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Abstract Atrial fibrillation (AF) is the most common cardiac rhythm abnormality and represents a major burden, both to
patients and to health-care systems. In recent years, increasing evidence from population-based studies has demon-
strated that AF is a heritable condition. Although familial forms of AF have been recognized for many years, they
represent a rare subtype of the arrhythmia. However, despite their limited prevalence, the identification of mutations
in monogenic AF kindreds has provided valuable insights into the molecular pathways underlying the arrhythmia and a
framework for investigating AF encountered in the general population. In contrast to these rare families, the typical
forms of AF occurring in the community are likely to be multigenic and have significant environmental influences.
Recently, genome-wide association studies have uncovered common sequence variants that confer increased suscep-
tibility to the arrhythmia. In the future, the elucidation of the genetic substrate underlying both familial and more
typical forms of AF will hopefully lead to the development of novel diagnostic tools as well as more targeted
rhythm control strategies. In this article, we will focus on monogenic forms of AF and also provide an overview
of case–control association studies for AF.
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1. Introduction
Atrial fibrillation (AF) is the most prevalent cardiac rhythm abnorm-
ality and is a major cause of morbidity and mortality.1 Previous
studies have reported a significant increase in the risk of stroke,
dementia, heart failure, and mortality associated with AF.1 –6 Estab-
lished risk factors for AF include impaired left ventricular function,
valvular heart disease, hypertension, and advancing age.6– 9 In a min-
ority of cases, AF occurs in the absence of these risk factors, a
disease subtype referred to as lone AF.

Monogenic AF families have been recognized for many years. In
1943, Wolff10 described a case of three brothers with AF. In the
ensuing years, larger kindreds with heritable AF have been identified
and studied. Investigators have used linkage analysis to identify a
number of loci for familial AF.11,12 In addition, mutations in both ion
channel coding genes13– 18 and non-ion channel coding genes19– 21

have been reported. AF has also been described as a concomitant
disease in patients with inherited arrhythmia syndromes such as the

Brugada syndrome22 and long QT syndrome23,24 (LQTS) and in
patients with familial cardiomyopathies such as hypertrophic cardio-
myopathy and dilated cardiomyopathy (DCM).25,26

AF has traditionally been perceived as a predominantly sporadic
condition with rare familial subtypes. However, in recent years,
increasing evidence from population-based studies has emerged to
suggest that the commonly occurring AF phenotype has a significant
genetic component. Investigators from the Framingham Heart Study
(FHS) have reported that a parental history of AF almost doubles
the risk of future disease in offspring.27 Similar findings regarding
the heritability of AF were observed among Icelanders.28 Investigators
at Mayo Clinic and Massachusetts General Hospital have also
reported that for individuals in whom a first-degree relative is diag-
nosed with lone AF, the risk of developing AF is significantly higher
than that of the general population.29,30

In contrast to monogenic forms of AF, in which rare genetic
mutations with high penetrance are responsible for the condition,
the more common AF phenotype is likely to be caused by common
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genetic polymorphisms interacting with various environmental factors.
In early case–control studies comparing cohorts of AF to controls, AF
risk has been associated with polymorphisms in a variety of different
genes.31– 40 However, in many such studies, the results have not been
systematically replicated and sample sizes have been relatively small.
More recently, genome-wide association studies (GWAS) have ident-
ified common genetic variants or single-nucleotide polymorphisms
(SNPs) that confer increased susceptibility to AF and have led to sig-
nificant advances in understanding the genetic basis of AF in the
general population.

Despite the fact that monogenic forms of AF are relatively rare,
studies in familial AF kindreds have provided valuable insights into
the molecular pathways underlying the arrhythmia. The identification
of single gene mutations has also provided a framework for interrog-
ation of genetic polymorphisms that predispose to the commonly
occurring AF phenotype. Eventually, the elucidation of the genetic
substrate underlying the different forms of AF may lead to the devel-
opment of novel approaches for diagnosis and treatment of the
arrhythmia. In the following review, we will discuss monogenic
forms of AF and also highlight results from case–control association
studies in cohorts with non-familial AF. GWAS in AF will be discussed
separately in this edition.

2. Susceptibility loci for AF
In 1997, Brugada et al.11 described a susceptibility locus for AF in
three families with autosomal dominant AF. Using linkage analysis,
the locus for AF was mapped on chromosome 10q22–24;
however, the causative mutation at this locus remains elusive. In
2003, a second susceptibility locus on chromosome 6q12–q16 was
identified in a large family which also had autosomal dominantly inher-
ited AF.12 Of note, both susceptibility loci overlap with loci that have
previously been reported for familial DCM.41– 43 It remains to be
determined whether DCM and AF are linked in these families.

3. Monogenic mutations in AF

3.1 Ion channel mutations
The majority of mutations identified in monogenic AF families have
been located in genes that encode ion channel subunits (summarized
in Table 1 and Figure 1). Functional analyses of these mutations have
revealed either gain-of-function effects or loss-of-function effects.
Interestingly, electrophysiological remodelling in patients with non-
familial forms of chronic AF results in similar ion channel pheno-
types.44 These observations suggest that the different forms of AF
share common underlying mechanisms. However, these mechanisms
are presently not clearly understood.

There are currently two major hypotheses regarding the electro-
physiological mechanisms underlying AF; the multiple wavelet hypoth-
esis and ‘mother rotor’ hypothesis.45 The mechanism of AF as
proposed by the ‘mother rotor’ hypothesis involves stable, self-
sustaining rotors that generate wavelets of activation which spread
throughout the atrial myocardium.46 Alternatively, the multiple
wavelet hypothesis proposes that multiple random wavelets of acti-
vation with constantly changing re-entrant circuits underlie AF.47

The likelihood is that different mechanisms predominate in different
circumstances.48 Alterations in ion channel function are predicted
to influence one or both of the proposed mechanisms of AF.

3.1.1 Potassium channel mutations
3.1.1.1 IKs channel mutations
Chen et al.13 provided the first link between ion channelopathies and
AF. In a Chinese family with an autosomal dominant pattern of AF
inheritance, they reported a missense mutation (S140G) located in
the first transmembrane spanning domain of KCNQ1. The KCNQ1
gene encodes a pore-forming a-subunit which associates with ancil-
lary b-subunits, to form a channel responsible for the IKs current.
IKs is a delayed-rectifier potassium current which is prominent at
higher heart rates and during adrenergic stimulation during the late
phase of the action potential. Functionally, the S140G mutant
channel was associated with a marked increase in current density
suggesting a gain-of-function effect. In a subsequent study, the
S140G mutation was demonstrated to cause marked slowing of IKs

channel deactivation.49

Previous studies have also reported loss-of-function mutations in
KCNQ1 in patients with LQTS type 1.50– 54 The (S140G) KCNQ1
gain-of-function mutation identified by Chen et al.13 would therefore
be expected to shorten the QT interval. Interestingly, however, in a
proportion of the affected family members in the AF kindred, QT
interval was prolonged rather than shortened. The molecular basis
for this paradoxical observation remains unexplained. These obser-
vations highlight the fact that our understanding of cardiac repolariza-
tion in the atrium remains incomplete.

Since the original discovery by Chen et al., two further mutations
in the KCNQ1 gene have been described. In an unusual case of
AF detected in utero, a valine-to-methionine mutation (V141M)
adjacent to the aforementioned S140G mutation has been
identified.55 More recently, a serine-to-proline mutation (S209P)
was reported in a family with an autosomal dominant pattern of
inheritance of AF.56 Both KCNQ1 mutations displayed a
gain-of-function effect with enhanced IKs current density and
altered gating kinetics. The V141M mutation resulted in an
expected shortening of the QT interval, whereas the S209P
mutation did not alter QT interval.

Mutations in IKs channel b-subunit genes have been described in
familial as well as isolated AF cases. As opposed to KCNQ1, which
has six transmembrane domains, the KCNE b-subunits have only
one transmembrane spanning domain. They are encoded by five
genes, KCNE1–KCNE5.57 In a study evaluating 28 unrelated Chinese
families with lone AF, Yang et al.14 identified a mutation in the
KCNE2 gene which resulted in an arginine-to-cysteine substitution
(R27C). More recently, an isolated non-familial case of AF with a mis-
sense (L65F) mutation has been identified after a cohort of 158
patients were screened for KCNE5 gene mutations.58 Interaction of
both mutant b-subunits (KCNE2 and KCNE5) with the KCNQ1
channel produced a gain-of-function effect with an increased IKs

current.
The KCNQ1 a-subunit of the IKs channel can associate with any

one of the five accessory b-subunits (KCNE1–5). Previous studies
have demonstrated that each of the b-subunits causes a specific
alteration in the KCNQ1 current.59,60 On the basis of these
observations, it has been proposed that alterations in the patterns
of association between KCNQ1 and the b-subunits may allow
modulation of the IKs current.61 Interestingly, in normal human
cardiac tissue, KCNE4 expression is higher in the atrium as com-
pared with the ventricle;60 however, the precise constituents and
regulation of the IKs current in the atrium vs. the ventricle
remain unknown.
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Presently, information regarding alterations in the IKs current in
patients with chronic AF is limited. Transcription of IKs channel sub-
units has been reported to be altered in patients with AF and may
cause significant alterations in atrial electrical activity. However, the
results from these studies have been conflicting. Brundel et al.62

reported that mRNA and protein expression of KCNE1 is reduced
in AF. In contrast, Lai et al. reported that mRNA expression of
KCNE1 is increased in AF. The latter study also reported down-
regulation of KCNQ1 transcription.63

From a mechanistic perspective, the gain-of-function mutations in
a- and b-subunits of the IKs channel are associated with increased
repolarizing potassium currents which in effect would abbreviate
the action potential duration as well as the effective refractory
period in cardiomyocytes.64 These effects are likely to create a profi-
brillatory substrate within the atrium.45

In order to further characterize the effect of alterations of IKs on
arrhythmia susceptibility, investigators have attempted to use a
mouse model. However, due to the fact that IKs is expressed at
very low levels in the adult murine heart, it has not been possible
to reproduce the effects of IKs mutations in transgenic mouse
models.65 Despite these limitations, however, investigators have
reported that transgenic mice with ablation of the KCNE1 gene
have spontaneous episodes of AF.66

3.1.1.2 IK1 channel mutations
In 2005, Xia et al.16 reported a novel missense mutation in the KCNJ2
gene in a Chinese AF kindred. KCNJ2 encodes the Kir2.1 channel
which underlies the inward-rectifier potassium current, IK1.

67,68

A valine-to-isoleucine mutation (V93I) was identified which resulted
in a gain-of-function effect with increased potassium current
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Table 1 Summary of monogenic mutations associated with AF

Gene Gene product Family/proband
characteristics

Documented
familial
segregation, yes/no

Functional assay
performed,
yes/no

Functional effect of
mutation

References

KCNQ1 a-subunit of IKs

channel
Chinese family with
autosomal dominant AF

Yes Yes Gain-of-function effect with
increased IKs

13

KCNQ1 a-subunit of IKs

channel
Isolated case of AF detected
in utero (Caucasian)

No Yes Gain-of-function effect with
increased IKs

55

KCNQ1 a-subunit of IKs

channel
Caucasian family with
autosomal dominant AF

Yes Yes Gain-of-function effect with
increased IKs

56

KCNE2 b-subunit of IKs

channel
Two Chinese AF kindreds Yes Yes Gain-of-function effect with

increased IKs

14

KCNE5 b-subunit of IKs

channel
Isolated non-familial case of
AF (Caucasian)

No Yes Gain-of-function effect with
increased IKs

58

KCNJ2 Kir 2.1 channel Chinese AF kindred Yes Yes Gain-of-function effect with
increased IK1

16

KCNA5 Kv1.5 channel Caucasian proband with
refractory AF

Yes Yes Loss-of-function effect with
reduced IKur

17

SCN5A Sodium channel
a-subunit

Caucasian family with variable
expression of AF, DCM and
impaired conduction

Yes No Predicted to have a
loss-of-function effect with
reduced sodium current density

87

SCN5A Sodium channel
a-subunit

Caucasian proband with
familial AF

Yes Yes Loss-of-function effect with
hyperpolarizing shift in channel
steady state inactivation

88

SCN5A Sodium channel
a-subunit

Japanese family with
autosomal dominant AF

Yes Yes Gain-of-function effect with
depolarized shift of voltage
dependence of steady-state
inactivation

90

SCN1B Sodium channel
b-subunit

2 isolated non-familial cases
of AF (1 Caucasian, 1 black)

No Yes Loss-of-function effect with
reduced sodium current and
altered channel gating

89

SCN2B Sodium channel
b-subunit

2 isolated non-familial cases
of AF (Caucasian)

Yes (in 1 of the 2
patients)

Yes Loss-of-function effect with
reduced sodium current and
altered channel gating

89

NUP155 Nucleoporin Consanguineous family from
Uruguay with early-onset AF

Yes Yes Reduction in nuclear membrane
permeability

104

GJA5 Connexin-40 4 isolated non-familial cases
(3 somatic mutations, 1
germline mutation)

No Yes Impaired intracellular transport
and intercellular electrical
coupling

19

NPPA Mutant atrial
natriuretic peptide
(mANP)

Caucasian family with
autosomal dominant AF

Yes Yes Elevated levels of mutant ANP 21
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amplitudes, both in the inward and outward directions. Interestingly,
loss-of-function mutations in Kir2.1 have been reported to cause
the Anderson syndrome, a condition characterized by QT interval
prolongation, ventricular arrhythmias, multiple bony abnormalities,
and intermittent episodes of muscular weakness.69 The
gain-of-function mutation in KCNJ2 in the AF kindred was not associ-
ated with an alteration in the QT interval. A possible explanation for
the missing effect of the V93I mutation at the ventricular level is that
the IK1 current is significantly smaller in the atrium as compared with
the ventricle.70,71

A number of studies have reported an up-regulation of
inward-rectifier current density in AF patients.72– 74 In turn, enhanced
inward-rectifier currents have been demonstrated to promote AF by
accelerating and stabilizing atrial rotors that maintain the arrhyth-
mia.75 –77 Further evidence for the role of IK1 in the pathogenesis of
AF has come from studies demonstrating chamber-specific differences
in inward-rectifier current function (IK1 and IKach). Voigt et al. reported
that in patients with paroxysmal AF, inward-rectifier current densities
were two-fold larger in left atrial cardiomyocytes when compared
with right atrial cardiomyocytes. In contrast, in patients with chronic
AF, there were no differences in IK1 between the atria, although
they did report elevated basal currents. These observations may
suggest that an unequal distribution of inward-rectifier potassium
currents in atria supports the transition from paroxysmal to
persistent AF.78

3.1.1.3 IKur channel mutations
Olson et al.17 identified a loss-of-function potassium channel gene
mutation associated with AF. In a proband with lone AF which was
refractory to conventional therapy, they reported a heterozygous
nonsense mutation (E375X) in the KCNA5 gene. KCNA5 encodes
the Kv1.5 channel which underlies the ultrarapid delayed-rectifier
(IKur) current. IKur is an important repolarizing current specific to
the atrium.79–81 Functional analysis of the mutant Kv1.5 channel
revealed prolongation of the atrial action potential and triggered
activity with stress, which would be predicted to promote initiation
of AF. More recently, three further loss-of-function KCNA5 gene
mutations (T527M A576V and E610K) have been reported in four
families after screening a total of 120 families.82

In patients with chronic AF, some studies have reported reduced
expression of Kv1.5 in parallel with an attenuation of the ultrarapid
delayed-rectifier (IKur) current.83,84 These observations lend further
support to the hypothesis that suppression of the IKur current
increases susceptibility to AF.

3.1.1.4 Candidate gene screening for potassium channel mutations
in AF cohorts
Following the reports of potassium channel gene mutations in rare
monogenic kindreds, a number of investigators have performed candi-
date gene screening to determine the prevalence of such mutations. In
2004, Ellinor et al.85 screened a cohort of 141 unrelated patients with

Figure 1 Pictorial image of adjacent cardiomyocytes illustrating the genes implicated in Mendelian forms of AF and the presumed mechanism of
action of the mutation.
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lone AF for KCNQ1 mutations and failed to identify any mutations. In a
subsequent study, the same group screened 96 unrelated probands
with familial AF for mutations in the KCNJ2 and KCNE1–5 genes
and once again found no evidence of causal mutations.86 In a study
by Otway et al.,18 four potassium channel genes (KCNQ1, KCNE1,
KCNE2, and KCNE3) were screened for mutations in 50 AF families.
Only one missense mutation in the KCNQ1 gene was identified. Func-
tional analysis of the mutant gene product did not demonstrate
altered channel kinetics, suggesting that the KCNQ1 mutation might
not be causative. Taken together, these data suggest that potassium
channel mutations are not a major cause of AF in the general
population.

3.1.2 Sodium channel mutations
Mutations in the genes encoding both the a- and b-subunits of the
voltage-gated sodium channel have been reported in patients with
AF.87– 91 The pore-forming a-subunit is encoded by the SCN5A
gene, whereas four genes designated SCN1B through SCN4B encode
the function-modifying b-subunits. In addition to AF, mutations in
sodium channel genes are associated with a range of arrhythmias.
SCN5A mutations have been reported to cause the Brugada syn-
drome,92 congenital sick sinus syndrome,93 cardiac conduction
disease,94 idiopathic ventricular fibrillation,95 and LQTS type 3
(LQTS3).96 SCN1B and SCN3B mutations are also associated with
cardiac conduction system disease and Brugada syndrome.97,98 As a
result, patients with AF associated with sodium channel mutations
often have complex, overlapping phenotypes.

In 2005, Olson et al.87 reported an SCN5A mutation (D1275N) in a
large multigenerational family. The mutation was associated with vari-
able clinical manifestations which included AF, DCM, and abnormal
cardiac conduction. On the basis of reports from other studies, the
D1275N mutation is expected to cause a loss of cardiac sodium
channel function.99 In a more recent study, a cohort of 189 AF patients
were screened for SCN5A mutations and a single missense mutation
(N1986K) was identified in one AF kindred. Functional analysis of the
mutation revealed a loss-of-function effect with a hyperpolarized shift
of steady-state inactivation. One family member with the N1986K
mutation had associated conduction system disease.88

Loss-of-function mutations in the SCN5A gene are also associated
with Brugada syndrome.92 The occurrence of AF in patients with
Brugada syndrome appears to be relatively common. However,
reports of AF and Brugada syndrome in patients with SCN5A mutations
are rare. In a cohort of 38 patients with Brugada syndrome, Makiyama
et al.100 reported the occurrence of AF in 10 cases (26.3%). However,
they did not identify SCN5A mutations in any of the patients with
co-existing AF and Brugada syndrome. Similarly, in 59 Brugada syn-
drome patients, Bordachar et al.101 reported an incidence of AF in
20%. However, only two of the Brugada syndrome patients with an
SCN5A mutation had documented AF. The reasons why
loss-of-function mutations in SCN5A cause AF in some cases and ven-
tricular arrhythmic conditions in others are presently unclear.

The role of the function-modifying sodium channel b-subunits in
arrhythmic cardiac diseases is less clearly defined. In a recent study
of 480 AF patients, Watanabe et al.89 screened the four b-subunit
genes (SCN1B–SCN4B) for mutations and reported two mutations
in SCN1B (R85H, D153N) and two mutations in SCN2B (R28Q,
R28W). Functional analysis of the mutant b1- and b2-subunits
demonstrated altered channel gating and a reduction in sodium
current indicating a loss-of-function effect. Interestingly, in three of

the four mutation carriers, the electrocardiogram demonstrated
ST-segment elevation in the right-sided leads. The findings from this
study are consistent with previous reports linking decreased sodium
current with enhanced AF susceptibility.87,88

Makiyama et al.90 recently reported a gain-of-function SCN5A
mutation associated with AF. They identified a novel missense mutation
(M1875T) in a Japanese family with autosomal dominant hereditary AF.
Analysis of the mutant channel function demonstrated that the voltage
dependence of steady-state inactivation was shifted in the depolarizing
direction, suggesting a gain-of-function. Gain-of-function SCN5A
mutations are also associated with LQTS3.96 However, in contrast to
LQTS3 mutations, the M1875T mutation in the AF kindred did not
display persistent inward sodium currents. As a result, normal QT
interval was observed in the majority of affected individuals.

AF has previously also been described as a concomitant disease in
familial LQTS3. Benito et al.24 described a three-generation family
with LQTS3 and AF due to a gain-of-function mutation (Y1795C) in
SCN5A. Three out of eight family members displayed early-onset par-
oxysmal AF. Johnson et al.23 reported a mixed phenotype of LQTS
and AF in one of 59 patients with genetically proven LQTS3. These
findings provide further evidence of the role of gain-of-function
SCN5A mutations in AF.

The electrophysiological mechanisms by which sodium channel
mutations cause AF are not clearly understood. Increased inward
sodium currents induce triggered activity and stabilize high-frequency
rotors.102,103 Yet, they also make re-entry less likely. Conversely,
reduced sodium current density promotes re-entry by shortening
action potential duration and shortening the atrial re-entry wave-
length.102 However, the attenuation of sodium current also destabi-
lizes high-frequency rotors.102 Overall, multiple effects in various
experimental models make it difficult to predict a priori what the
effects of alterations in sodium channel function will be.

Consistent with the data reported for potassium channel gene
mutations, mutations in genes coding sodium channel subunits do
not appear to be a common cause of AF. Chen et al.31 screened a
cohort of 157 lone AF patients and did not identify any SCN5A
mutations. Similarly, we identified SCN5A mutations in only one
kindred out of a cohort of 189 AF patients and Watanabe et al.89

identified only four patients with SCNB mutations in a cohort of
480 patients.88 Darbar et al.91 sequenced the SCN5A gene in a
cohort of 375 AF patients and discovered eight novel variants.
However, segregation analysis suggested that only six of the novel
SCN5A variants are associated with AF.

3.2 Non-ion channel mutations
3.2.1 Nucleoporin gene (NUP155) mutation
In 2004, Oberti et al.104 identified a large consanguineous family from
Uruguay with autosomal recessive inheritance of AF. The pattern of
disease was characterized by an early onset of AF at the foetal or
infantile stage with severe associated complications including cardio-
myopathy, ventricular arrhythmias, and sudden death. The locus was
mapped on chromosome 5p13 (arAF1).

In a subsequent study, a homozygous mutation (R391H) in a
nucleoporin gene (NUP155) was identified.20 NUP155 encodes a
nucleoporin which is an essential molecular component of the
nuclear pore complexes (NPCs).105 NPCs mediate exchange of
macromolecules between the nucleus and the cytoplasm.106 The
mechanistic link between NUP155 mutation and AF remains
unclear. It has been proposed that a reduction in nucleocytoplasmic
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transport due to NUP155 deficiency may alter expression of atrial
genes which in turn may influence cellular processes such as matu-
ration of calcium handling proteins and ion channels. These effects
may ultimately alter the action potential duration and promote AF.
An alternative hypothesis is that altered function of the nuclear envel-
ope due to NUP155 deficiency may reduce myocyte survival by block-
ing mitosis. Myocyte apoptosis may promote cardiac fibrosis and
conduction heterogeneity which may in turn create a substrate for
arrhythmia.107 Future studies are required to further define the role
of the nucleoporin in AF.

3.2.2 Connexin-40 gene (GJA5) mutations
In a study by Gollob et al.19 involving a small cohort of unrelated
patients with lone AF, four novel mutations were identified in the
GJA5 gene. GJA5 encodes connexin-40, a gap junction protein in
the atrium which plays a critical role in mediating coordinated conduc-
tion of the action potential through cell-to-cell electrical coupling.108

Out of 15 AF patients in the study, four patients carried missense GJA5
mutations. Interestingly, only one of the patients had a germ-line
sequence variant. The three remaining patients had tissue-specific
mutations, suggesting that somatic mutations could also be involved
in AF predisposition. Functional analysis of the mutant gene product
revealed abnormal intracellular transport in addition to a reduction
in electrical coupling between cells. It has been proposed that
impaired cell–cell electrical coupling results in conduction heterogen-
eity, micro-re-entrant circuits, and hence AF.19

A number of studies have investigated connexin-40 expression in
patients with chronic AF. The results from such studies have not
been consistent. Some investigators have reported increased
connexin-40,109,110 others have reported decreased

connexin-40,111 – 114 and yet others have reported no change in the
level of connexin.115 Similarly, reports of changes in distribution of
connexins in AF have been inconsistent. Some investigators have
reported increased lateralization of gap junction distribution,109,112,116

whereas others have reported increased heterogeneity.117

3.2.3 Atrial natriuretic peptide gene (NPPA) mutation
Hodgson-Zingman et al.21 reported on a family with an autosomal
dominant pattern of AF which co-segregated with a frameshift mutation
in the gene encoding atrial natriuretic peptide (NPPA). The mutation
was associated with markedly elevated levels of mutant atrial natriuretic
peptide (ANP). ANP is involved in the regulation of sodium and water
homeostasis and arterial blood pressure. In response to volume expan-
sion and atrial stretch, ANP release causes natriuresis, diuresis, and
vasodilator effects.118 Previous studies have reported that when
exposed to pathophysiological levels of ANP, atrial myocytes display
altered electrophysiological properties.119–122 The mutant peptide in
the AF kindred was demonstrated to shorten atrial action potential
duration in an animal model.21 An alternative plausible hypothesis is
that excessive ANP may cause structural atrial remodelling due to its
pro-apoptotic effect.123 Thus, at this stage, the role of ANP in the
pathogenesis of AF remains speculative.

4. Polymorphisms associated with
non-familial AF
Case–control association studies have been widely used for genetic
analysis of a variety of complex traits including AF in the general popu-
lation. Association studies involve the comparison of genotype
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Table 2 Summary of results from association studies in AF cohorts

Gene Polymorphism Cases Controls Ethnicity Comment P-value Odds ratio References

KCNE1 minK 38G 331 441 Caucasian 0.004 1.73 32

KCNE1 minK 38G 108 108 Asian 0.024 1.80 34

KCNE5 97T 158 96 Caucasian 0.007 0.52 35

KCNH2 K897T 1207 2475 Caucasian 0.00033 1.25 33

GNB3 C825T 291 292 Caucasian 0.02 0.46 36

eNOS 2786C 331 441 Caucasian 0.01 1.50 32

eNOS G894T 51 289 Caucasian HF patients 0.001 3.2 127

SCN5A H558R 157 314 Caucasian 0.002 1.6 31

GJA5 –44AA/+71GG 173 232 Asian ,0.006 1.514 37

AGT M235T 250 250 Asian ,0.001 2.5 39

AGT G-6A 250 250 Asian 0.005 3.3 39

AGT G-217A 250 250 Asian 0.002 2.0 39

AGT T174M 968 8267 Caucasian 0.05 1.2 126

AGT 20C/C 968 8267 Caucasian 0.01 1.5 126

ACE D/D 51 289 Caucasian HF patients 0.016 1.5 127

ACE D/D 404 520 Caucasian ,0.001 1.89 128

MMP2 C1306T 196 873 Asian 1.26 × 1022 8.1 129

IL10 A-592C 196 873 Asian 3.7 × 1023 0.32 129

IL6 G-174C 26 84 Caucasian Post-operative AF (after CABG) ,0.001 3.25 130

SLN C-65G 147 92 Caucasian 0.011 1.98 124

ACE, angiotensin-converting enzyme; AGT, angiotensinogen; CABG, coronary artery bypass graft surgery; eNOS, endothelial nitric oxide synthase 3; GNB3, guanine nucleotide-binding
protein; GJA5, connexin 40; HF, heart failure; IL6, interleukin 6; IL10, interleukin 10; MMP, matrix metalloproteinase; SLN, sarcolipin gene.
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frequencies for candidate genes between a diseased population and a
population of healthy controls. In recent years, association studies
in AF cohorts have identified a variety of polymorphisms that may
influence susceptibility to the arrhythmia. Examples include poly-
morphisms in the cardiac potassium channel subunit genes,32– 35

sodium channel genes,31 genes that regulate ion channel function,36,124

gap junction protein genes,37 genes encoding circulating hor-
mones,125 –128 and genes encoding inflammatory mediators.129,130

Interestingly, some of the association studies have identified genetic
polymorphisms that are predicted to cause functional alterations in
the same ion channels as those implicated in monogenic forms of
AF. Examples include polymorphisms in KCNE1 and KCNE5, which
encode a- and b-subunits of the IKs channel respectively, and
SCN5A, which encodes the a-subunit of the INa channel.31,32,35,131 In
addition, one of the reported polymorphisms encodes the
b3-subunit of a heterotrimeric G protein (GNB3) which has been
linked with an increased inward-rectifier current (IK1).

36,132 These
results suggest that the same molecular mechanisms may underlie
familial and sporadic forms of AF. It should be noted however that
the majority of the association studies in AF cohorts have been
limited by relatively small sample sizes, inconsistent replication, and
a low pre-test probability of the polymorphism actually causing AF.
The results from the studies are summarized in Table 2.

5. Summary
In summary, studies involving familial AF kindred have reported
several monogenic mutations. The majority of the mutations have
been identified in genes encoding ion channels, although some
studies have also uncovered mutations in non-ion channel coding
genes. Based on available evidence, these rare mutations appear to
provide little explanation for the heritability of AF in the general
population. However, the identification of these mutations has
provided valuable insights into the molecular pathways underlying
AF and has also provided a framework for investigating the genetic
basis of common forms of the arrhythmia.

The genetic basis of non-familial AF is presently largely unknown. In
recent years, GWAS have led to significant advances in our under-
standing of the genetic basis of complex traits. A recent GWAS for
AF has led to the identification of novel variants that appear to
confer increased susceptibility to the arrhythmia.40 However, most
of the SNPs are located outside the commonly known genes; there-
fore, the molecular mechanisms underlying their association with AF
remains unclear.40

Current attempts to interpret GWAS signals are based on the
assumption that common sequence variants are responsible for
common traits. However, an interesting alternative hypothesis is
that the genetic control of complex traits is due to rare mutations
that are either not represented in current GWAS or that cause the
observed associations through ‘synthetic’ associations.133,134 This
possibility challenges the currently held belief that monogenic
mutations are restricted to AF families and rare isolated AF cases.
In the future, the use of next-generation sequencing technology to
sequence the entire exome or genome may uncover numerous
private monogenic mutations that might account for some of the
unexplained GWAS signals. In this context, studies in AF families
will be of increasing relevance because demonstrating transmission
of these private mutations will be essential for proving causality.

Ultimately, the identification of the genes and pathways underlying
the familial and more common forms of AF should give us new
insights into the development of novel diagnostic tests and targeted
therapies for the arrhythmia.
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