Skip to main content
. 2011 Jan 24;10:9. doi: 10.1186/1476-072X-10-9

Table 3.

Sensitivity analyses for oesophageal cancer incidence among males

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6
Distribution of SIR

Mean 100.8 99.4 101.5 100.7 100.6 103.6
Standard deviation 10.2 30.8 16.3 14.5 13.5 23.2
Maximum 140.6 455.1 181.2 169.5 166.4 201.8
75% Quartile 107.2 113.1 111.7 110.2 109.4 109.8
Median 96.5 93.5 95.1 95.6 95.9 95.7
25% Quartile 93.3 78.7 89.4 89.9 90.7 90.2
Minimum 87.4 55.9 79.6 79.3 80.0 79.8
90% ratio1 1.3 2.3 1.6 1.5 1.5 1.6

pD2 34.112 138.047 51.305 53.828 53.709 54.098
DIC3 1652.57 1660.32 1650.62 1648.51 1651.02 1650.71
Spatial fraction4 0.56 0.44 0.63 0.48 0.52 0.57
Percent SLAs with Geweke <0.01 for SIR 41.0% 1.9% 3.3% 9.4% 10.3% 10.5%

Notes:

1. The 90% ratio is calculated as the 95th percentile divided by the 5th percentile of the smoothed SIR estimates.

2. pD represents the effective number of parameters in the model. Larger values indicate less smoothing of estimates.

3. DIC = Deviance Information Criterion. Smaller values (of at least 5 below) indicate a better model fit.

4. The spatial fraction estimates the relative contribution of spatial and unstructured heterogeneity, and is calculated as: Spatialfraction=θmarginal2θmarginal2+σ2

where θmarginal2 = marginal spatial variance, σ 2= marginal variability of the unstructured random effects between areas. A value close to 1 indicates the spatial heterogeneity dominates, whereas a value close to 0 indicates the unstructured heterogeneity dominates.