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Abstract
Selenoproteins play a wide range of roles in metabolism and oxidative stress defense and are
produced by organisms in all three domains of life. Recent evidence has been presented that metal
based cancer drugs target the selenol nucleophile of the active site selenocysteine in thioredoxin
reductase isoenzymes. Other metals and metalloids, such as tin, arsenic and gold, have also
recently been shown to form stable complexes with hydrogen selenide, a required precursor for the
synthesis of selenoproteins in all biological organisms. Moreover these metal based compounds
have been shown to inhibit growth of pathogens such as Clostridium difficile and Treponema
denticola due to their reactivity with this highly reactive metabolic precursor. This review
summarizes the recent finding on these two avenues for drug discovery, and puts this work in
context with the larger field of selenium biology.

Introduction
Our understanding of the role of selenium in biology is constantly evolving. Initially known
as an environmental toxin, it was first recognized as an essential trace element for several
organisms in the 1950s.1–3 Selenoproteins, in which selenium is incorporated as the unique
amino acid seleno-cysteine, were discovered in 1973.4,5 Since that time seleno-proteins have
been identified across all three domains of life and there are at least twenty-five human
selenoproteins.6,7 Selenium deficiency is associated with a wide variety of human diseases
including cancer, cardiovascular disease, male infertility, and immune suppression and
selenoproteins are critical players in a variety of essential biological processes.8,9

Selenoprotein synthesis is complex, consisting of many steps and involving a cadre of
specialized protein machinery. Briefly, the process requires the production of seleno-
phosphate from the highly reactive, reduced form of selenium, hydrogen selenide. This is
performed in an ATP dependent manner by the enzyme selenophosphate synthetase.10–14 It
should be noted that little is understood regarding the transport and reduction of selenium
upstream of this enzyme. Selenocysteine is then synthesized by reaction of seleno-phosphate
with a serine charged tRNA.15,16 This serine must be first phosphorylated in archeabacteria
and eukaryotes by a recently identified kinase.17,18 Insertion of selenocysteine into the
polypeptide chain is uniquely encoded by the stop codon, UGA.19 Specialized translation
factors interact with a stem-loop structure in the mRNA to recruit the selenocysteine bound
tRNA to the ribosome. This structure is known as the selenocysteine insertion sequence
(SECIS) element and is located immediately downstream of the UGA codon in the coding
region in prokaryotes and within the 3′ untranslated region in archeabacteria and eukaryotes.
20–23
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The importance of selenoproteins to human health is not fully understood. Much research
has been devoted to the positive role of selenium and selenoproteins with regards to their
critical role in defense against oxidative stress. This has been coupled in recent years with an
emphasis on the benefits of nutritional supplementation, from cell culture model systems to
animal studies and even human clinical trials. Recent studies, however, have demonstrated
that supplementation with selenium may somehow contribute to diabetes, thus complicating
future studies that attempt to link selenium nutritional status with human health.24–26 In this
review we examine the role of selenoproteins in the supporting human disease and
demonstrate that their unique biosynthetic process and highly specialized functions make
them ideal targets for drug discovery.

Selenoproteins and cancer
The role of selenoproteins in cancer prevention has been the subject of much study and
debate. Epidemiological studies have linked polymorphisms in selenoproteins with
increased cancer risk.24,27 Two such selenoproteins, with selenocysteine at their active
sites, glutathione peroxidase (Gpx) and thioredoxin reductase (TrxR), are involved in
defense and repair of oxidative damage. Gpx catalyzes the reduction of hydroperoxides and
lipid peroxides to their corresponding alcohols and water using glutathione as the electron
donor.28,29 TrxR catalyzes the NADPH dependent reduction of thioredoxin (Trx) and other
oxidized dithiols.30 Given the integral role of oxidative stress in carcinogenesis, it has been
hypothesized that ensuring adequate expression and optimal activity of these enzymes is an
important aspect of cancer prevention.31 In addition, low molecular weight selenium
compounds have been identified with direct anticancer properties.32

Much of current research regarding selenium and cancer has focused on the
chemopreventative effect of nutritional selenium supplementation.33,34 This has been the
subject of several clinical trials. Early data from the Nutritional Prevention of Cancer trial in
1996 demonstrated a significant decrease in overall cancer incidence and mortality in the
selenium treatment group.31 More recently, however, the complete results of the SELECT
trial have cast doubt on the efficacy of dietary selenium supplementation.25,35,36 These
conflicting results reflect the complexity of the role of selenium in human health and
underscore the need for further research to understand selenium biology at the molecular
level before embarking on additional large scale clinical studies.

Although there is a large body of research supporting the role of selenium in cancer
prevention, there is also research indicating that selenium and selenoproteins play a role in
cancer promotion. Acute selenium toxicity can result in hair loss, damage to skin and nails,
unsteady gait and paralysis.37 This toxicity is attributed to the generation of reactive oxygen
species during the metabolic processing of selenium compounds and, as such, high doses of
selenium are considered carcinogenic.38 Recent attention, however, has turned to the
importance of selenoproteins in supporting carcinogenesis. Several studies indicate that the
production of certain seleno-proteins is upregulated in cancer cells and tumors.39–44 In
particular, a link between increased levels of TrxR1 and tumor formation has been well
established.45,46 On the other hand, selenoprotein deficiency has been shown to suppress
cancer development in a mouse liver cancer model.47 Given these contrasting views,
selenoproteins playing a role both in prevention of carcinogenesis and a role in increased
metabolic potential in tumors, we will discuss further the literature surrounding the
inhibition of selenoenzymes as a viable target for novel chemotherapy approaches.

Inhibition of thioredoxin reductase (TrxR)
TrxR is the focus of much of the current research on development of novel therapies for
cancer treatment.48,49 Both a cytosolic (TrxR1) and a mitochondrial enzyme (TrxR2) are
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present in essentially all cell types and tissues. These enzymes are important regulators of
redox balance and together these isoenzymes participate in a wide variety of activities
including cell proliferation, transcription, DNA repair, angiogenesis, cell signaling, and
embryogenesis.42,50–52 TrxR1 has a broad substrate specificity, but is the only enzyme to
reduce thioredoxin (Trx), converting the reducing potential from NADPH to drive metabolic
processes throughout the cell.49 The C-terminal sequence -Gly-Cys-SeCys-Gly is required
for this enzyme activity.53 The relationship of TrxR to cell cycle control is multifaceted. It
is known to directly activate the p53 tumor suppressor and, through reduction of Trx, is
intimately tied to the regulation of apoptosis.49,54

Although primarily considered to play a central role maintaining Trx pools for many
‘antioxidant’ enzymes (peroxiredoxins, methionine sulfoxide reductases) in cancer
prevention, it is becoming increasingly clear that TrxR is also critical for cancer cell
proliferation. Several cancer cell lines and tumors exhibit increased production of TrxR.
39,40,42–44 In addition, upregulation of Trx is associated with resistance to chemotherapy.
55,56 Knock down of TrxR has been shown to inhibit DNA replication and growth in cancer
cells and reverse tumor phenotype.46,57 These studies suggest that TrxR can be a good target
for development of agents that reduce tumor growth, perhaps in combination with existing
drugs that selectively kill aggressive tumors.

The C-terminal location of the highly reactive selenocysteine residue in TrxR makes it
susceptible to inhibition by electrophilic compounds.58 Several compounds have been
shown to inhibit TrxR. These include drugs that are currently used in chemotherapy and
others with potential for therapeutic development. Cisplatin, a platinum containing drug
widely used in cancer chemotherapy, irreversibly inhibits TrxR.59 Gold compounds have
long been studied for their anticancer activity.60 Auranofin [2,3,4,6-tetra-o-acetyl-1-thio-β-D-
gluco-pyranosato-S-(triethyl-phosphine) gold], used to treat Rheumatoid arthritis, inhibits
selenoenzymes through interactions with the reduced selenocysteine residues at the active
sites. It strongly inhibits TrxR at low nanomolar concentrations in vitro.61 In addition,
auranofin was recently shown to induce apoptosis in a cisplatin resistant ovarian cancer cell
line by altering the redox state of the cells.62 Several other gold compounds have also been
shown to inhibit TrxR and the anticancer potential of such compounds continues to be the
subject of much research.63–65 Recently the mechanism of arsenic trioxide (ATO), used in
the treatment of acute promyelocytic leukemia was attributed to TrxR inhibition in vitro.66

In addition, motexafin gadolinium, mansonone F and even curcumin have demonstrated
anticancer activity through inhibition of TrxR.67–69 Many of these drugs are showing
promising results in early stage clinical trials.70

The effects of TrxR inhibition are two-fold. The first is a reduction in the available pool of
reduced Trx, leading to a decrease in the activity of many antioxidant enzyme systems that
require Trx as an electron donor. This will result in an accumulation of reactive oxygen
species and alteration of the redox state within the cell. Trx is directly involved in regulation
of apoptosis through interactions with ASK1, procaspase 3 and NF-κB and thus TrxR
inhibition promotes apoptosis.49 In addition, inhibition of TrxR can result in formation of
SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins), in
which the active site selenocysteine residue has been rendered inactive by electrophilic
compounds. These SecTRAPS maintain NADPH oxidase activity, leading to increases in the
level of superoxide and subsequently downstream reactive oxygen and nitrogen species
(hydrogen peroxide and peroxynitrite). They have been associated with increased
intracellular oxidative stress and cell death via both apoptosis and necrosis.71,72
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Inhibition of selenoprotein synthesis
While specifically targeting selenoproteins, we must also account for the possibility of
inhibiting selenoprotein synthesis as a whole. This has profound implications in terms of
understanding the mechanism of these drugs in vivo and also with regard to the impact of
concurrent selenium supplementation. Given that many TrxR inhibitors exhibit reactivity
with active site selenols, the possibility exists that they could interact with reactive selenium
metabolites upstream of selenophosphate synthetase, such as HSe−, thus blocking
selenoprotein synthesis entirely. There is precedent since it has been shown that arsenic
compounds can form stable conjugates with hydrogen selenide, leading to a reduction in the
bioavailable pool of selenium for selenoproteins synthesis.73–77 Arsenite, auranofin and
ATO have all been shown to inhibit selenoprotein synthesis in cell culture.77 The inability to
make new selenoproteins combined with direct enzyme inhibition may produce a synergistic
effect, improving the efficacy of drugs to reduce proliferation of cells and induce apoptosis
due to a reduced capacity to produce all selenoproteins. These questions will likely be the
focus of future studies that address the mechanism of action of drugs like auranofin in the
treatment of cancer.

Selenoproteins and infectious disease
Few studies have examined the role of selenoproteins in human pathogens. Many important
human pathogens, both prokaryotic and eukaryotic, rely upon selenoproteins for their
survival. The unique reactivity of selenocysteine and the specialized machinery required for
selenoprotein synthesis make selenoproteins attractive targets for antimicrobial
development. It should be noted that, based on computational analysis of genomes, only
14% of eubacteria encode seleno-proteins,6 suggesting agents that block selenoproteins
would be ‘narrow-spectrum’ agents.

Bacteria
Computational analysis of completed genome sequences has identified selenoproteins in
several bacterial pathogens including Campylobacter jejeuni, Escherichia coli, Haemophilus
influenza, and Salmonella typhimurium.78 Clostridium difficile, the primary causative agent
of antibiotic associated diarrhea, relies upon two selenoenzymes, glycine reductase and D-
proline reductase, for energy metabolism via Stickland fermentation of amino acids.79

Similarly, Treponema denticola, implicated in periodontal disease, participates in Stickland
reactions and exhibits a strict nutritional requirement for selenium.80

Recent work has examined the impact of auranofin, on the growth of C. difficile.81

Auranofin potently inhibits the growth of C. difficile but does not similarly affect other
clostridia that do not utilize selenoproteins to obtain energy. Although it is a known
selenoenzyme inhibitor, it was shown that auranofin inhibited the new synthesis of
selenoproteins using a sensitive radioisotope labeling approach. Specifically, the drug was
found to react directly with HSe−, which is required for selenoprotein synthesis, to form a
stable complex. This complex was identified using mass spectrometry and confirmed using
X-ray absorption spectroscopy. Auranofin blocks the uptake of selenium and results in the
accumulation of the auranofin-selenide adduct in the culture medium. The resulting
deficiency in selenium available for selenoprotein synthesis, i.e. bioavailable selenium,
inhibited growth of C. difficile.

T. denticola is similarly affected by auranofin.82 Interestingly, stannous salts, which are
commonly used in toothpastes and other oral treatments, also block selenium metabolism in
this organism. These studies demonstrate that targeting nutritional selenium availability,
rather than specific enzyme inhibition may provides a new avenue for antimicrobial
development against selenium-dependent pathogens.
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Parasites
Tropical diseases are frequently neglected in therapeutic development research, but yet are
responsible for a huge burden of disease worldwide. The impact of malaria is well known
with approximately 500 million Plasmodium falciparum infections annually.83 In addition,
an estimated 166 million people are infected with schistosomes in sub-Saharan Africa alone
with approximately 280 000 deaths per year.84 There is an endless selection of eukaryotic
parasites that impact human health throughout the world. The number of available
treatments, however, for diseases caused by these organisms is extremely limited.

Recently selenoproteins have been identified in a number of parasitic organisms including
trypanosomes and platyhelminths.85,86 In addition, selenoproteins in Plasmodium
falciparum have been suggested as possible targets for therapeutic development.87 So far,
the strategy of targeting selenoproteins is most developed in the battle against
schistosomiasis. The primary treatment for this disease is broad distribution of praziquantel,
but the possibility of the development of drug resistance and the lack of adequate
alternatives has emphasized the need for new drug development.88

Unlike mammalian cells that rely upon two separate enzymes, glutathione reductase and
thioredoxin reductase, to maintain the level of reduced thiols, schistosomes utilize a hybrid
of the two systems known as thioredoxin glutathione reductase (TGR).89 It is a unique
selenoenzyme that is essential for growth of the organism. Similar to human thioredoxin
reductase, TGR possesses a C-terminal seleno-cysteine residue that is required for activity
and is inhibited by auranofin.90 These properties of TGR make it an attractive target for
further study. High throughput screening has yielded a number of compounds with
inhibitory action against TGR.91 Further study of these compounds has identified
oxadiazole 2-oxides as new lead compounds for treatment of schistosomiasis.92 These
positive results provide further evidence that specifically targeting selenoproteins is a viable
avenue in the search for new drugs against schistosomes and other organisms that rely upon
selenoproteins for growth.

Final discussion
It is clear that selenoproteins in mammals can function both in central metabolism and DNA
synthesis, while also playing a role in defense against reactive oxygen species. In microbial
pathogens, selenoproteins can play a critical role in energy metabolism and potentially other
aspects of cellular physiology as well. Recent discoveries in bioinorganic chemistry and
selenoprotein enzymology suggest that targeting of specific selenoproteins, or the
metabolism of selenium, can be a rich avenue for drug discovery. Current and future studies
will likely uncover more ways to target selenium and seleno-proteins for improvements in
human health.
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