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Abstract
Residing within the intestine is a large community of commensal organisms collectively termed
the microbiota. This community generates a complex nutrient environment by breaking down
indigestible food products into metabolites that are used by both the host and the microbiota. Both
the invading intestinal pathogen and the microbiota compete for these metabolites, which can
shape both the composition of the flora, as well as susceptibility to infection. After infection is
established, pathogen mediated inflammation alters the composition of the microbiota, which
further shifts the makeup of metabolites in the gastrointestinal tract. A greater understanding of the
interplay between the microbiota, the metabolites they generate, and susceptibility to enteric
disease will enable the discovery of novel therapies against infectious disease.

Metabolic function of the host microbiota
The resident microbiota of the human gastrointestinal (GI) tract is incredibly dense and
diverse, containing as many as 1012 organisms per gram [1]. While all three domains of life
(bacteria, archaea and eukarya) have been identified in the adult human GI tract, only 8 out
of 55 known bacterial divisions have been found within this environment [2]. The
composition of this enormous community provides the host with a core set of microbial
genes that encode the gut microbiome [3]. It is estimated that this microbial community has
70–140 times more total genes than the human host, which encode biochemical pathways
that humans have not evolved, enabling the break-down of proteins and indigestible
polysaccharides into essential amino acids, vitamins, and short chain fatty acids (SCFAs)
(Figure 1) [4]. Shifts in the composition of the microbiota and microbiome that correlate
with obesity are associated with an increased presence of organisms and genes that
ultimately increase energy extraction, storage and usage of consumed nutrients [3,5]. As the
microbiota between two individuals can deviate by hundreds of species and thousands of
strain differences, the corresponding metabolite environment in the GI tract for each person
is unique [2,6].
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Barrier function of the host microbiota
The microbiota can act as a barrier against incoming pathogens; this phenomenon has been
described as colonization resistance [7]. There are several theories why the microbiota
prevents pathogen colonization; some members of the microbiota can physically occupy
pathogen attachment sites, some members can stimulate the mucosal immune system to alter
tolerance of an invading pathogen, while others can consume nutrients the pathogen requires
to proliferate.

One strategy to alter colonization resistance includes exogenously adding nutrients, also
known as prebiotics, to promote the growth of individual microbiota species. An increased
presence of Bifidobacteria and Lactobacilli, for example, has been shown to suppress
bacterial infections caused by Salmonella enterica serovar Typhimurium (S. Typhimurium)
[8,9]. However, prebiotic supplementation with nutrients thought to promote in vivo growth
of Bifidobacteria and Lactobacilli did not inhibit S. Typhimurium colonization in vivo, but
instead increased pathogen colonization when compared to mice fed a standard diet [10].
These studies indicate that identification of beneficial microbiota communities, and the
nutrients that shape their composition, may be incomplete or not specific enough.

Host microbiota nutrient competition
Members of the GI microbiota have acquired specific mechanisms to exploit their
environment and the nutrients available to them [11–13]. A recent global analysis of the
microbiome encoded by 124 individuals revealed that there is a core set of genes that are
likely required by any bacterium to thrive in the GI tract, including genes involved in the
biodegradation of complex sugars and glycans present in the intestinal lining [14]. Evidence
of the adaptability of the Bacteroides genus to host glycans was recently demonstrated when
germ-free mice were co-colonized with B. thetaiotaomicron and a member of another
common microbial community phyla, the Firmicutes' Eubacterium rectale. As a
consequence of competition for dietary nutrients, B. thetaiotaomicron up-regulated
glycoside hydrolases and signaled the host to produce mucosal glycans, presumably so that
it could access a nutrient source its competitor E. rectale could not utilize [15].

Competition for nutrients is a strong force among the Bacteroides genus. During
competition for dietary fructans, B. thetaiotaomicron uses a hybrid two-component signaling
sensor to enable degradation and usage of fructans [16]. Additionally, genes that encode
porphyranases and agarases, which enable some microbes commonly found in Japanese
community members to digest seaweed, may have been transferred to the gut bacterium
Bacteroides plebeius from the seaweed associated bacterium Zobellia galactanivorans,
allowing B. plebeius to extract energy from otherwise indigestible food products [17]. A
mutant library of B. thetaiotaomicron revealed that this microbe is highly adaptive to the
microbiota composition and the availability of nutrients such as vitamin B12 [18].

Just what is the nutrient environment to which these commensal bacteria are adapting?
During colonization of germ-free mice, commensal Escherichia coli were shown to utilize
arginine, asparagine, aspartate, glucose/galactose, ribose, maltose, glucuronate,
galacturonate and gluconate as substrates [19]. However, the nutrient environment of the GI
tract is likely to be more complex with the addition of other microbiota members. For
example, the levels of SCFAs found within germ-free animals are lower than in mice that
had received a gut microbiota transplant from conventionally raised donors [20]. SCFA
production has further been linked to the Firmicutes, as following antibiotic treatment of
conventional mice, SCFAs decreased along with the diversity of the Firmicutes [21]. The
production of some metabolites may even be a collaborative effort between distant
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community members, as observations indicate that E. rectale uses B. thetaiotaomicron
produced acetate to generate the SCFA butyrate [15].

Furthermore, in soil bacterial communities, physical fungal-bacterial interactions lead to the
activation of fungal secondary metabolism genes that are normally silent under laboratory
conditions [22].

The composition of the host microbiota alters the outcome of enteric
pathogens

The composition of the host microbiota influences the susceptibility to enteric pathogen
colonization, as microbiota communities with low complexity are increasingly prone to
pathogenic colonization [23]. Evidence of this phenomenon was recently demonstrated
when susceptibility to S. Typhimurium was increased after administration of clinically
relevant doses of antibiotics that did not change the overall bacterial load of the microbiota,
but did change the ratio of Firmicutes to Bacteroidetes [24,25]. The influence of the host
microbiota upon an invading pathogen is not restricted to prokaryotes, as hatching of the
parasitic nematode Trichuris muris in the large intestine of mice is dependent upon physical
contact of the parasitic egg with microorganisms present in the gut microbiota [26]. The
composition of the host microbiota has also recently been linked to eventual pathogen
clearance [27]. Why the composition of the host microbiota is critical for initial colonization
and eventual clearance by these pathogens is unclear. One theory, amongst many, is that the
microbiota provides metabolites that can hinder or enhance virulence of enteric pathogens.

Enteric pathogens compete for carbon within the GI tract
Primary metabolites in the GI tract are in high demand, with many of them absorbed by the
host, or consumed or converted into secondary metabolites by the microbiota [28]. The
composition of one primary class of nutrients, carbohydrates, is controlled by members of
the host microbiota. B. thetaiotaomicron alone contains over four times the number of genes
involved in acquiring and metabolizing carbohydrates than the human host, and other
Bifidobacterium strains secrete polysaccharide-hydrolyzing enzymes that ferment primary
fructooligosaccharides into the secondary disaccharide lactate in the GI tract [2,29].

The ability of enterohemmorrhagic E. coli (EHEC) O157:H7 to catabolize the disaccharide
maltose and other secondary carbon sources helps it compete with commensal strains of E.
coli for colonization of the GI tract in a streptomycin-treated mouse model of infection [30].
The ability to exploit carbon sources to enhance virulence is not limited to EHEC. A
recently constructed genome scale metabolic model for S. Typhimurium and S. Enteritidis
revealed that these pathogens diverge from a commensal strain of E. coli, with the majority
of the compounds that the pathogenic strains preferentially utilize over the commensal strain
being carbon substrates [31]. Energy generation and colonization by the food-borne bacterial
pathogen Campylobacter jejuni, which resides in the GI tract of its avian reservoir, depends
upon scavenging of free amino and keto acids and chemotaxis towards the carbon sources
asparagine, formate, lactate and chicken mucus [32–34]. In Vibrio cholerae, passage through
the intestinal tract induces genes involved in succinate, glycine, and chitin utilization that
enhance the ability of the pathogen to persist within aquatic environments, an important trait
that enhances transmission and propagation of this water-borne pathogen [35]. These
observations suggest that multiple enteric pathogens have the ability to respond to different
carbon environments, and this response is beneficial for a pathogenic lifecycle. As the
carbon environment is modulated by the host microbiota, understanding how the microbiota
composition controls carbon sources that pathogens exploit will almost certainly lead to
unique strategies to control colonization and virulence.
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The microbiota can alter virulence properties of enteric pathogens
EHEC O157:H7 responds to metabolites secreted by the host microbiota to induce or repress
virulence genes [36,37] (Figure 2). EHEC is transmitted to humans primarily through
ingestion of foods contaminated by colonized cattle [38]. To colonize cattle, EHEC requires
SdiA, a regulator that senses acyl-homoserine lactones (AHLs), which are produced by
some members of the Bacteroidetes phyla [36] (Figure 2). Additionally, a virulence factor of
EHEC, Shiga toxin 2 (Stx2), is produced and released into the environment by activated
RecA, which induces the lytic cycle of the bacteriophage that encodes Stx2. Germ-free rats
that are then colonized with human microbiota secrete molecules that both repress stx2
mRNA expression, and inhibit the RecA mediated lytic cycle independent of known
quorum-sensing pathways (involving SdiA, QseA, QseC or AI-3). B. thetaiotaomicron was
shown to produce this inhibitory factor, implicating a member of the human microbiota in
repressing a bacterial virulence factor [37] (Figure 2). Together, these two studies
demonstrate that metabolites secreted by the host microbiota may modulate EHEC
colonization and virulence gene expression in two distinct hosts, its cattle reservoir, as well
as its human host.

Spatial nutrient differences could lead to pathogen tropism
Enteric pathogens preferentially colonize different regions of the GI tract, such as S.
Typhimurium in the small intestine, and EHEC in the distal ileum and colon [39]. One
potential reason for tissue tropism may be because metabolites that influence pathogen
replication and virulence are differentially available in these regions. SCFAs are known to
have significant influence upon enteric pathogenicity, and HIV is just one pathogen of many
that have recently been demonstrated to respond to SCFAs, as they cue HIV activation in the
gut [40]. SCFAs are also known to influence the inflammatory host immune response [41].
The composition of SCFAs in the GI tract is modulated by the microbiota. For example, the
majority of the SCFA butyrate is produced by the resident microbiota [42], with butyrate
amounts varying depending on the activity and composition of the microbiota [21,43].
Additionally, the levels of individual SCFAs vary in different regions of the GI tract, with
formate and acetate predominating in the small intestine, while propionate and butyrate are
higher in the colon [21,44,45] (Figure 3).

Interestingly, the SCFA formate acts as a diffusible signal to induce the expression of
invasion genes in S. Typhimurium, while butyrate, a SCFA present at higher concentrations
in lower regions of the GI tract, is known to repress invasion genes [46,47]. Conversely,
exposure to butyrate enhances adherence of EHEC to Caco-2 cell monolayers during a tissue
culture model of infection [48]. Furthermore, butyrate was also shown to influence
activation of the locus of enterocyte effacement pathogenicity island of EHEC, which carries
genes involved in the formation of attaching and effacing (A/E) lesions on intestinal
epithelial cells [39,48]. In both S. Typhimurium and EHEC, the SCFA that enhances
virulence, formate and butyrate, respectively, is highest in the region of the GI tract that
these enteric pathogens preferentially colonize.

Pathogen mediated inflammation alters the microbiota and nutrient
composition of the gut, further enhancing colonization

While the nutrient environment, which is modulated by the resident microbiota, influences
initial colonization by an enteric pathogen, subsequent changes in the composition of the
microbiota also lead to downstream changes in the nutrient environment and enteric
colonization potential of the gut. Colonization by Citrobacter rodentium, a close relative of
EPEC and EHEC, causes an inflammatory response in the GI tract, which corresponds to a
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major alteration in the composition of the microbiota [24]. The inflammatory response and
corresponding alterations to the host microbiota have been linked to further increases in
pathogen growth, as well as an increased release of glycan and amino-acid rich mucins
[24,49]. Additionally, acute gut inflammation caused by S. Typhimurium infection has
recently been demonstrated to generate a respiratory electron acceptor, tetrathionate, that
provides a competitive growth advantage to the pathogen over the competing microbiotia
[50]. The release of nutrient rich compounds, such as mucins and glycans, as well as other
novel growth factors, such as tetrathionate, likely foster pathogen growth, signifying that
pathogen mediated inflammation and microbiota perturbations could be a mechanism
employed by the pathogen to enhance its ability to replicate in the host after an initial
infection has already been established.

Conclusions
One underexploited opportunity to prevent enteric infections is to target the mechanisms
pathogenic bacteria undertake to respond to the unique nutritional environment found within
the GI tract [51]. Because the rate of passage through the GI tract is rapid, the ability to
respond and compete for nutrients is likely to be one of the most important factors
controlling the success or failure of an invading pathogen [52]. As this nutrient environment
is shared between pathogens and the host microbiota, novel avenues to control infection
before and after the onset of disease can be discovered by carefully studying the
mechanisms enteric pathogens and members of the host microbiota utilize to generate,
compete, and exploit the nutrients within the GI tract.

Abbreviations used

(GI) Gastrointestinal

(SCFAs) short chain fatty acids

(S. Typhimurium) Salmonella enterica serovar Typhimurium

(EHEC) enterohemmorrhagic E. coli

(AHLs) acyl-homoserine lactones

(Stx2) Shiga toxin 2

(A/E) attaching and effacing

(LEE) locus of enterocyte effacement
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Figure 1. Functions of the host microbiota
Within the gastrointestinal (GI) tract is a community of commensal organisms, the
microbiota, with an estimated density as high as 1012 organisms per gram of content [1]. Out
of a total of 55 bacterial divisions identified thus far, only 8 have been identified within the
human GI tract (dominant divisions are in bold) [2]. The genes encoded by this massive
community are collectively termed the microbiome, which encodes an estimated 70–140
times more genes than encoded by its the human host [3,4]. Together, the organisms that
reside in the GI tract and the genes they encode are necessary for the completion of essential
tasks for the host, including stimulating gut immunity, regulating cell proliferation, vitamin
synthesis, and mediating resistance to pathogen invasion and colonization.
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Figure 2. Chemical sensing between the microbiota and EHEC
(A) Members of the Bacteroidetes phyla produce acyl-homoserine lactones (AHLs). These
signaling molecules are prominent within the rumen of the bovine gut, but not in other areas
of the GI tract. AHLs isolated from the rumen stabilize folding of SdiA, an EHEC regulator
that is necessary for colonization of cattle. Specifically, the rumen AHL-SdiA complex
represses transcription and protein production by the locus of enterocyte effacement (LEE),
a pathogenicity island that enables EHEC to colonize and promote disease in its human host,
an undesirable phenotype for commensal colonization of cattle. Conversely, the AHL-SdiA
complex activated the expression of gad acid-resistance genes and promoted survival in low
pH, a phenotype necessary for EHEC survival within the acidic stomachs of the cow [36].
(B) Shiga Toxin 2 (Stx2) is a major virulence factor of EHEC O157:H7, which causes
protein synthesis inhibition and ultimately cell death in the human host. Prokaryotes of
conventionalized rats colonized with human microbiota produced molecules which
repressed RecA mediated stx2 mRNA expression and Stx2 production. Subsequent analysis
revealed that these inhibitory prokaryotic molecules are produced in part by Bacteroides
thetaiotaomicron, a member of the normal human intestinal microbiota [37].
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Figure 3. Short-chain fatty acid (SCFA) influence upon pathogen tropism
(A) The Firmicutes are a principal phyla in both the small intestine and the colon, with the
family Lachnospiraceae dominating the colon [21,53]. The Lachnospiraceae are members
of the Clostridia class, which are major producers of butyrate in the human colon [43,53].
The Lactobacillales order of the Bacillus class dominate the small intestine in humans, and
upon further examination in mice, the family Lactobacillaceae within this order compose
24% of the total small intestine microbiota [21,53]. Genera belonging to this family include
Lactobacillus, which heterofermentatively can produce formate as well as acetate and
lactate. (B) EHEC primarily colonizes the colon of humans, where butyrate is a dominant
SCFA [21,39,44,45]. In EHEC, butyrate activates the locus of enterocyte effacement (LEE)
and enhances adherence of this pathogen in tissue culture [39,48]. Salmonella enterica
serovar Typhimurium (S. Typhimurium) colonizes the small intestine, where formate is a
dominant SCFA. The SCFA formate induces the expression of invasion genes in S.
Typhimurium, while butyrate is known to repress these genes [46,47].
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