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Abstract

The epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells down-regulate their
cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In human breast cancer, invasion into
surrounding tissue is the first step in metastatic progression. Here, we devised an in vitro model using selected cell lines,
which recapitulates many features of EMT as observed in human breast cancer. By comparing the gene expression profiles
of claudin-low breast cancers with the experimental model, we identified a 9-gene signature characteristic of EMT. This
signature was found to distinguish a series of breast cancer cell lines that have demonstrable, classical EMT hallmarks,
including loss of E-cadherin protein and acquisition of N-cadherin and vimentin expression. We subsequently developed a
three-dimensional model to recapitulate the process of EMT with these cell lines. The cells maintain epithelial morphology
when encapsulated in a reconstituted basement membrane, but undergo spontaneous EMT and invade into surrounding
collagen in the absence of exogenous cues. Collectively, this model of EMT in vitro reveals the behaviour of breast cancer
cells beyond the basement membrane breach and recapitulates the in vivo context for further investigation into EMT and
drugs that may interfere with it.
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Introduction

Breast cancer related deaths are primarily due to metastatic

progression [1]. Understanding the mechanisms that underlie this

multistep process is essential to improving clinical outcome. The

transformation of normal breast epithelial cells to metastatic

cancer is the result of multiple epigenetic and genetic changes,

leading to deregulated interactions with the microenvironment [2].

During this process, inhibition of proliferation, cell survival,

migration and differentiation is lost leading to the acquisition of an

invasive phenotype. The ability to breach the basement membrane

(BM) is a critical event in cancer progression and a prerequisite for

metastasis. Having breached the BM, cells may then enter the

lymphatic system, spread and attempt to establish themselves as

distant tumor foci [3].

The trans-differentiation of cells from an epithelial to a

mesenchymal phenotype is an essential part of normal embryo-

genesis and development [4]. Increasing evidence also supports a

role for epithelial to mesenchymal transition (EMT) in the

progression of many cancer types including breast, with critical

roles in invasion and metastatic dissemination [5,6]. EMT involves

loss of cell-cell junctions and re-organization of the actin

cytoskeleton, resulting in loss of apical-basal polarity and

acquisition of a spindle-like mesenchymal morphology [7]. At

the same time, there is also decreased expression of epithelial-

specific proteins, including E-cadherin, which may account at least

in part for the altered properties of migrating tumor cells [8,9]. An

important event in EMT is switching in expression from E-

cadherin to N-cadherin [10]. In most cases this is associated with

transcriptional repression of E-cadherin [9]. Several specific

repressor factors have been identified including Snail, Slug,

Zeb1, Zeb2 and Twist [11], all of which are zinc finger containing

proteins that can bind with so called E-boxes within the CDH1

gene promoter. N-cadherin is believed to promote cellular

invasion by binding to and enhancing signalling by growth factors

and is over-expressed in many invasive and metastatic human

breast cancer cell lines and tumors [10,12,13].

Comparative analysis of mouse mammary carcinoma models

and human breast tumors identified a novel human molecular

subtype, termed ‘claudin-low’ cancers. These cancers are char-

acterised by low to absent expression of genes involved in tight

junctions and cell-cell adhesions, including claudins, occludins and

E-cadherin [14,15]. In addition, these moderate-high grade

invasive ductal carcinomas are morphologically distinct from

lobular carcinomas despite their low expression of E-cadherin

[14]. Similarities between claudin-low tumors and EMT in vitro

have been documented, however these features have not

previously been compared and analysed directly. Furthermore,

while the contribution of the extra-cellular matrix to the
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promotion of tumor progression is now appreciated [2], most

current in vitro models do not take into account the contribution of

stromal collagen into which cells undergoing EMT invade. The

predisposition of tumours to undergo EMT can be enhanced by

genetic alterations. For example, C35 is a 12KDa membrane-

anchored protein found on the HER2 amplicon that is over-

expressed in around 11% of breast cancers [16]. Cellular

transformation associated with acquisition of an EMT phenotype

can be induced in mammary epithelial cells transfected with a C35

expression construct resulting in increased invasion into stromal

collagen, down regulation of E-cadherin and up regulation of the

transcription repressor Twist [17]. This implies that collagen-

invading C35-expressing cells can be used to model aspects of

EMT in cancer cells.

Testing new treatments that may prevent EMT or tumor spread is

challenging: conventional clinical trials may have difficulty in

addressing the issues because of the ethical problems of leaving

tumor in situ, or the limitation of a study to only very late stage disease.

Robust models that can identify possible predictive biomarkers are

essential. In this report, we describe a unique invasion assay, in which

cell lines with known molecular pathology undergo spontaneous

EMT when invading away from the basement membrane into

collagen. We propose that this in vitro model of defined breast cancer

cell lines can provide an improved representation of invasive breast

cancer in vivo, compared to existing EMT models.

Materials and Methods

Gene expression analysis, RNA extraction and qRT-PCR
Microarray data was analysed using packages within Biocon-

ductor [18] (http://www.bioconductor.org) that implement R

statistical programming. Gene expression data was normalised

using quantile normalisation within the BeadArray package [19]

and differential gene expression assessed using Significance

Analysis of Microarrays (SAM) [20] within the siggenes package.

The dataset from Hershkowitz and colleagues [14] was down-

loaded from the UNC Microarray Database (https://genome.unc.

edu/). RNA from the collagen invasion assays was labelled using a

Illumina TotalPrep RNA amplification kit (Ambion) according to

manufacturer’s instructions. Triplicate samples from invasion

assays (1500 ng cDNA per assay) were hybridised to Illumina

BeadChips and whole genome gene expression analysis performed

using the Illumina HumanRef-8 v3 Expression BeadChip and

BeadArray Reader.

RNA from cell lines cultured on plastic was converted to cDNA

prior to PCR using a QuantiTect Reverse Transcription kit

(Qiagen). Gene expression patterns for invasion assays (biological

triplicates) and cell lines cultured on plastic (technical triplicates)

were examined using the QuantiTect SYBR Green PCR kit

(Qiagen) and a Corbett RotoGene 3000. Primers for CDH1 were:

forward 59-CGGAGAAGAGGACCAGGACT-39, reverse 59-

GGTCAGTATCAGCCGCTTTC-39; for CLDN7: forward 59-

AAAATGTACGACTCGGTGCTC-39, reverse 59-AGACCTGC-

CACGATGAAAAT; for TBP: forward 59-GGGGAGCTGTGA-

TGTGAAGT-39, reverse 59-CCAGGAAATAACTCTGGCTCA-

39; for ACTB: forward 59-CCTTCCTGGGCATGGAGTCCT-39,

reverse 59-GGAGCAATGATCTTGATCTT-39. QuantiTect

Primer Assays (Qiagen) were used for KRT8, CRB3, MARVELD3,

IRF6, MAL2, TACSTD1 and SPINT2. PCR program was identical

for all genes: 95uC, 15 min; (94uC, 15 s; 56uC, 30 s; 72uC, 30 s)650

cycles; 72uC, 5 min. Standard reference human cDNA was from

Clontech, random primed. ,50 ng RNA equiv/mL was used for

quantification of mRNA expression. Final normalisation was

performed against the geometrical mean of ACTB and TBP levels.

Gene promoter analysis
Using the presumptive promoter region for the 9 genes (a 2 kb

region upstream of the presumptive transcription start site using

Ensembl 52, Jan2009, based on NCBI 36 assembly), we looked for

over-represented 6- and 7-mers oligos using oligo-analysis [21] from

the RSAT-tools package (http://rsat.scmbb.ulb.ac.be/rsat/) [22].

The program counts all oligonucleotide occurrences within the

sequence set, and estimates their statistical significance. A

calibration is done using the entire genome promoter regions as a

background model (Ensembl 52, Jan2009, based on NCBI 36

assembly). For the best 7-mers candidates, we compared the

obtained oligo sequences to the entire collection of consensus

binding sites available in Transfac professional [23] (release 2010.1)

using the compare-pattern script (RSAT-tools) and listed the

associated binding factor name.

E-value for best hit 7-mer CAGGTGC/GCACCTG

(2.661028) represents the expected number of patterns which

would be returned at random for a given probability. The weights

in Table 1 reflect the number of matching positions, with a lower

weight for matches between partially specified nucleotides (the

weight for a perfect match to a 7-mer is 7). Both E-value and

weights are calculated by RSAT-tools.

Cell lines
MCF10A, Hs578T, HBL100, BT549, MDA-MB157, MDA-

MB231 and MDA-MB436 cell lines were obtained from American

Type Culture Collection. SUM159PT and SUM1315MO2 cells

were a kind gift from Akira Orimo (University of Manchester).

The cells were cultured as previous described [24] at 37 deg C, 5%

CO2: MCF10A in DMEM/F12 media (Invitrogen) with 5% horse

serum (Invitrogen), 20 ng/ml EGF, 100 ng/ml cholera toxin,

0.01 mg/ml insulin and 500 ng/ml hydrocortisone (all from

Sigma); MDA-MB157, MDA-MB231, HBL100 and HS578T in

DMEM, 10% bovine serum (both from Invitrogen); SUM159PT

in Ham’s F12 (Invitrogen), 5% bovine serum, insulin, hydrocor-

tisone; MDA-MB436 in L15 (Invitrogen), 10% bovine serum;

BT549: RPMI-1640, 10% bovine serum; SUM1315MO2 in

Ham’s F12, 5% bovine serum, insulin, EGF.

Primary cell isolation for tissue culture
Fresh normal breast tissue and breast tumor materials were

incubated for 1 hour at room temperature in tissue mix consisting of

DMEM/F12, 1% fungizone, 1000 U/ml penicillin, 1000 mg/ml

streptomycin, 10 mg/ml insulin and 10% bovine serum (all from

Invitrogen). Tissue cores were then finely chopped (,1 ml pieces)

and put in a tissue mix/Collagenase I solution (Invitrogen; made up

with 200 mL of 200 U/ml Collagenase I to 20 ml tissue mix) for

digestion (2 hours at 37 deg C, 200 rpm). The digested tissue was

then spun for 4 mins at 60 g. The resulting pellet was plated with

fibroblast media (DMEM supplemented with 10% bovine serum,

50 U/ml penicillin and 50 mg/ml streptomycin) and the superna-

tant spun for a further 4 mins at 600 g, 4 times. The resulting

second pellet (mammary epithelial cells) was plated with HMEC

media (CnT-22 (Cellntec) supplemented with 5% FCS).

Ethics Statement
The use of primary breast cells was approved by the Lothian

Research Ethics Committee (08/S1101/41). Materials were

obtained with written informed consent from all participants

involved in this study.

Rat tails obtained from animals at the University of Edinburgh

animal facilities scarified for other scientific purposes and did not

require ethical approval.

Spontaneous Breast Cancer EMT In Vitro
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SDS-PAGE
Protein lysates (50 mg/well, as determined by MicroBCA

protein assay) were resolved by SDS-PAGE after being denatured

for 1 hour at 60 deg C. The resolving gel (7.5% w/v acrylamide,

0.37 M TRIS pH 8.85, 0.1% SDS, 0.02% AMPS, 0.25%

TEMED; all from Sigma) was set between glass plates using a

Bio-Rad kit. Once the resolving gel had set, a stacking gel (3.6%

w/v acrylamide, 0.12 M TRIS pH 6.8, 0.1% SDS, 0.03% AMPS,

0.33% TEMED) was layered and a comb used to create wells for

sample loading. The loaded samples were electro-separated under

constant current (100–200 mA) using electrophoresis buffer

(25 mM Trizma Base, 0.19 M Glycine, 10% SDS). Electro-

transfer onto immobilon transfer membrane (Millipore) was

performed using transfer buffer (25 mM Trizma Base, 0.19 M

Glycine) using a Bio-Rad kit, under constant electrical potential

(,30 mV for at least 2 hours).

Western Blotting
Nonspecific binding was blocked with Li-Cor Odyssey Blocking

Buffer (Li-Cor), diluted 50:50 in PBS, for 1 hour at room

temperature. Primary antibodies were diluted in Li-Cor Odyssey

Blocking Buffer, diluted 50:50 in 0.1% PBS-Tween20, and

incubated with the blot overnight at 4 deg C. Blots were washed

3 times for 5 mins with PBS-T before incubation with appropriate

fluorescent secondary antibodies (Li-Cor), diluted 1:10,000 in Li-

Cor Odyssey Blocking Buffer, diluted 50:50 in 0.1% PBS-

Tween20, for 45 mins at room temperature. Exposure to light

was avoided. Subsequently, membranes were washed, dried and

scanned on the Li-Cor Odyssey scanner. All washes/incubations

were carried out under constant agitation. Primary antibodies used

as follows: E-cadherin, BD, 610181, Mouse, 1:2500; Claudin7,

Abcam, Ab75347, Rabbit, 1:1000; N-cadherin, BD, 610921,

Mouse, 1:3000; Vimentin, Sigma, V 6630, Mouse, 1:1000; Zeb2,

BD, 611256, Mouse, 1:250; Slug, LifeSpan Bio, LS-C30318,

Rabbit, 1:4000; Snail, Abcam, ab17732, Rabbit, 1:4000; Tubulin,

Abcam, Ab7291, Mouse, 1:6000.

Rat tail collagen I preparation
Fresh rat tails were collected and frozen. Prior to harvesting

these were placed in 70% ethanol. Tendons were stripped from

the tails and returned to 70% ethanol to sterilise. The collected

tendons were weighed and transferred to the appropriate volume

of pre-cooled acetic acid (1 g tendon to 250 ml 0.5 M acetic acid)

and gently stirred for 48 hours at 4 deg C. The tendon/acetic acid

mix was then centrifuged at 10,000 g for 30 mins and the pellet

discarded. An equal volume of 10% (w/v) NaCl was added to the

supernatant and the mix allowed to stand overnight at 4 deg C.

The collagen-rich, insoluble ‘bottom layer’ was taken and collected

by further centrifugation (10,000 g for 30 mins). The collagen-rich

material was resuspended in 0.25 M acetic acid at 4 deg C and

dialysed against 1:1000 acetic acid at 4 deg C for 3 days, changing

the dialysis buffer twice daily. The collagen solution was then

sterilised by centrifugation (20,000 g for 2 hours) and stored at 4

deg C. Collagen was diluted as required by the addition of sterile

1:1000 acetic acid to a stock concentration of 1.2 mg/ml.

Establishment of 3D invasion assays
200 mL cell-collagen plugs and 75 mL cell-Matrigel plugs were

made in a u-shaped 96 well plate, with the aim of achieving

comparable size after a 24 hr incubation (day -1). A cell

concentration of 16106 was used for all plugs. Rat tail collagen

I, for both plugs and subsequent embedding, was prepared as per

the ‘on top’ assays. Growth factor reduced Matrigel was obtained

from BD and used at a 5 mg/ml. Matrigel matrix is a soluble

basement membrane extract of the Engelbreth-Holm-Swarm

tumor that gels at room temperature to form a reconstituted

basement membrane. The major components are laminin,

collagen IV, entactin and heparin sulphate membrane. After the

24 hr incubation, cell plugs were carefully removed from their 96

well plate and embedded in 1 ml of collagen in a 24 well plate

(taken as day 0), with or without fibroblasts (used at 10,000/ml).

These cultures were incubated for a further hour and then

carefully freed from the edges of the well (to allow contraction of

the collagen) and supplemented with 0.5 ml of cell-specific media.

The cultures were then left to invade. Media was changed weekly.

Gels were fixed at either 1 or 2 weeks in 10% phosphate buffered

formalin and wax embedded.

Immunofluorescence
Immunofluorescence was preformed as described previously

[17]. Briefly, antigen retrieval for all epitopes was carried out using

heat treatment under pressure in a microwave oven for 5 min in

Table 1. Common transcription factor binding sites in the 9-gene signature.

Best hit Weight Matrix consensus Transfac ID Factor name

GCACCTG 6.5 ASCACCTGTTNNCA M00044 Snail*

CAGGTGC 6.5 RACAGGTGYA M00060 Snail*

GCACCTG 6.5 VNRCACCTGKNC M00414 AREB6/ZEB1*

CAGGTGC 6.21 CNNCAGGTGB M00277 LMO2 complex*

CAGGTGC 6 RRCAGGTGNCV M00693 E12/ELSPBP1*

CAGGTGC 6 CNGNRNCAGGTGNNGNA M00929 MyoD*

GCACCTG 5.5 YNYACCTGWVT M00412 AREB6/ZEB1*

GCACCTG 4 RRTGNMCYTNNTGAMCCNYNT M00966 VDR, CAR, PXR

GCACCTG 3.5 GCTGGNTNGNNCYNG M00947 CP2/LBP-1c/LSF

GCACCTG 3.5 RGNACNNKNTGTTCT M00957 PR/Progesterone receptor

GCACCTG 3.5 TGGCASNNNGCCAA M01196 CTF1

A list of binding sites matching to best 7-mer found in promoters of the common EMT gene signature. Three muscle initiator sequences with no further information
were excluded.
*E-box binding transcription factors. E12 is part of the LMO2 complex.
doi:10.1371/journal.pone.0017083.t001
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citrate buffer (82 ml 0.01 M sodium citrate: 18 ml 0.01 M citric

acid) pH 6.0. Slides were incubated with primary antibodies for

1 hr at room temperature. Primary antibodies were as follows: E-

cadherin, BD, 610181, Mouse, 1:1500; N-cadherin, BD, 610921,

Mouse, 1:300; Zeb2, BD, 611256, Mouse, 1:50; Slug, LifeSpan Bio,

LS-C30318, Rabbit, 1:1000; Snail, Abcam, ab17732, Rabbit,

1:700. For Snail staining, mouse anti-pancytokeratin (Invitrogen,

1:25) was added to visualise epithelial cells. Mouse primary

antibodies were incubated overnight with rabbit anti-pancytoker-

atin (Dako, 1:150). The epithelial compartment was then visualised

with Cy3 (Invitrogen, anti-rabbit; anti-mouse, both used at 1:25).

DAPI (49,6-diamidino-2-phenylindole) counterstain (Invitrogen)

was used to identify nuclei and Cy-5-tyramide (HistoRx, 1:50)

was used to detect protein ‘targets’. Monochromatic images of each

TMA core were captured at 206objective using an Olympus AX-

51 epifluorescence microscope, and high-resolution digital images

were analyzed by the AQUAnalysis software [17].

Results

Identification of a common EMT signature in the breast
In order to establish an in vitro EMT signature, we identified a

set of 57 genes that strongly correlated with C35-induced EMT in

vitro using significance analysis of microarrays (SAM, [20]). These

‘C35 genes’ were subsequently found to be sufficient to cluster

claudin-low tumors together in a breast cancer dataset [14] (Figs. 1

and S1). In addition, a 34 gene ‘claudin-low’ signature identified in

murine mammary carcinoma and human breast tumors [14], was

significantly down-regulated in collagen-invading C35-expressing

cells in comparison to parental cells (range p = 0.048 to

p = 161028; Figs. 1 and S1). Nine genes were common between

the ‘C35 genes’ and ‘claudin-low genes’ signatures (Fig. 1): CDH1,

CLDN7, CRB3, KRT8, TACSTD1, IRF6, SPINT2, MAL2 and

MARVELD3. Five of these, CDH1 (E-cadherin), CLDN7 (Claudin-

7), TACSTD1 (EpCAM), IRF6 and KRT8 (Keratin-8) have been

previously implicated by their low expression in claudin-low

cancers and/or in EMT in vitro [25,26,27]. SPINT2 (Hepatocyte

growth factor activation inhibitor-2, HAI-2) is capable of

regulating a HGF-induced invasion of human breast cancer cells

[28]. Two novel genes found to be down-regulated: the apical

sorting protein MAL2 [29] and its tight-junction-associated

homologue MARVELD3 [30].

We determined whether the nine EMT genes share common

regulatory elements in their promoters and identified a shared 7-

mer: CAGGTGC/GCACCTG. This binding motif is targeted by

E-box transcription repressors, including Snail and ZEB families

(Table 1) raising the possibility that these transcription factors

repress all nine genes in the EMT pathway both in vitro and in vivo.

Figure 1. Comparison of genes correlating with C35 expression and those identifying the claudin-low phenotype identifies a 9-
gene EMT signature. The 100 illumina probes most significantly differentially expressed between collagen-invading C35 and parental cells were
represented by 57 genes that were able to cluster together the 13 claudin-low tumors identified by Herschkowitz and colleagues (left panels). A set of
34 claudin-low genes from the Herschkowitz were all significantly down-regulated in C35-expressing cells compared to parental cells (right panels). A
signature of nine EMT-related genes is shared between the C35 and claudin-low gene lists (full lists in Fig. S1).
doi:10.1371/journal.pone.0017083.g001
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Identification of cell lines with ‘claudin-low’ features
The 9-gene signature was identified in nine breast cancer cell

lines from a previously published gene expression dataset [24] that

all expressed low levels of the EMT genes: cell lines BT549,

Hs578T, HBL100, MDA-MB157, MDA-MB231, MDA-MB435,

MDA-MB436, SUM1315MO2 and SUM159PT respectively. We

excluded the MDA-MB435 line from this cohort of cell lines due

to doubts as to its tissue of origin [31]. The remaining eight cell

lines show clear mesenchymal morphology when cultured on

plastic (Fig. S2). We confirmed down-regulation of eight of the

nine EMT genes by quantitative RT-PCR (Fig. 2) using normal

human mammary epithelial cells (HMECs) as a positive control.

We also validated low expression of these genes in the C35 model

([17] and data not shown).

Western blotting was used to investigate the expression patterns

of EMT-related proteins, including transcription repressors. All

lines exhibit low levels of E-cadherin and Claudin-7 in comparison

to normal mammary epithelial cells (Fig. 3), whereas ZEB2 (SIP-

1), an E-box transcription factor that can induce EMT, is

expressed in all the cell lines with claudin-low features. Most of

the cell lines also have detectable expression of Snail, whereas Slug

is absent in only one (MDA-MB231). Lastly, all of the cell lines

express the mesenchymal marker vimentin and seven of the cell

lines have detectable expression of N-cadherin.

A 3D invasion assay that mimics invasion into stromal
collagen

A critical event in cancer progression is the acquisition of an

invasive phenotype, and in particular the ability to breach the

basement membrane (BM) into the stromal collagen. We

developed a 3D model that attempts to mimic this process.

Histologically normal breast epithelial cells are first embedded in a

laminin-rich, BM-like Matrigel to generate a cell ‘plug’ which was

subsequently embedded in collagen to mimic the surrounding

extracellular matrix (Fig. 4a). This model potentially generates a

three-stage assay that allows investigation of cells: i) contained by

BM; ii) as they invade across BM; iii) as they invade more distally

into surrounding collagen. In addition, the movement of cells in a

horizontal plane can easily be followed by light microscopy, in

Figure 2. The 9-gene C35/claudin-low signature is down-regulated in a subset of human breast cell lines. Eight cell lines exhibit low
expression of CDH1, CLDN7, CRB3, KRT8, TACSTD1, IRF6, SPINT2 and MAL2 when cultured on plastic. MARVELD3 could not be assessed due to
particularly low levels of expression. Technical triplicate mRNA expression data is shown for each line. HMEC cDNA is shown for comparison.
doi:10.1371/journal.pone.0017083.g002

Figure 3. Claudin-low-like cell lines express key markers of
EMT. Western blots demonstrate the expression of EMT-related
markers at the protein level. HMEC lysates are shown for comparison.
doi:10.1371/journal.pone.0017083.g003

Spontaneous Breast Cancer EMT In Vitro
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contrast to the movement of cells in a vertical plane that occurs

with the collagen-based ‘on top’ assay [17].

Three different cell lines with low expression of the 9-gene EMT

signature (HBL100, HS578T and SUM 159PT) demonstrated

clear and reproducible invasion in this novel assay. Importantly,

all three cell lines adopt a round morphology when embedded in

Matrigel (day 0), versus the predominantly elongated morphology

that is seen in collagen (Fig. S3). By day 7, the HBL100 and

HS578T cells have reverted to an elongated morphology,

indistinguishable from that seen in collagen, and are invading

across BM and into surrounding collagen. In contrast, many

SUM159PT cells retain a round morphology, accompanied by

delayed invasion (Fig. 4b). By day 14, SUM159PT cells appear to

have overcome this inhibition and many elongated cells are now

seen leaving the Matrigel plug. Those cells that remain in the

Matrigel plug still retain a more round morphology (Fig. 5a).

MCF10A cells (a non-transformed line) were also tested in this

assay and do exhibit an invasion phenotype. As expected,

MCF10A cells appear to form polarised, growth arrested

structures [32]. These observations suggest that this model may

allow the investigation of cells as they invade across the BM.

Importantly, SUM159PT cells are the most affected by Matrigel in

terms of morphology and invasive capacity, and were therefore

selected for further investigation.

SUM159PT cells, which are an excellent metastasis model in vivo

[33,34], were selected for further EMT analysis with MCF10A cells

serving as a control, as they show uniform, membranous expression

of E-cadherin and no expression of N-cadherin. In contrast,

SUM159PT cells show no membrane-specific E-cadherin expres-

sion but do show membranous N-cadherin expression throughout

the core of the plug (Fig. 5b). In the elongated invading cells at the

periphery N-cadherin expression appears to be down-regulated.

Stromal fibroblasts have been shown to play critical roles in some

models of invasion, remodelling the ECM and generating tracks

along which epithelial cells can follow [35]. The role of normal and

cancer-associated fibroblasts (CAFs) was therefore also investigated.

No difference in invasion was evident with both normal fibroblasts

and CAFs. This lack of effect on invasion was seen when epithelial

cells were embedded in both collagen and Matrigel (Fig. S4).

Discussion

This study identifies 9 key genes shared by breast cells

undergoing EMT in vitro and EMT enriched claudin-low tumors.

Figure 4. A novel invasion assay mimics EMT. (a) Schematic illustration of the ‘plug’ invasion assays. A collagen- or Matrigel-based epithelial
plug is embedded in additional collagen, with or without fibroblasts. Epithelial cells then invade in a star-burst manner into surrounding collagen. (b)
Morphological changes suggestive of spontaneous transitions between MET and EMT states are observed by light microscopy. Cell-collagen plugs
were made with HBL100, HS578T and SUM159PT cell lines. These exhibit a predominantly elongated morphology at day 0. Clear invasion into
surrounding collagen is seen by day 7 (left panels, arrows). Cell-Matrigel plugs with the same lines exhibit a rounded morphology on day 0. By day 7,
HBL100 and HS578T cells have reverted to an elongated morphology and are invading into surrounding collagen. In contrast, SUM159PT cells retain a
rounded morphology accompanied by delayed invasion (day 7) although this appears to be overcome by day 14 (right panels). Dotted lines represent
the original plug edge. Bar = 100 mm.
doi:10.1371/journal.pone.0017083.g004

Spontaneous Breast Cancer EMT In Vitro
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This signature in turn was used to identify breast cancer cell lines

that are potentially useful in studying EMT in vitro. A 3D invasion

model was developed that specifically addresses the link between

EMT and invasion into stromal collagen in these cell lines, which

may be representative of a general behaviour. This novel model

was used to examine the expression patterns of cadherins in the

EMT cell lines when invading from the basement membrane

context to a collagen-rich environment.

The association of claudin-low breast cancer and epithelial to

mesenchymal transition is now well established [14,27,36] and cell

lines can be identified with gene expression profiles similar to those

of claudin-low tumors [27]. The low expression signature is also

found in these Basal B/mesenchymal/claudin-low cell lines,

identified elsewhere [27]. Importantly, our results do not single

out a particular EMT inducing transcriptional repressor, although

these are broadly expressed (ZEB2, Snail and Slug) in the cell lines.

This suggests that the induction of EMT may result from a

combination of factors, resulting in repression of common

downstream molecules. From a functional point of view, this is

consistent with loss of cell-cell contact as a prerequisite for the

detachment of invading cells from the tumor mass and their

penetration of surrounding stroma [37].

Previously published invasion models have used either pure

collagen environment [38] or non-physiological methylcellulose

[39]. More physiologically relevant basement membrane-contain-

ing models, such as the chick chorioallantoic membrane [40] or

peritoneal basement membrane [41], are inflexible, difficult to

scale up and often have a very low yield. Our in vitro invasion

model potentially offers a deeper investigation of the nature of

EMT. The combination of basement membrane environment and

surrounding collagen stroma maintains and mimics aspects of

EMT in vivo.

The 3D model demonstrated here exemplifies how using the

same cell line simultaneously in both basement membrane

environment and in tissue-like collagen matrix may enable a

better understating of EMT. Two novel observations were made

using this model: within the basement membrane plug, N-

cadherin expression in cells with EMT signature can phenocopy

E-cadherin expression in normal mammary epithelial cells,

maintaining a tight round morphology; and surprisingly, N-

cadherin is lost as cells with EMT signature invade.

Claudin-low breast cancers are likely to represent the most

acute EMT phenotype in vivo, but other subtypes may also present

some EMT features [15,42]. The current study has extended our

Figure 5. Changes in cells undergoing EMT while invading collagen stroma in vitro. (a) SUM159PT cell-Matrigel plugs were fixed at day 14
to monitor morphological changes during collagen invasion. Images of the whole plugs (46magnification, left panel), core (middle panel) and plug
edge (right panel) are shown (both 406 magnification). Note the organised, rounded morphology in Matrigel (middle panel) in contrast to the
elongated morphology as cells invade into surronding collagen (right panel), indicative of EMT. (b) E-cadherin expression in MCF10A cells is
comparable to N-cadherin expression in SUM159PT cells. Representative immunofluorescence images of E-cadherin and N-cadherin protein
expression in MCF10A (left panel) and SUM159PT cells (right panel) are shown. Expression within the plug (core) and at the edge where cells are seen
to invade surrounding collagen (arrows) is compared. Note the change in morphology as cells invade. Bar = 50 mm.
doi:10.1371/journal.pone.0017083.g005
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understanding of common mechanisms of EMT in breast cancer.

This study showed that the down-regulation of cell-cell contact

molecules in claudin-low cancers is accompanied by changes in

HGF signalling and apical sorting molecules. Furthermore, the 3D

model has questioned the concept of a ‘cadherin switch’ in vivo. We

have also observed elsewhere that in invasive ductal breast

carcinomas there is no inverse correlation between E-cadherin and

N-cadherin protein expression levels (S. Dubois-Marshall and E.

Katz, unpublished observations). This raises the possibility that

single cell invasion is cadherin-independent. This will to be

verified in future experiments examining other cadherin molecules

involved in cell motility, such as cadherin-11 [13]. Taken together,

the 3D model presented here gives an opportunity to explore these

possibilities relating to EMT as it may occur in vivo in claudin-low

breast cancers and beyond.

Supporting Information

Figure S1 Comparison of genes correlating with C35
expression and those identifying the claudin-low pheno-
type. Full details of C35 and claudin-low signatures shown in

Fig. 1.

(TIF)

Figure S2 Claudin-low cell lines exhibit a mesenchymal
morphology. Eight claudin-low cell lines were identified.

Representative live microscopy images of these lines cultured on

plastic are shown. The non-transformed cell line, MCF10A, is

shown for comparison. Bar = 100 mm.

(TIF)

Figure S3 Morphology of cell-collagen assays. SUM159PT

cell-collagen plugs were fixed at day 14 following a period of

invasion Images of the whole plugs (46 magnification, left panel),

core (middle panel) and plug edge (right panel) are shown (both 406
magnification). Note the consistently elongated cell morphology

unlike cell-Matrigel assays (Figure 5a).

(TIF)

Figure S4 Comparable invasion of SUM159PT cells
regardless of the presence or type of fibroblasts in the
surrounding collagen. Comparable invasion of SUM159PT

cells is seen with no, normal and cancer-associated fibroblasts.

This is seen with both cell-collagen (top panel) and cell-Matrigel

(bottom panel) plugs. H&E staining relating to fixation at day 6 is

shown here. Bar = 100 mm.

(TIF)
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