− IgM, IgG, IgA 320

TCRαβ−/− IgA 321

LCMV, VSV, Pichinde virus CD154−/− IgM, IgG2a 322

Influenza virus CD4−/− IgM, IgG1, IgG2b, IgG3 323

CD40−/−; MHCII−/− IgM, IgG 324

Ehrlichia muris CD4−/−; CD8−/−; MHCII−/− IgM, IgG1, IgG2c, IgG2b, IgG3 325

Ehrlichia chafeensis CD4−/− IgG1, IgG2a, IgG2b, IgG3 326

Borrelia burgdorferi TCRβ−/−; TCRβ−/− x δ−/− IgM, IgG3 327

Bacillus anthracis TCRα−/− IgG 328

Yersinia enterocolitica nude IgG 329

Citrobacter rodetium CD4−/− IgM, IgG1, IgG2c, IgG2b, IgG3, IgA 330

Porphyromonas gingivalis TCRα−/− IgG, IgA 331

Melanin (C. neoformans) nude IgM, IgG1, IgG2b, IgG3 332

Cryptosporidium parvum nude IgM, IgA 333

Protoscolex (E. granulosus) CD4−/− IgG1, IgG2a, IgG2b, IgG3 334

Echinococcus multilocularis nude; TCRβ−/−; MHCI−/−; MHCII−/− IgM, IgG1, IgG2a, IgG2b, IgG3 335
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