
Electric field Monte Carlo simulations of
focal field distributions produced by
tightly focused laser beams in tissues

Carole K. Hayakawa,1,3 Eric O. Potma,2,3 and Vasan Venugopalan1,3,∗

1Department of Chemical Engineering and Materials Science,
University of California, Irvine Irvine, California 92697, USA

2Department of Chemistry,
University of California, Irvine Irvine, California 92697, USA

3Laser Microbeam and Medical Program, Beckman Laser Institute,
University of California, Irvine Irvine, California 92697, USA

*vvenugop@uci.edu

Abstract: The focal field distribution of tightly focused laser beams
in turbid media is sensitive to optical scattering and therefore of direct
relevance to image quality in confocal and nonlinear microscopy. A model
that considers both the influence of scattering and diffraction on the
amplitude and phase of the electric field in focused beam geometries is
required to describe these distorted focal fields. We combine an electric
field Monte Carlo approach that simulates the electric field propagation
in turbid media with an angular-spectrum representation of diffraction
theory to analyze the effect of tissue scattering properties on the focal
field. In particular, we examine the impact of variations in the scattering
coefficient(µs), single-scattering anisotropy(g), of the turbid medium and
the numerical aperture of the focusing lens on the focal volume at various
depths. The model predicts a scattering-induced broadening, amplitude loss,
and depolarization of the focal field that corroborates experimental results.
We find that both the width and the amplitude of the focal field are dictated
primarily by µs with little influence fromg. In addition, our model confirms
that the depolarization rate is small compared to the amplitude loss of the
tightly focused field.

© 2011 Optical Society of America
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1. Introduction

The image contrast in laser scanning microscopy of biological samples depends critically on
the ability to form a tightly focused spot in the specimen. The presence of scattering and ab-
sorption in biological materials generally affects the laser focus quality [10]. Scattering, in
particular, is significant in biological tissues, and decreases the amount of radiation available
for the formation of the focal spot at greater depths. Moreover, tissue scattering introduces both
spatial distortions of the focal volume and a depolarization of the incident light. While some
of the negative effects of tissue scattering can be mitigated by using higher incident light in-
tensities [20], longer excitation wavelengths [30], or adaptive optics techniques [450, 0], the
understanding of the fundamental mechanisms that link tissue properties and focus quality can
offer clues towards the development of better image correction schemes.

A predictive model that connects the electric field characteristics in the focal volume to tissue
parameters would be quite valuable. Generally, light propagation in complex media involves
solving Maxwell’s equations of electromagnetic radiation with appropriate boundary condi-
tions. This approach is taken when applying perturbation theory to calculate the scattered elec-
tric field [60], or when numerically solving Maxwell’s equations using finite-difference time
domain (FDTD) methods [7809, 0, 0]. FDTD methods have been applied recently to focused
beam geometries [100], and used to study focal field distortions introduced by cellular struc-
tures [110]. However, direct solutions for the electric field is very computationally intensive
when applied to tissue scattering problems, and such calculations are not easily implemented
beyond specific deterministic structures of the scattering material.

An alternate approach is found in the radiative transfer equation (RTE), which models the
incoherent propagation of light through scattering media [12130, 0]. The RTE can be solved
by direct numerical integration [140] or by Monte Carlo based methods [1516017, 018, 0, 0].
The Monte Carlo (MC) method is particularly attractive, as it allows the simulation of light
propagation through the tissue using probability density functions (pdf) that govern the proba-
bility that a photon interacts with the tissue as it propagates. These pdfs are parameterized by
experimentally-accessible tissue parameters such as the scattering coefficientµs, the absorp-
tion coefficientµa and the single-scattering phase functionp(θ). The MC method has been
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very successful at predicting light propagation in tissues based on general material parameters,
in particular in the transport and diffusive regimes of propagation [190]. Nonetheless, because
the wave character of light is generally ignored in this approach, diffraction of light is not
included in MC models and the simulation of the diffraction-limited focal volume is intrinsi-
cally problematic. Several models have been introduced that provide effective solutions to this
problem. Such models generally adopt initial distribution functions for the photon particles that
mimic the light distribution of a Gaussian-shaped focal volume, while the light propagation
still proceeds in an incoherent manner [2021022, 023, 024, 025, 026, 027, 028, 029, 0, 0]. In
addition, some MC studies have incorporated effective phase retardation functions in focused
light geometries to calculate the loss of interference efficiency in optical coherence tomography
(OCT) [3031032, 033, 0, 0].

While MC models that incorporate effective focal volume geometries have reproduced some
experimentally-observed trends, they fail to make a general connection between tissue param-
eters and the electric field characteristics in the vicinity of the focal volume, including its am-
plitude, phase, and polarization state. The characterization of the focal volume in terms of
the electric field, as opposed to incoherent photon particles, is crucial for modeling the imag-
ing properties of coherent imaging techniques such as OCT, harmonic generation microscopy,
and coherent Raman microscopy. Several MC techniques have been developed that model the
amplitude and phase of the electric field as it propagates through the medium. Fisher and co-
workers modeled light propagation in terms of Huygens wavelets, which evolve through MC
sampling [340]. Another approach is based on the decomposition of wavefronts into an an-
gular spectrum of plane waves, which are subsequently propagated in a Monte Carlo fashion.
Daria and co-workers have used such an approach to study light propagation in tissues [350].
A more formal implementation of this technique was developed by Xu, who applied the plane
wave electric field Monte Carlo (EMC) method to study the spatial coherence of light in back-
scattered geometries [3637038, 0, 0].

The angular spectrum representation of diffraction theory can be integrated with the plane
wave EMC method to simulate the propagation of a focused wavefront in scattering media.
This is possible because the amplitude, phase, and polarization state are retained in the plane
wave EMC model which allows for diffraction effects to be included in the description of the
focal fields. This hybrid approach has recently been used to study the amplitude and phase
of focal fields as a function of depth in scattering media [390]. In this work, we apply this
method to establish general trends between experimentally accessible tissue parameters and
the amplitude loss, spatial distortion, and polarization loss of focal fields. Within the random
scattering approximation, we examine the effects ofµs and the scattering anisotropyg on the
quality of the focal volume as a function of focusing depth and the numerical aperture(NA)of
the lens.

2. Theory

We use angular spectrum representation of diffraction theory in combination with electric field
Monte Carlo (EMC) to model the formation of the focal volume in the sample. Scattering
effects in the turbid medium are implemented by propagating the plane waves of the angular
spectrum through an EMC simulation. The EMC simulation accounts for amplitude, phase, and
polarization state changes of the electric field introduced by scattering and absorption events in
the medium.

2.1. Angular spectrum representation of diffraction theory

In the angular spectrum representation the wavefront is decomposed into a spectrum of plane
waves, each of which is characterized by a wave vectork. The angular spectrum representation
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Fig. 1. Schematic of the diffraction geometry. The wavefront of the initial fieldEfar is
modified toEd

far, which captures the effects of a given medium. Waves launched from a
Lambertian source (symbolized by semi-circle) with a wave vectork are allowed to scatter
in a medium of thicknessT, and the amplitude and phase at each exit wave vectork′ is
determined.

of E in the vicinity of the focal volume is [40410, 0]:

E f (x,y,z) =
i f e−ik f

2π

∫ ∫

(k2
x+k2

y)≤k2

Ed
far(k

′
x,k

′
y)e

i(k′xx+k′yy+k′zz) 1
k′z

dk′x dk′y (1)

wheref is focal length of the lens andEd
far is the refracted field at the lens surface. In cylindrical

coordinates for the focal field, Eq. (1) is written as

E f (ρ,ϕ,z) =
ik f e−ik f

2π

2π
∫

φ=0

θmax
∫

θ=0

Ed
far(θ

′,φ ′)eikzcosθ ′
eikρ sinθ ′ cos(φ ′−ϕ) sinθ ′dθ ′dφ ′. (2)

We incorporate turbidity by introducing a response function that represents the amplitude decay
and phase delay:

Ed
far(θ

′,φ ′) =

2π
∫

φ=0

π/2
∫

θ=0

G(θ ,φ → θ ′,φ ′) Efar(θ ,φ) sinθdθ dφ (3)

whereG(θ ,φ → θ ′,φ ′) is called the coherent angular dispersion function (CADF), andEfar is
the unperturbed field at the lens surface:

Efar(θ ,φ) =

(

n1

n2

) 1
2 √

cosθ





cosφ cosθ cos(φ − γ)+sinφ sin(φ − γ)
sinφ cosθ cos(φ − γ)−cosφ sin(φ − γ)

sinθ cos(φ − γ)



 |Einc(θ ,φ)| . (4)

Here the unrefracted field incident at the lens aperture is written as|Einc(θ ,φ)|.
The EMC determinesG(θ ,φ → θ ′,φ ′), that is, the amplitude loss and phase retardation

associated with the scattering of an incident wave vectork to an exiting wave vectork′ (see
Fig. 1). For a transparent sample, no scattering would occur and thus waves incident ink would
exit atk′ = k without attenuation resulting in aG equivalent to the identity matrix.

For turbid samples, scattering produces nonzero off diagonal elements in the CADF. The re-
sultingG matrix describes how the incident wavefront is altered due to the effects of scattering.
This response function is then inserted into the diffraction equation, Eq. (3), to provide a full
description of the resulting electric field that incorporates the effects of sample turbidity.
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2.2. Monte Carlo simulations

We use an electric field Monte Carlo simulation to determine the CADFG(θ ,φ → θ ′,φ ′). A
Lambertian source launches plane waves at the slab surface and the initial wave vectork =
(kx,ky) is noted. The initial local coordinate system is described by(m̂, n̂, ŝ) where ŝ is the
propagation direction of the plane wave andm̂ andn̂ are unit vectors collinear with the parallel
and perpendicular components of the electric field, respectively. We set the incident electric
field to be linearly polarized alonĝm, i.e.,E = E‖m̂+E⊥n̂ whereE‖ = 1+0i andE⊥ = 0+0i
and set the wave weight toW = 1. Each plane wave with wave vectork is launched and allowed
to propagate and scatter in the medium. After each scattering/absorption event, the coordinate
system is updated according to [360]:





m̂′

n̂′

ŝ′



= M(θ ,φ)





m̂
n̂
ŝ



 (5)

where the coordinate transformation is given as:

M(θ ,φ) =





cosθ cosφ cosθ sinφ −sinφ
−sinφ cosφ 0

sinθ cosφ sinθ sinφ cosθ



 . (6)

Hereθ is the scattering angle andφ the azimuthal angle. Interactions between the plane waves
and the turbid medium has the effect of altering the propagation directionŝ of the plane wave
and its corresponding projections onm̂ andn̂.

Intercollision distances Discrete absorption weighting [420] is used to model absorption
which determines intercollision distances based on exponential distribution a mean length 1/µt

and attenuates the wave at each interaction by(µs/µt), whereµt = µa + µs.

Scattering angles The scattering angles(θ ,φ) are determined from a joint distribution phase
function p(θ ,φ) using a method from Xu [360]:

p(θ ,φ) =
F(θ ,φ)

π x2Qsca
(7)

whereQscais determined from Mie scattering calculations [430] andx is the size parameter
≡ (2πna/λ ), with n as the refractive index of the medium anda as the particle radius. In
Eq. (9),F(θ ,φ) is given by

F(θ ,φ) =
(

|S2|2cos2 φ + |S1|2sin2 φ
)

|E‖|2 +
(

|S2|2sin2 φ + |S1|2cos2 φ
)

|E⊥|2 + (8)

2
(

|S2|2−|S1|2
)

cosφ sinφRe[E‖(E⊥)∗],

whereS1(θ) andS2(θ) are defined by Mie scattering calculations. The scattering angleθ is
sampled from

p(θ) =
∫ 2π

0
p(θ ,φ)dφ =

|S1(θ)|2 + |S2(θ)|2
x2Qsca

. (9)

The azimuthal angleφ is determined using rejection sampling from the conditional proba-
bility p(φ |θ) = p(θ ,φ)/p(θ) where p(θ) given by Eq. (9). After each scattering event, the
coordinate system is updated according to Eq. (5) and the electric field is updated according to:
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(

E′
‖

E′
⊥

)

= L(θ ,φ)

(

E‖
E⊥

)

(10)

with

L(θ ,φ) =
1

√

F(θ ,φ)

(

S2(θ)cosφ S2(θ)sinφ
−S1(θ)sinφ S1(θ)cosφ

)

. (11)

Tallies The propagation of the wave continues until it exits the top of the slab at the focal
plane. Upon crossing the focal plane, we determine the exit angle with respect toθ subdivisions
or bins in[0,π/2]. The resulting wave weightWj for each wavej is added to the appropriate
bin to determine the wave tally for binp. The phase delay is determined from path length
information. At the exit, we convert the path length into time using,t j = (d j −db)/(c/n), where
db is the “ballistic” distance from the wavefront launch position/angle to the focal plane,d j is
the actual wavefront path length upon arrival at the focal plane,c is the speed of light, andn is
the refractive index of medium. To calculate the phase delay we definetcycle = λn/c to denote
the time of a full cycle(2π). Each wave that enters angular binp at timet j has a phaseφ j

φ j = [(t j/tcycle)−floor(t j/tcycle)]∗2π. (12)

To determine the change to the electric field coordinate system, we must determine the
change to the exiting wave coordinates relative to the initial coordinates. Let (m̂, n̂, ŝ) denote the
initial electric field coordinates and (m̂ f , n̂ f , ŝf ) the final wave coordinates. Aftern scattering
events, the local coordinate system is:





m̂ f

n̂ f

ŝf



= M(θp,φp)M f





m̂
n̂
ŝ



 (13)

with M f = ∏n
i=1 M(θi ,φi) andM(θp,φp) representing the transformation back onto the original

coordinate system with rotation anglesθp = arctan
(

M f
13/M f

33

)

andφp = arctan
(

M f
23/M f

13

)

.

The final electric field,E f = E f
‖ m̂ f +E f

⊥n̂ f , is then written as:
(

E f
‖

E f
⊥

)

=

(

cosφp sinφp

−sinφp cosφp

)

L f
(

E‖
E⊥

)

(14)

whereL f = ∏n
i=1 L(θi ,φi) contains all the scattering-induced coordinate transformations. Note

that in the EMC simulations, the electric field componentsE‖ andE⊥ are complex and are thus
characterized by both an amplitude and a phase. For each wave, the phase change is determined
at each scattering event and the propagation phase in between scattering events is calculated,
from which the final phase of the wave upon exiting the slab is determined. In this fashion, the
amplitude and phase wavefront can be calculated by reassembling the angular spectrum of all
wavesk after traversing the material. The focal volume is subsequently calculated by evaluating
the diffraction integral in Eq. (1) with the modified wavefront.

For a fixed object expressed in angular frequency space, the EMC method allows a direct cal-
culation of the distorted wavefront, and thus the simulation of the perturbed electric field in the
vicinity of the focal volume. However, since different objects produce different wavefronts, the
resulting focal volumes can vary broadly as a function of the shape, density, position, and re-
fractive index properties of the scattering objects in the sample. The separate evaluation of each
particular arrangement of scattering objects is not a convenient approach to distill the general
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trends of changes to the focal volume due to scattering. Nonetheless, the EMC method can be
usedin an approximate approach for determining the effects of scattering on the focal fields. To
this end, the wavefront is determined by considering the effects of random scattering events on
the amplitude and phase of the angular spectrum. Instead of evaluating fixed scattering objects,
each wavek is randomly scattered in the medium through Monte Carlo sampling of uncorre-
lated scattering events. The effective electric field is then found by the coherent superposition
of the scattered waves. Such a coherent summation approach has been used to calculate the
effective field at selected points in the focal volume [350]. Here we use a similar calculation to
determine the effective field of a given wave vectork in the angular spectrum representation.
The amplitude and phase of the field associated with the plane wave exiting at a given angleθp

is then calculated by taking the coherent sum of the contributions with the same exit angle:

Re
(

E‖p
)

=
1

√

NpSp

Np

∑
j=1

Re
(

E‖p, j
)

(15)

Im
(

E‖p
)

=
1

√

NpSp

Np

∑
j=1

Im
(

E‖p, j
)

(16)

whereNp is the number of waves detected in binp, Sp is the surface area of binp, andE‖p, j
is the jth wavefront detected in binp whose amplitude is normalized by the total number of

waves launched. The final amplitude is determined byE‖p =
√

Re
(

E‖p
)2

+ Im
(

E‖p
)2

. Similar
expressions are used to calculateE⊥p. Note that the coherent sum acts as a coherent filter,
i.e., angular components that exhibit a large phase variation, due to random scrambling of
the phase, have smaller final amplitudes than angular components where the phase is more
conserved [350]. Thus we will refer toE‖p as the coherent amplitude. Consequently, the random
scattering approximation allows the calculation of an effective wavefront with an amplitude and
phase resulting from the summation over many random scattering events. We use the procedure
outlined above to extract general trends in the amplitude and phase of the focal fields in media
with different scattering properties.

3. Methods

We examine tissue slabs with optical absorption and scattering coefficients ofµa = 0.02/mm
andµ ′

s = 2/mm which are representative of human dermis atλ = 800 nm [44450, 0]. Detailed
scattering characteristics were determined using Mie theory [430] with spherical scatterers with
a relative refractive index of 1.035. Spheres of radiusa= 0.2961µm, 0.1873µm, and 0.001µm
were used to produce anisotropy coefficientsg = 0.8, 0.6, and 0, respectively. The number
density of scatterers was adjusted to provide a transport mean free path ofl∗ = 1/(µ ′

s+ µa) =
495µm for all samples.

We modeled slab thicknesses ofT = 0–1.5l∗. The Monte Carlo simulations generated
G(θ ,φ → θ ′,φ ′) by launching 109–2× 1010 wavefronts for each slab thickness which pro-
duced relative errors of<0.1% in the wave count tallies. The focal volume was discretized into
61×61×121 voxels(x,y,z), over a focal volume that measures 3µm laterally and 6µm axi-
ally for capturing the focal field. The wave vector of each initial wavefront was selected from a
Lambertian distribution sampled over 31 angular bins, while the exiting wavefront was tallied
in 31θ bins in accordance with the solid angle of the objective lens. All simulations launched
wavefronts ofx-polarized light defined byE‖ = 1 andE⊥ = 0 into the slab. The EMC simulation
provides the transfer functionG(θ ,φ → θ ′,φ ′) by providing the effective field for a particular
exiting angle(θ ′,φ ′) given all incident angles(θ ,φ). The focal volumes were constructed by
computing Eqs. (1)–(3) numerically for numerical apertures ofNA = 0.81, 1.16, and 1.31.
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4. Results and Discussion

4.1. Spatial broadening of the focal volume

We first examine the effect of slab thickness on the spatial dispersion and strength of the focal
field. We considered three slabs types all of which have a fixed transport mean free pathl∗ =
495µm but have varying single-scattering anisotropy coefficients ofg = 0,0.6,0.8. Holdingl∗

constant for these three slab types resulted inµs values of 2.0, 5.0, 10.0 mm−1, respectively.
In Fig. 2 we plot the variation of the (a) lateral and (b) axial dimensions of the focal field i.e.,
the measured full width at half maximum (FWHM), with the slab thickness for a numerical
aperture(NA) of 1.16. These values are normalized to those predicted by diffraction alone in
the absence of scattering.

These results demonstrate that for turbid media with equivalent values forl∗, increases ing
produce much stronger axial and lateral dispersion of the focal field. This occurs even for slab
thicknesses exceeding 4l∗; a thickness where one might expect diffusive light transport to be
operative. However, because the focal field is formed primarily by the wavefront components
that remain ‘in-phase’ after propagating through the material, the larger single-scattering coef-
ficientsµs associated with higherg result in a more pronounced spatial broadening of the focal
volume. Although the single scattering phase function is more forward-directed for higherg,
these plots suggest that the broadening of the focal fields may be governed predominantly by
µs rather than the scattering direction. In addition, comparison of Fig. 2a with Fig. 2b reveals
a stronger dispersion along the axial dimension. This is an expected result, as it is known from
diffraction theory that the field confinement in the axial dimension is more sensitive to field
aberrations than the field distribution in the lateral dimension [46470, 0].
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Fig. 2. (a) Lateral and (b) axial dimension of the focal field (FWHM) as a function of slab
thicknessT in units ofl∗ for anisotropy coefficientsg= 0, 0.6, 0.8 for a numerical aperture
NA= 1.16.l∗ = 495µm in all samples.

To illustrate the primacy of single-scattering in governing the spatial dispersion of the focal
field, in Figs. 3(a) and (b), we plot the lateral and axial widths (FWHM) of the focal field versus
the slab thicknessT expressed in multiples of the single-scattering mean free path,ls = 1/µs

for three numerical apertures: 0.81, 1.16, and 1.31. When plotted in this fashion, the broadening
characteristics of the focal field for a given numerical aperture in all three slabs fall onto a single
curve. This confirms that the broadening of the focal field is governed solely by the expected
number of scattering interactions independent of the angular distribution of the single-scattering
phase function. Hence, for fixed values ofl∗, µa, andNA, the depth-dependent broadening of the
focal field is given by a single ‘master curve’ when expressing the slab thickness in multiples
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of the single-scattering mean free pathls.
Figures3(a) and (b) also show the dependence of focal field broadening on theNA of the

focusing lens. As one might expect, the relative broadening of the focal field is more significant
for larger numerical apertures with increasing material thickness. This is because the formation
of a diffraction-limited focal volume at higher numerical apertures relies on the unimpaired
propagation of largerθ (off-axis) components of the wavefront which, due to their longer mean
propagation distance through the slab, are more vulnerable to scattering or phase delay as they
traverse the slab [250]. This observedNAdependence of focal volume dispersion is in line with
experimental results [480] and incoherent MC calculations [270].

Note that although broadening of the focal fields is observed in these simulations, the overall
effect of scattering on the confinement of the focal field distribution is modest. For instance,
for a focusing depth corresponding to two single-scattering mean free paths(ls = 2) and a
numerical aperture of 1.16, the lateral broadening is less than 10%. This modest broadening
agrees with reported multiphoton microscopy experiments that examine the quality of tightly
focused excitation volumes in scattering media. These studies suggest that although the loss of
the excitation amplitude deeper into the medium can be severe, the corresponding broadening
of the focal excitation volume is generally modest [25490, 0].
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Fig. 3. (a) Lateral and (b) Axial FWHM as a function of slab thickness in terms ofls for
anisotropy coefficientsg = 0,0.6,0.8 and numerical aperturesNA = 0.81 (◦), 1.16(△),
1.31(�).

4.2. Loss of coherent amplitude

We next examine the attenuation of coherent amplitude with slab thickness. In Figs. 4(a) and (b)
we plot the maximum amplitude in the focal volume as a function of slab thickness normalized
with respect to the (a) transport mean free pathl∗ and (b) single scattering mean free pathls,
respectively. Here the electric field amplitude is normalized relative to the maximum amplitude
in the focal volume in the absence of scattering. Figure 4(a) demonstrates that for slabs of
equivalent thickness (sincel∗ = 495µm in all the slabs), the attenuation of the focal field is
more severe for slabs with higherg which, accordingly, have a higher scattering coefficientµs.

Moreover, we find that when comparing amongst slabs with a fixed value ofg, the attenua-
tion becomes more significant for higherNAs. This latter observation can be rationalized by the
more pronounced scattering-induced amplitude loss of field components traveling with larger
θ when focusing with a higherNA lens. These features indicate, as was the case for the spatial
dispersion of the focal field, that single scattering governs the attenuation of the focal field. Sim-
ilarly, when plotting these results in terms of the single-scattering mean free pathls in Fig. 4(b),

#136466 - $15.00 USD Received 11 Oct 2010; revised 13 Dec 2010; accepted 14 Dec 2010; published 6 Jan 2011
(C) 2011 OSA 1 February 2011 / Vol. 2,  No. 2 / BIOMEDICAL OPTICS EXPRESS  287



the depth dependent field attenuation effectively falls onto a single curve with relatively small
variations due to differences ing andNA.
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Fig. 4. Normalized maximum amplitude as a function of slab thickness in terms of (a)
l∗ and (b) ls for numerical aperturesNA = 0.81, 1.16, 1.31 and anisotropy coefficients
g = 0(◦), 0.6(△), 0.8(�).

Recall that in the cases studied here, we compute the CADF by launching a Lambertian
distribution of wavefronts with parallel polarization and capture the angular dispersion of each
electric field component that is produced as a result of propagation through the slab. In Fig. 5
we plot the amplitude of the CADF for slab thicknesses of 1, 3, and 5ls for a single scattering
anisotropy ofg= 0.8. These plots clearly show increased attenuation and angular dispersion of
the coherent amplitude with increasing angle of incidence and slab thickness.

Fig. 5. CADF for slab thicknesses of (a) 1ls, (b) 3ls, and (c) 5ls for a single scattering
anisotropy ofg = 0.8. θ andθ ′ represent the incident and exiting angle of the wavefront,
respectively. The color bar represents a logarithmic scale.

However, the formation of the focal field is governed solely by the amplitude, phase, and
angular distribution of the wavefronts that exit the slab independent of the incident angles of
the wavefront. In Fig. 6 we plot the normalized amplitude of the parallel component of the
electric fieldE‖ as a function of the exiting angle for slab thicknessesT = 1, 3, and 5ls and
fixed single-scattering anisotropyg= 0.8. These results are generated by integrating the CADF
overθ . This plot reveals the overall attenuation ofE‖ with slab thickness. Moreover, this plot
shows that the effect of increasing the normalized slab thickness is akin to a low-pass angular
coherence filter. It is this low-pass filtering effect that is the origin of the spatial dispersion of
the focal volume with depth. Hence, analysis of the CADF has allowed us to link the observed
attenuation and spatial broadening of the focal fields to the angular distribution of the exiting
wavefront as predicted by the EMC simulations.
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1ls(◦),3ls(△),5ls(�) for a single scattering anisotropyg = 0.8.

4.3. Depolarization of the focal field

An important feature of this EMC approach is the ability to examine the effects of slab thick-
ness and scatterer type on the depolarization that results from wavefront propagation to the
focal volume. One motivation for this work is to provide a computational framework to pre-
dict the resolution and depth of linear and nonlinear optical microscopy techniques currently in
use for imaging of thick tissues. A question relevant to polarization-sensitive methods such as
harmonic generation microscopy and the co-registration of images relative to methods such as
multiphoton microscopy is how the amplitude loss of incident field componentE‖ might relate
to the appearance/generation of theE⊥ components i.e., to the depolarization of the incident
light.

To examine the interrelationship between loss of coherent amplitude and depolarization, in
Fig. 7(a) we plot the normalized electric field componentE‖ as a function of the exit angleθ ′

for slab thicknessesT = 1, 3, and 5ls and single-scattering anisotropyg = 0, 0.6, and 0.8. As
was the case in Figs. 3-5, we find a similar behavior for transmitted electric field in slabs with
differentg but identical thickness relative the the single-scattering lengthls. As in Fig. 6 we see
the low pass filter effect of slabs with larger thickness. To compare, we plot in Fig. 7(b) a mea-
sure of the depolarization,D = 1−(E⊥/E‖), as a function ofθ ′ in these same slabs. Figure 7(b)
displays characteristics similar to Fig. 6 in that increasing slab thicknesses act as a low pass fil-
ter, this time for polarization as opposed to coherent amplitude. This agrees with experimental
measurements of media with tissue-like properties which showed that the rate of depolarization
of the incident radiation appears to be relatively small over length scales relevant to focused
light [500]. However, comparison of the Figs. 7(a) with 7(b) reveals that propagation through a
turbid slab of a fixed thickness consistently provides a more stringent filter for coherent ampli-
tude as compared to polarization. This suggests that, for the scattering media examined, when
using linearly-polarized incident light, the focal volume is formed predominantly by light with
the same polarization state.

5. Conclusion

In this work we have used plane wave electric field Monte Carlo (EMC) simulations combined
with an angular spectrum representation diffraction theory for focused fields to gain insight in
the effects of tissue scattering on the formation of a tightly focused laser spot in turbid media.
Unlike incoherent Monte Carlo models, the EMC approach preserves the wave properties of the
focused radiation and is thus better suited to study the influence of scattering on the diffraction
limited focal volume. We used this model in the random scattering limit to establish a funda-
mental link between the macroscopic tissue scattering parameters and the relative amplitude,
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spatial broadening, and depolarization of the focal field.
Our results indicate that the loss of focal field amplitude with focusing depth is governed

predominantly by the scattering coefficientµs rather than by the scattering anisotropyg. This
implies that the properties of the focal volume are dictated primarily by the number of scatte-
ring events and that the direction of scattering plays a relatively minor role. The major effect of
tissue scattering is the increased amplitude loss and phase delay for wavefront componentsk
with large propagation angles. This modifies the angular spectrum, in that the low anglek com-
ponents gain more importance relative to the high angle components. Effectively, the scattering
medium acts as a low pass filter of the angular spectrum, and results in a broadening of the focal
fields in both the lateral and axial dimensions. This low pass filtering mechanism also explains
why effective broadening of the focal fields is less severe for lowerNA objective lenses, as the
angular spectrum of a lowNA lens intrinsically encompasses only lower angular components.
Although effective broadening of the focal volume results directly from tissue scattering, our
model confirms quantitatively that spatial distortions of the focal fields are relatively minor.

In addition, the full vectorial nature of the EMC approach allows a direct assessment of the
depolarization rate of the focal fields. Our simulations indicate that while the depolarization
of higher angular components can be substantial for large slab thicknessesl∗, this effect is
subordinate to the corresponding coherent amplitude loss. We conclude that for the scattering
media examined, the loss of coherent amplitude due to phase scrambling is much more severe
than depolarization within the focal field of a tightly focused laser beam in turbid media.

All of the trends predicted by the simulations presented here are in good agreement with
experimental observations. The EMC model for focused light in the limit of the random scat-
tering approximation thus provides a reliable prediction of the excitation field in turbid media
based on macroscopic tissue scattering parameters. We expect this approach to be particularly
relevant to predict the performance of coherent imaging techniques applied to turbid media,
which crucially relies on a full assessment of the amplitude and phase of the focal volume.
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