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Abstract
Background—Negative symptoms are core features of schizophrenia; however, the cognitive
and neural basis for individual negative symptom domains remains unclear. Converging evidence
suggests a role for striatal and prefrontal dopamine in reward learning and the exploration of
actions that might produce outcomes that are better than the status quo. The current study
examines whether deficits in reinforcement learning and uncertainty-driven exploration predict
specific negative symptoms domains.

Methods—We administered a temporal decision making task, which required trial-by-trial
adjustment of reaction time (RT) to maximize reward receipt, to 51 patients with schizophrenia
and 39 age-matched healthy controls. Task conditions were designed such that expected value
(probability * magnitude) increased (IEV), decreased (DEV), or remained constant (CEV) with
increasing response times. Computational analyses were applied to estimate the degree to which
trial-by-trial responses are influenced by reinforcement history.

Results—Individuals with schizophrenia showed impaired Go learning, but intact NoGo learning
relative to controls. These effects were pronounced as a function of global measures of negative
symptom. Uncertainty-based exploration was substantially reduced in individuals with
schizophrenia, and selectively correlated with clinical ratings of anhedonia.

Conclusions—Schizophrenia patients, particularly those with high negative symptoms, failed to
speed RT's to increase positive outcomes and showed reduced tendency to explore when
alternative actions could lead to better outcomes than the status quo. Results are interpreted in the
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context of current computational, genetic, and pharmacological data supporting the roles of striatal
and prefrontal dopamine in these processes.
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Model

Introduction
Dopaminergic (DA) signaling plays a key role in the detection, evaluation, and prediction of
rewards. Several structures that receive DA input are differentially involved in specific
aspects of reward learning. For example, the striatum and orbitofrontal cortex (OFC) have
been found to be involved in reward prediction and reward based decision making, with the
OFC being particularly responsive to reward magnitudes (1–6). In reinforcement learning
models of corticostriatal circuitry (7,8), phasic DA signals are proposed to modify synaptic
plasticity in the corticostriatal pathway (9,10), and subsequently reinforce “Go” (learning to
pursue actions that have high reward probability) and “NoGo” learning (learning to avoid
actions with low reward probabilities) (7,11). Specifically, increases in phasic striatal DA
support Go learning from positive feedback via D1 receptor stimulation, whereas decreases
in phasic striatal DA support avoidance learning from negative feedback via D2 receptor
disinhibition.

This model has been applied to understand patterns of reward learning in Parkinson’s
Disease (PD) patients (7), who have depleted striatal DA levels as a result of the disease, but
increased striatal DA levels following DA medication (12,13). Supporting the models, it has
been found that PD patients on medication learn better from positive than negative decision
outcomes, but patients off medication showed the opposite bias (8,14–16). Imaging studies
show that these biases are accompanied by medication-induced increased sensitivity to
positive prediction errors and reduced sensitivity to negative prediction errors in the ventral
and dorsolateral striatum (17). Behaviorally, these medication-induced effects have been
primarily observed in tasks where participants learned stimulus-response relationships as a
function of reinforcement (e.g., probabilistic learning).

Recent studies have found that SZ patients exhibit reinforcement learning abnormalities,
specifically in learning to integrate the history of probabilistic positive decisions across trials
(18–20). These deficits have been attributed to deficient phasic striatal dopaminergic signals
and D1 receptor functionality, leading to poor Go learning. A deficit in learning to repeat
those actions most likely to yield positive reinforcement may provide an intuitively
appealing account that could explain negative symptoms. Several studies show that negative
symptoms are associated with impairments in rapid, trial-to-trial behavioral adaptation in
response to recent changes in reinforcement values, particularly during early phases of
learning. We have argued that this deficit in rapid acquisition associated with negative
symptoms is likely to stem from prefrontal cortical dysfunction (19,20). Similar patterns of
early learning deficits are seen in patients with orbitofrontal damage (21) and in healthy
participants with the val/val genotype of the COMT gene (15), who have reduced prefrontal
(and particularly, orbitofrontal) dopamine levels(22). However, relationships have also been
reported between negative symptoms and deficient reward-related BOLD activity in basal
ganglia structures. These changes in basal ganglia (BG) BOLD signal do not themselves
necessarily indicate that the BG are the source of the deficits. For example, reduced top-
down input from OFC to BG during reward would result in reduced BG activations. Thus,
the neural underpinnings of reinforcement learning deficits and negative symptoms are at
present unclear.
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In the current study, we examined reinforcement learning in schizophrenia using a task that
required subjects to modulate the response time of a single motor response, where both
reinforcement probabilities and magnitudes varied as a function of RT (27). Behavioral task
conditions were designed to assess Go learning, NoGo learning, and relative sensitivity to
reward frequency vs. magnitude.

Computational modeling was performed in an effort to obtain a richer understanding of the
behavioral findings.The modeling approach allows us to assess the degree to which
participants adjust response times as a function of positive and negative prediction errors
across all four of the task conditions (not solely in the conditions where it is most
advantageous to do so), while distinguishing these measures from several other components
to RT adjustment in the task (captured by other model parameters).

Based upon theories suggesting that SZ is associated with abnormal dopaminergic signaling
(high tonic DA but low phasic DA) and impaired D1 function in particular (28–30), we
hypothesized that SZ patients would fail to show relative speeding when rewards are most
available for fast responses, and thus earlier responding results in better-than-expected
outcomes (i.e.,positive prediction errors). Conversely, based on our previous findings (19)
and the fact that patients were medicated with D2 antagonists, we hypothesized that SZ
patients would show intact slowing as a function of negative prediction errors when early
responses produced outcomes that were lower than expected on average. The latter
interpretation is supported by computational simulations showing that D2 blockade
enhances NoGo learning and RT slowing (see (31)) and recent demonstration that D2
blockade enhances NoGo learning in Tourette's syndrome patients (16).

Evidence for such a pattern of spared sensitivity to negative outcomes, coupled with reduced
ability to learn to approach responses leading to positive reinforcement could be considered
a perfect neurobehavioral recipe for avolition and anhedonia. In light of previous studies
indicating that reinforcement learning impairments are most severe in high negative
symptom patients (32,33), we therefore also examined the role of negative symptoms in Go
and NoGo learning, with the prediction that high negative symptom patients would show the
greatest Go learning impairment and comparatively intact NoGo performance Alternatively,
rather than resulting from reinforcement learning deficits per se, some aspects of negative
symptoms may be characterized by a reduced tendency to appropriately explore alternative
actions in the hope that they might produce better outcomes. Notably, the computations of
outcome uncertainty used to guide exploration are thought to depend on neuromodulation
within the prefrontal cortex (PFC) (34–36). Accordingly, a recent genetic study with the
same task used here showed that, consistent with striatal DA genetic effects on Go/NoGo
learning, individual differences in uncertainty-driven exploration were predicted by COMT
val/met genotype (36). We thus applied the same computational analyses of trial-by-trial
responses in the current study to investigate the prediction that patients would show not only
differences in speeding and slowing as a function of prediction errors, but also whether they
would exhibit uncertainty-driven exploration.

Methods and Materials
Participants

Participants included 51 patients meeting DSM-IV-TR criteria for schizophrenia and 39
healthy controls (CN). The patients were recruited from the outpatient clinics at the
Maryland Psychiatric Research Center and were studied during a period of clinical stability.
All patients met DSM-IV diagnostic criteria for schizophrenia or schizoaffective disorder.
Consensus diagnosis was established with a best-estimate approach based on medical
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records and confirmed using the Structured Clinical Interview for DSM-IV (SCID) (37). All
patients were receiving antipsychotic medications.

Control subjects were recruited through random digit dialing and word of mouth among
individuals recruited through random digit dialing. All controls underwent a screening
interview and denied lifetime and family history of psychosis and any active Axis I disorder
on the SCID. All participants denied lifetime history of significant neurological conditions
and recent substance abuse as determined by the SCID (none within 6 months). Upon entry
to our subject pool, we routinely screen for substance use via urine toxicology testing. In the
current study, targeted urine toxicology testing was performed in instances where there were
suspicions of substance use. Patient and control groups did not significantly differ in age,
parental education, gender, or ethnicity. Patients had fewer years of total education and
lower WASI estimated full-scale IQ’s than controls (see Table 1).

Schizophrenia patients were also divided into High (HI-NEG) and Low Negative (LOW-
NEG) symptom groups based upon a median split on the Scale for the Assessment of
Negative Symptoms (SANS: (38,39)) total score. The 22 item version of the SANS
developed in the CONSIST clinical trial was used (39), which has fewer items than the
original 30- or 25-item version, with total scores ranging from 0–110. The three groups did
not significantly differ on age, parental education, gender, or ethnicity; however, they did
differ on IQ, such that CN had significantly higher IQ than both schizophrenia groups. There
were no differences in IQ between the HI-NEG and LOW-NEG patients. HI-NEG and
LOW-NEG patients significantly differed on the BPRS negative symptom factor score, but
not on positive symptoms, disorganization, or total scale score. HI-NEG and LOW-NEG
patients were also prescribed a similar regimen of antipsychotic medications at the time of
testing and did not differ on chlorpromazine (CPZ) equivalent dosage (40) (see Table 1).

General Procedures
The current tests were administered as part of a larger battery of reward-learning, symptom
interview, and neuropsychological measures. For each subject, demographic, diagnostic, and
symptom ratings were completed prior to administration of the neurocognitive evaluations.
Symptom interviews included the SANS and Brief Psychiatric Rating Scale (BPRS: (41)).
Patient and control participants recruited from the community received monetary
compensation for participation. Study personnel administering the neurocognitive tasks
included B.A. and M.A. level research assistants.

Temporal Utility Integration Task
Participants completed the “temporal utility integration task” designed by Moustafa et al.
(27). In this task, subjects were presented a clock face, which had a single arm that made a
full turn over the course of 5 seconds. Participants were asked to press a button on a
response pad at some point before the arm made a full turn. Following each response,
participants were informed whether they had won points, and if so, how many. The trial
ended once the subject responded using the game pad or if the 5 s duration elapsed and the
subject did not respond. The inter-trial-interval (ITI) was set at 1 s. Participants completed
four separate conditions, each consisting of 50 trials, in which reward probability and
magnitude varied as a function of time elapsed on the clock until response. In the three
primary conditions (DEV, CEV, and IEV), the number of points (reward magnitude)
increased, whereas the probability of receiving the reward decreased, over time within each
trial. Feedback was presented on the screen in the format of “You win XX points!”
Functions within each condition were designed such that the expected value
(probability*magnitude) either decreased (DEV), increased (IEV), or remained constant
(CEV), across the 5 s trial duration (Figure 1). Thus in the IEV condition, early responses
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yielded a small number of points (lower than expected on average), and the associated
negative prediction errors should lead to NoGo learning and slowed responses. In contrast,
early responses in the DEV condition yielded a higher number of points than expected, and
should therefore lead to Go learning/speeding. Slower responses in the IEV condition
yielded more points on average, whereas in the DEV condition faster responses yielded
more points.

In addition to these primary conditions, we also included a condition where expected value
remains constant (like CEV), but reward probability increases and magnitude decreases as
time elapses on the clock (i.e., the opposite to CEV). Since both CEV and CEVR have equal
expected values across the entire clock face, any difference in response time in these two
conditions can be attributed to a participants’ potential bias to learn more about reward
probability than about magnitude or vice-versa. Specifically, if a subject waits longer to
respond in CEVR than in CEV, it can be inferred that the participant is risk averse as they
value higher probabilities of reward more than higher magnitudes of reward.

Order of condition (CEV, DEV, IEV, CEVR) was counterbalanced across participants, and a
rest break was given between each of the conditions (i.e., after every 50 trials). At the
beginning of each condition, subjects were instructed to respond at different times in order
to find the interval on the clock that would allow them to win the most points; however, they
were not told about the different rules for each condition (e.g., IEV, DEV). Each condition
also had a different color clock face to highlight the uniqueness of each context, and the
assignment of color was counterbalanced across conditions. The task was presented using E-
Prime software.

Computational modeling was used as a tool to more specifically probe aspects of behavior in
this task (36). The model allows us to estimate the degree to which individuals adjust their
response times as a function of accumulated reward prediction errors, and uncertainty-driven
exploration, distinctly from other components (see Table 2 for description of model
parameters and Supplement 1 and ref. 36 for mathematical details). The major parameters of
interest for the current study are αG, αN, and ε. The αG and αN parameters were used to test
whether patients have deficits in learning from gains vs. losses more fully than what can be
surmised from the behavioral data as the model estimates on average the degree to which
subjects speed up or slow down and use positive and negative prediction errors across all
conditions. The ε parameter was used to test the possibility that individuals with SZ have a
reduced tendency to appropriately explore alternative actions in the hope that they might
produce better outcomes.

Data Analysis
Behavioral analyses examined RT for each condition, either for the entire block or the
difference score between the second and first half of trials in each condition as indicated in
the text. Repeated measures ANOVAs, one-way ANOVAs, t-tests, and chi-square analyses
were calculated to determine group differences. Spearman correlations were calculated to
examine relationships between test data and symptoms. The Greenhouse-Geisser correction
was applied in instances when the assumptions of sphericity or covariance were violated.
Scheffe contrasts were additionally performed as post hoc tests. Wilcoxon Mann-Whitney
tests were used to examine group differences on modeling parameters. Initial analyses
examined between-group differences in patients and controls. However, given that SANS
scores are typically bimodally distributed, we examined the role of negative symptoms using
between-group analyses (i.e., comparing high negative symptom, low negative symptom,
and control groups), but also reported correlations for completeness. Data were analyzed
using SPSS version 12 software.

Strauss et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
Go vs. No Go Learning and Uncertainty-Driven Exploration

Analysis of behavioral data indicated that in both SZ patients and healthy controls, RTs in
the IEV condition (No Go learning) were significantly slower than the DEV condition (Go
Learning) (CN: t = −4.48, p < 0.001; SZ: t = − 4.99, p < .001), suggesting that both groups
learn to adapt RTs in the expected direction (see Table S1 in Supplement 1). However, these
overall means calculated across the entire block of trials mask differences in learning from
the beginning to the end of the condition. As such, difference scores were computed
separately for each condition to estimate RT adaptation from the first half of trials to the
second half of trials (2nd half of trials – 1st half of trials). Consistent with hypotheses, SZ
patients fail to learn to speed up by the end of the block in the DEV (Go learning) condition
as much as CN, but perform similarly to CN in the IEV (No Go) and CEV (Control)
conditions (see Figure 2). This was confirmed statistically by separate repeated measures
ANOVAs, which indicated that groups significantly differed on the DEV condition, F (1,
88) = 9.49, p = 0.003 (η2=.10), but not the IEV, F (1, 88) = 0.01, p = 0.913 (η2=.00), or
CEV conditions, F (1, 88) = 1.86, p = 0.176 (η2=.02). These behavioral findings are
consistent with intact No Go, but impaired Go learning in schizophrenia1.

Computational modeling was used to obtain a richer understanding of these behavioral
findings on Go and No Go learning. Overall, the computational model encompassing the
specified combination of parameters (see Supplemental Results in Supplement 1) and which
was the best fit to the data in our previous study, also provided a reasonable fit to the
behavioral data here (Figure 3).

Significant parameter differences between SZ patients and controls were observed for ε, the
degree to which exploration occurs in proportion to relative uncertainty about reward
outcomes, F (1,88) = 9.1, p = .003. These differences remain significant after bonferroni
correction (Figure 4). Additional analyses also confirmed that the exploration effect in
schizophrenia was specific to uncertainty, as groups did not differ in measures of overall RT
variability or RT swings (see Figure S4 in Supplement 1).There was also a trend for αG to
be smaller in patients (Wilcoxon Mann-Whitney test, two-tailed p = 0.07), consistent with
the behavioral results, whereby patients exhibited deficits in learning to speed responses in
the DEV condition. A follow-up logistic regression with both parameters entered as
predictors confirmed that both the explore (p <.02) and αG parameters (p=.028) were
independently predictive of SZ. There were no other significant differences between patients
and controls in any of the other parameters (see Table 3).

A regression analysis shed further light onto this interpretation, revealing that individual
differences in the tendency to speed up to maximize rewards in the DEV condition is
predicted by αG (p = .018), such that higher parameters were associated with increased
speeding. No such difference was seen in terms of the model parameter estimating the
degree to which participants slow down as a function of negative prediction errors.

Negative Symptoms
We also conducted analyses examining behavioral and modeling parameters in patients with
High Negative Symptoms (HI-NEG), Low Negative Symptoms (LOW-NEG), and Controls
(CN). As can be seen in Figure 5, the HI-NEG group showed significantly reduced speeding

1To further examine the specificity of Go and No Go learning performance in SZ and CN, we conducted a 3 condition (CEV, DEV,
IEV) × 2 Time (Block 1, Block 2) × 2 Group (SZ, CN) repeated measures ANOVA, and found a nonsignificant interaction (p = 0.16).
Nonetheless, the analyses were consistent in direction with the results of the ANOVAs performed on the learning measures. We
suspect that the additional variance introduced into these more complex ANOVA models resulted in less observed power.
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from the first to second half of trials in the DEV condition, consistent with a Go learning
deficit in high negative symptom patients. One-way ANOVAs, conducted with difference
scores (2nd half of trials – 1st half of trials) as the dependent variable supports this
interpretation, indicating that the 3 groups significantly differed on DEV, F (2, 85) = 4.78,
p=0.01 (η2=.11), but not IEV, F (2, 85) = 0.23, p = 0.37 (η2=.01), or CEV, F (2, 85) = 0.99,
p = 0.73 (η2=.02). Post hoc Scheffe contrasts conducted for the DEV change condition were
significant between the HI-NEG and CN (p = .02), but not the LOW-NEG and CN (p = .14)
or HI-NEG and LOW-NEG (p = .68) groups. The correlation between the SANS total score
and DEV and IEV conditions was nonsignificant. The discrepancy between the significant
between-subjects analysis on the DEV condition and nonsignificant correlation between
negative symptoms and DEV learning is likely explained by the fact that Go learning
deficits were most pronounced in HI-NEG patients, but still present in LOW-NEG patients
as well, thereby attenuating the strength of the correlation.

In a separate analysis of behavioral data, HI-NEG patients also failed to show either a
probability or magnitude bias, whereas CN and LOW-NEG both showed a bias to learn
more about probability than magnitude (see Figure S1 in Supplement 1 for discussion).

One-way ANOVAs indicated that the 3 groups failed to significantly differ on any
parameter other than exploration, F (2, 85) = 5.02, p = 0.009 (HI-NEG: M = 1187, SD =
1561; LOW-NEG: M = 1323, SD = 1678). Post hoc Scheffe contrasts indicated significant
differences between HI-NEG and CN (p = 0.03) subjects; however, LOW-NEG and CN (p =
0.06) and HI-NEG and LOW-NEG (p = 0.97) did not significantly differ. Interestingly,
correlational analyses indicated that the dramatic reduction in exploration was most severe
in patients with high avolition-anhedonia SANS summary scores (r = −0.28, p < 0.05).
There were no significant correlations between ε and the restricted affect (SANS alogia +
blunted affect items) summary score (r = 0.05) or the SANS total, suggesting that the
relationship may be specific to the avolition-anhedonia domain. Follow-up correlational
analyses using the avolition and anhedonia global scores indicated that the relationship with
exploration was specific to anhedonia (Anhedonia r = −0.44, p < 0.01; Avolition r = −0.15,
p >0.3) (see Figure 6). The test for significant differences between these correlations
approached significance (z = −1.54, p = 0.06).

Given the unique association with anhedonia, we further investigated whether the
association between anhedonia and exploration was specific to uncertainty, and determined
that anhedonia was only associated with uncertainty-driven exploration, and not overall RT
variability or consecutive RT variance. Furthermore, control model simulations revealed that
other models of RT swings, including parameters for lose-switch, or regression to the mean,
did not correlate with anhedonia (see Supplemental Results and Figure S2 in Supplement 1).

Antipsychotic Medication
Correlational analyses indicated that CPZ dosage was not significantly correlated with
behavioral performance in any of the conditions (all p’s > 0.16) or modeling parameters (all
p’s > 0.14). Analyses examining between-group differences in patients categorized as a
function of low and high potency D2 blockade antipsychotics indicated no differences
between medication groups in behavioral task conditions (see Supplemental Results in
Supplement 1).

Discussion
Two main findings emerged from the current study. First, behavioral data indicated that
patients were less able to learn to speed up to maximize rewards, which is consistent with a
Go learning deficit. The model simulations suggest this deficit may at least in part be due to
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lower αG parameter, as a regression analysis revealed that individual differences in the
tendency to speed up to maximize rewards in the DEV condition is predicted by αG, such
that higher parameters were associated with increased speeding. Given that SZ showed a
deficit in both αG and the DEV, but not αN or IEV, we feel that the results of the
computational model provide further confidence that the deficits specific to Go learning in
schizophrenia are reliable. Furthermore, symptom sub-group analyses revealed that, in terms
of DEV performance, Go learning deficits are most severe in patients exhibiting greater
severity of negative symptoms.

These findings are consistent with our previous probabilistic selection study indicating that
SZ is associated with impaired Go learning and intact No Go learning (19). When viewed in
conjunction with neurocomputational models of corticostriatal circuitry in reinforcement
learning (7,8), the current behavioral and modeling findings are suggestive of potential
dysfunction in the direct D1 driven BG pathway leading to abnormalities in using positive
feedback to guide behavior, with relatively intact function in the D2 driven, indirect pathway
leading to normal use of probabilistic negative feedback in decision making. This BG-based
account is supported by other evidence indicating that BG dopamine acts to speed
responding toward rewarding cues (42,43), as well as pharmacological and animal studies
showing that this process likely relies on D1-driven activation and Go learning (44–46).
However, this interpretation is of course speculative, and cannot be confirmed without
conducting a study on unmedicated 1st episode patients to see if No Go learning improves
when patients are treated with D2 blocking antipsychotics.

A second major finding was that SZ patients exhibited a large and reliable reduction in the
tendency to make exploratory behavioral adjustments toward responses that could
potentially yield larger expected values than those obtained by staying with the status quo.
Additionally, given that there was no association between anhedonia and overall RT
variability or consecutive variance, anhedonia appears to be selectively associated with the
failure to initiate the proactive strategy of adjusting responses to gather more information in
order to reduce uncertainty about potential benefits of alternative behaviors. These findings
demonstrate the usefulness of computational modeling approaches to psychiatry (25,47–51).

We posit that these effects are related to degradations in prefrontal cortical dopaminergic
function, often attributed as a source of negative symptoms (28,30,52,53). This
interpretation is supported by our recently reported gene-dose effect of the val/met
polymorphism of the COMT gene in healthy individuals performing this same task (36),
which indicated that the val/val genotype was characterized by the lowest degree of
uncertainty-driven exploration and the met/met genotype with the greatest degree of
exploration. Variations in COMT affect prefrontal, and particularly orbitofrontal, dopamine
levels (22), and a recent study reported a COMT gene dose effect on orbitofrontal activity
during reward receipt (54). Thus together, these studies support the assertion that the val/val
genotype shares features of cognitive dysfunction observed in SZ (55). Finally, ongoing
imaging work in healthy individuals (56), together with other related studies (35,57), suggest
that relative uncertainty computations associated with exploration are represented in
prefrontal cortical activation patterns. Finally, even if the computations of expected reward
values are relatively intact in SZ, it is possible that patients with anhedonia explicitly assign
a negative expected value to uncertain outcomes, due to their prior expectations (see (51) for
a related model of depression). Regardless of the neural mechanism, our findings suggest
that anhedonia may result from an inability to determine when to explore actions that might
improve one's ability to obtain rewards.

Of particular interest was that reduced uncertainty-driven exploration correlated with the
Avolition-Anhedonia domain on the SANS, but not the Restricted Affect factor.
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Additionally, the effect was more highly related to anhedonia than avolition. This result is
potentially informative about differences in the pathology of these symptom domains. As
rated by the SANS, anhedonia reflects a behavioral component of reward seeking (e.g.,
initiating social activities, sexual interest/and or activity, pursuing recreational activities,
number of close relationships), rather than the capacity to experience pleasure, which is
often inferred from behavior. Avolition items on the SANS are less related to reward
seeking behavior, and more broadly related to the frequency with which patients initiate and
persist in many kinds of tasks which is likely to be influenced by a number of factors, such
as disorganization, generalized cognitive impairment, and sedation. The significant
correlation with anhedonia, but not avolition may therefore reflect that reduced reward
seeking behavior in schizophrenia is critically related to the extent to which patients make
exploratory choices when they are uncertain about the value of alternative actions and
whether they might produce better outcomes than the status quo.

Results should be viewed with certain limitations in mind. First, analyses regarding the role
of medication on task performance should be viewed with caution, as CPZ equivalents for
atypical medications may not be appropriate and D2 potency classifications provide only a
gross estimate of the effects of different antipsychotics. A more definitive test of
antipsychotic effects should be conducted in first episode patients tested on and off
medications. Second, we did not collect DNA in this study and it is unclear whether the
COMT genetic effect observed in healthy individuals on exploration may partially
contribute to the effects of anhedonia and SZ reported here. Finally, although the SANS is
still the gold standard negative symptom assessment in the field, it has recently been
suggested that newer measures being developed in response to the NIMH MATRICS (e.g.,
(60)) initiative may provide a more comprehensive and current assessment of negative
symptom dimensions. As such, it is unclear whether the relationship reported between
SANS anhedonia and exploration may actually reflect some other component of negative
symptoms on these newer scales.

In summary, the current findings have important implications for understanding the etiology
of schizophrenia. Results from the computational model and behavioral data indicate that
patients have deficits in Go learning, which appear to be due to reduced sensitivity to
positive prediction errors. Thus patients show a reduced sensitivity to the impact of
rewarding outcomes on future behavioral choices. Furthermore, patients display reduced
uncertainty-driven exploration, which was specifically associated with greater severity of
anhedonia. Thus, patients are less likely to explore, and therefore less likely to discover, that
an alternative response might yield more rewarding outcomes. While these deficits are
independent of one another in the model, at a clinical level it is easy to imagine how these
impairments might amplify one another and result in a narrow behavioral repertoire and a
lack of goal-directed, reward-seeking behavior.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Depiction of Task Conditions
Task conditions: DEV, CEV, IEV, and CEVR. The x axis in all plots corresponds to the
time after onset of the clock stimulus at which the response is made. The equations are
designed such that the expected value in the beginning in DEV is approximately equal to
that at the end in IEV so that if optimal, subjects should obtain the same average reward in
both IEV and DEV. a) Example clock-face stimulus. b) Probability of reward occurring as a
function of response time; c) Reward magnitude (contingent on a)); d) Expected value
across trials for each time point. Note that CEV and CEVR have the same EV so the black
line represents EV for both conditions.
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Figure 2. Mean RT Difference Score from First Half of Trials to Second Half of Trials for CEV,
DEV, and IEV conditions in Schizophrenia Patients and Controls
SZ = White bars; CN = Purple bars; CEV = Constant expected value; DEV = Decreasing
expected value (i.e., Go Learning); IEV = Increasing expected value (i.e., No Go Learning).
Values reflect the mean RT change from beginning to end of the block for each condition
(i.e., the relative learning within that condition). More negative values reflect that subjects
learn to speed responses (Go), and more positive values reflect learning to slow down to
obtain rewards within that condition (NoGo).
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Figure 3. Response times as a function of trial in all 90 subjects (panel a) and computational
model fits (panel b)
The figures depict response times as a function of trial number, smoothed (with weighted
linear least squares fit) over a 10 trial window in a) all 90 participants, b) computational
model fits. Overall, relative to baseline CEV response times, participants speed up in DEV
and slow down in IEV. CEVR response times are also slowed in both data and model due to
a high frequency of negative prediction errors for early responses (see Moustafa et al, 2008
and Frank et al, 2009).
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Figure 4. Uncertainty-driven exploration in individuals with schizophrenia and controls
The explore parameter estimated from the model is reduced in schizophrenia (p < .01).
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Figure 5. Go Learning HI-NEG, LOW-NEG, and CN Subjects
Mean RT change from beginning to end of block for the DEV condition (Go Learning).
More negative values reflect better Go Learning (i.e., learning to speed up from then first
half of trials to the second half of trials).
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Figure 6.
Uncertainty-driven exploration (ǫ parameter) as a function of anhedonia. Left: scatter plot
across all patients. Right: means for each level of anhedonia. Error bars reflect s.e.m.
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Table 1

Demographic and Clinical Characteristics of Patients and Controls.

SZ
(n = 51)

CN
(n = 39)

p-value

Age 42.77 (10.08) 43.49 (10.68) p = 0.74

Education 12.80 (2.27) 14.89 (2.06) p < 0.001

Parental Education 13.56 (3.07) 13.26 (2.26) p =0.67

WASI Estimated Full-scale IQ 96.86 (13.71) 113.13 (12.01) p < 0.001

% Male 72.5% 66.7% p = 0.35

Ethnicity p = 0.35

    Caucasian 56.9% 64.1%

    African-American 35.3% 35.9%

    Asian 02.0% 00.0%

    Other 00.0% 05.9%

HI-NEG
(n = 25)

LOW-NEG
(n = 24)

Age* 41.29 (10.76) 45.47 (8.27) p = 0.36

Education* 13.04 (2.55) 12.62 (2.06) p < 0.001

Parental Education* 13.29 (10.76) 13.68 (8.27) p = 0.82

WASI Estimated Full-scale IQ* 96.92 (15.39) 96.08 (11.93) p < 0.001

% Male* 75% 64% p = 0.71

Ethnicity* p = 0.08

    Caucasian 60.0% 54.2.%

    African-American 28.0% 41.7%

    Asian 04.0% 0.00%

    Other 08.0% 04.2%

Antipsychotic Medications

    % Conventional 04% 04%

    % Atypical 100% 96%

    Clozapine 54% 56%

    CPZ Equivalent Dosage 578 (394) 462 (371) p = 0.24

BPRS Symptoms

    Negative 2.28 (0.84) 1.38 (0.48) p < 0.001

    Positive 2.50 (1.22) 2.48 (0.99) p = 0.77

    Disorganized 1.45 (0.71) 1.29 (0.47) p = 0.35

    Total 38.37 (9.30) 34.4 (6.70) p = 0.09

Note.

*
Analyses conducted on HI-NEG, LOW-NEG, and CN Groups. The most frequently used medication was clozapine, used alone (n = 21), in

conjunction with risperidone (n = 6), or in conjunction with aripiprazole (n = 1). Risperidone prescribed alone (n = 6), or in conjunction with
olanzapine (n = 2) was the second most frequently prescribed antipsychotic. Patients were also prescribed olanzapine (n = 8), fluphenazine (n = 1),
ziprasidone (n = 2), quetiapine (n = 3). One patient was prescribed haloperidol in conjunction with quetiapine. Mean BPRS scores indicated that
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patients experienced a moderate level of symptom severity at the time of testing: Total (M = 36.34, SD = 8.26); Positive (M = 2.42, SD = 1.10);
Negative (M = 1.73, SD = 0.71); Disorganized (M = 1.41, SD = 0.51).
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Table 2

Reinforcement Learning Domains Assessed by Computational Modeling Parameters

Modeling
Parameter

Description

K Estimates baseline motor response tendency independent of other factors.

λ A response recency parameter scaling the impact of the previous response’s RT on the current choice, independent of any
change in value.

ε Predicts trial-by-trial RT swings to occur when one is relatively more uncertain about the reward probabilities for fast or slow
responses. Thus, with sufficiently high values, RT swings are predicted to occur in the direction of greater uncertainty about the
likelihood that outcomes might be better than the status quo.

α G The degree to which individuals speed RTs as a function of positive prediction errors.

α N The degree to which individuals slow RTs as a function of negative prediction errors.

ρ Predicts the extent to which individuals adjust RTs in the direction of greater probability of obtaining a positive outcome based
on the observed reward statistics.

ν A “going for gold” parameter, which predicts that participants will adjust RT’s toward that which has produced the single largest
reward experienced thus far.
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