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SUMMARY
Current ongoing genome-wide association studies represent a powerful approach to uncover
common unknown genetic variants causing common complex diseases. The discovery of these
genetic variants offers an important opportunity for early disease prediction, prevention and
individualized treatment. We describe here a method of combining multiple genetic variants for
early disease prediction, based on the optimality theory of the likelihood ratio. Such theory simply
shows that the receiver operating characteristic (ROC) curve based on the likelihood ratio (LR)
has maximum performance at each cutoff point and that the area under the ROC curve (AUC) so
obtained is highest among that of all approaches. Through simulations and a real data application,
we compared it with the commonly used logistic regression and classification tree approaches. The
three approaches show similar performance if we know the underlying disease model. However,
for most common diseases we have little prior knowledge of the disease model and in this
situation the new method has an advantage over logistic regression and classification tree
approaches. We applied the new method to the Type 1 diabetes genome-wide association data
from the Wellcome Trust Case Control Consortium. Based on five single nucleotide
polymorphisms (SNPs), the test reaches medium level classification accuracy. With more genetic
findings to be discovered in the future, we believe a predictive genetic test for Type 1 diabetes can
be successfully constructed and eventually implemented for clinical use.
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1. Introduction
Early disease prediction and prevention is one of the most promising strategies in health
care. It can not only prevent mortality, but also decrease morbidity and public health costs
(Etzioni et al., 2003). Predictive genetic tests, which use genetic markers - e.g., single
nucleotide polymorphisms (SNPs) - to predict an individual’s future risk of disease, form
one of the most appealing early disease prediction methods. Such tests can be conducted
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early in life (e.g., at birth) and, by use of appropriate prevention strategies, prevent
individuals from contracting a disease. With the current intensive research on common
complex diseases, in particular with the completion of genome-wide association studies,
developing predictive genetic tests for common complex diseases has been initiated (e.g.
Type 2 Diabetes (Weedon et al., 2006)). These tests have the potential to be the cornerstone
of future genomic medicine and are anticipated to have a large impact on health care
(Epstein, 2006).

Most diseases are normally caused by more than one genetic variant. To improve disease
prediction, we should combine the information from all available risk variants instead of
using only one of them. One way to form a predictive genetic test from multiple risk factors
is to use logistic regression (Weedon et al., 2006), the most commonly used method for
classification/prediction. However, a recent study (Pepe, Cai, and Longton, 2006) showed
that when applied for multiple predictors, logistic regression is not always optimal because it
assumes that the underlying link function is logit, an assumption that may not hold. There is
also an increasing use of classification trees for predictive purposes. Compared to logistic
regression, a classification tree is said to have the advantage of identifying important
interactions in the data; but, in a real data example, Austin (2007) found logistic regression
performed better than the classification tree method. Theoretically, a decision rule based on
the likelihood ratio is optimal (Egan, 1975; McIntosh and Pepe, 2002) and the receiver
operating characteristic (ROC) curve based on likelihood ratios (LRs), the optimal ROC
curve, attains the highest classification/diagnostic accuracy in terms of the area under the
ROC curve (AUC) (Lu and Elston, 2008). Thus, compared to logistic regression, use of the
optimal ROC curve appears to be a promising general strategy.

Baker (2000) noted the optimal properties of the likelihood ratio for combining multiple
predictors and developed three nonparametric approaches to incorporate multiple
biomarkers for cancer prediction. These approaches can be extended for constructing
predictive genetic tests from multiple genetic markers. Unlike many cancer biomarkers,
genetic markers are usually categorical. Moreover, with genetic markers we face issues such
as marker selection (i.e., eliminating “noise” markers), and unknown disease model (e.g.,
unknown mode of inheritance and unknown interaction model). Simply applying Baker’s
methods without considering these issues will lead to over-fitting. Concentrating on these
issues, we propose here a robust and powerful method for developing predictive tests using
genetic markers.

This article is organized as follows. In section 2, we briefly review the concept of the
optimal ROC curve and its utility for combining multiple cancer biomarkers. Based on this
concept, in section 3 we propose two forms of the robust optimal ROC curve-based method
for building predictive genetic tests, one that requires knowledge of the disease model and
one that requires no assumptions about the underlying disease model. In section 4, we
evaluate the two forms of the method with simulation studies and compare their
performance with logistic regression, classification trees, and two approaches proposed by
Baker (2000). In section 5, we illustrate the method using the Wellcome Trust genome-wide
association data for Type 1 diabetes. We conclude with a discussion in section 6.

2. The Optimal ROC Curve
True positive rates (TPRs) and false positive rates (FPRs) are the two basic measures of
classification accuracy for a test. The TPR is defined as the probability that the test result (x)
is positive given the patient develops the disease (S =1): TPR = P(x =1|S =1). Similarly, we
define the FPR as the probability that the test result (x) is positive given the patient does not
develop the disease (S =0): FPR =P(x =1|S =0). For most predictive tests, there are several
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pairs of TPRs and FPRs available, and we should use the entire spectrum of TPR and FPR
pairs to evaluate the overall classification accuracy of the test (Zweig and Campbell, 1993).
For that purpose, the ROC curve is a useful tool. The ROC curve plots a test’s TPR against
its FPR for continually changing cutoff points over the whole range of possible test results,
and has been recognized as a global measure of a test’s accuracy (McClish, 1989). Since the
ROC curve is a two-dimensional plot, a one-dimensional summary index of the ROC curve
will often be more convenient and useful, and the most popular one is the area under the
ROC curve (AUC).

Like the TPR and FPR, the LR is also a popular measure of test’s classification accuracy,
and is defined as the ratio of two density functions, evaluated at x, conditional on disease
status S: LR (x) = P (x|S =1)/P (x|S =0). The LR is useful for generating the optimal ROC
curve. By definition (Egan, 1975), the optimal ROC curve consists of the entire set of TPR
and FPR pairs resulting from the continually changing LR from its largest value to its
smallest value. The optimal ROC curve is the best for each point on the curve in terms of 1)
maximizing the TPR for any fixed value of the FPR, 2) minimizing the FPR for any fixed
value of the TPR, 3) minimizing the overall misclassification probability, and 4) minimizing
the expected cost (Egan, 1975; McIntosh and Pepe, 2002). The optimal ROC curve achieves
the highest classification accuracy in terms of the AUC (Lu and Elston, 2008).

Although the optimal ROC curve was introduced several decades ago, its usefulness for
combining multiple tests has only recently been recognized (Baker, 2000; McIntosh and
Pepe, 2002). Based on the concept of the optimal ROC curve, Baker (2000) proposed three
nonparametric methods: the unordered optimal method, the jagged ordered, and the
rectangular ordered optimal robust methods. Unlike the unordered optimal method that
ranks the individuals simply according to their LRs, the two other methods rank the
individuals based on both the LRs and certain assumptions (e.g., that higher biomarker
values lead to greater probability of disease). In a real data application, Baker (2000) fitted
the three nonparametric methods and logistic regression in a training sample and then
compared them in a separate validation sample. The nonparametric methods showed better
performance than did logistic regression in the validation sample. However, Baker (2000)
found that the unordered optimal method led to overly optimistic ROC performance in the
training sample.

3. Optimal robust ROC Curve Estimation
The optimal ROC curve can be used to construct a predictive genetic test from multiple
genetic markers, but genetic marker data bring up special issues that must be addressed,
such as marker selection, unknown mode of inheritance and unknown interaction model. As
we show in the simulations presented below, directly applying the optimal ROC curve to the
genetic markers without considering these issues leads to a serious overestimation of the
test’s performance. To obtain a more robust estimate, we propose two ways of estimating
the optimal ROC curve depending on whether or not the disease model is known.

3.1. Estimation When There Is Prior Knowledge of the Disease Mode of Inheritance
Ideally, if we know the causal loci, their mode of inheritance and the interaction model, we
can incorporate this into the model and hence estimate the underlying true optimal ROC
curve. Let yi (yi ∈ S) be the binary response measurement and xi =(xi1, xi2, …, xip) (xij ∈ (gj1,
gj2, …, gjmj)) be the measurement of p disease loci for the i-th individual. The marginal
distribution of genotypes given disease status (S = 0, 1) can be calculated as
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(1)

where IA (i) is the indicator function defined as . Given the mode of
inheritance, we can combine the genotypes that have the same relative risks. For instance,
for a single SNP marker j that has three genotypes, A A, A Ā and Ā Ā, if A is dominant we
cluster the genotypes A A and A Ā into one group and calculate the corresponding frequency

as . Given the disease prevalence ρ, we calculate the population genotype
frequencies: P (gjkj) =ρP (gjkj|S =1)+(1 − ρ)P(gjkj|S =0). If the variants at the p loci cause the
disease independently (i.e., no interaction), then, based on a multiplicative model, the
probabilities of the multi-locus genotype Gl =(g1k1, g2k2, …, gpkp) given disease status can
be expressed as

(2)

where ρ and L respectively denote the disease prevalence and the total number of multi-

locus genotypes possible for the p disease loci, and  if all p loci are in
linkage equilibrium. We then rank the multi-locus genotypes according to their LRs, defined
by LRl =P(Gl|S =1)/P(Gl|S =0), and plot the ROC curve. This represents the empirical
optimal ROC curve, consisting of the set of TPR and FPR pairs:

(3)

where G(ζ) is the ζ-th multi-locus genotype when ranked by its LR value. As we have shown
previously, it has the highest AUC (Lu and Elston, 2008) given by:

(4)

where TPR(0) = FPR(0) = 0.

This approach provides a simple way to approximate the underlying optimal ROC curve by
incorporating the correct disease model (i.e., mode of inheritance) and by making the
multiplicative model assumption. Following the same strategy, as described in more detail in
Web Appendix A, we can extend this approach to incorporate interacting loci. This method
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is ideal for diseases that have been well studied. However, in most cases the disease model
is not well understood. The disease susceptibility loci that we have discovered may not even
be causal loci. Therefore, we now propose an approach that does not require prior
knowledge about the disease model.

3.2. Estimation When There Is No Prior Knowledge of the Disease Model
In this approach, we start with all the data, treating each multi-locus genotype as a separate
cluster, and then implement a backward clustering algorithm to group the multi-locus
genotypes and so reduce the model complexity. Based on the prediction AUC calculated
from K-fold cross validation, we choose the most parsimonious model with the appropriate
number of multi-locus genotype clusters.

Suppose we have L possible multi-locus genotypes ( ) created from p loci.
The p loci are disease susceptibility loci detected from previous association studies. We first
estimate from the data the distribution of all the p -locus genotypes, separately in the case
and control samples,

(5)

The p -locus genotypes are then ranked by their likelihood ratios, , to
estimate the optimal ROC curve. Since the ROC curve depends on only the ranks of the test

results, we use these ordered p -locus genotypes, , to represent our
full model when constructing the optimal ROC curve. Once we have formed this optimal
ROC curve, we use it to estimate the area under the optimal ROC curve and denoted this

estimate .

Since this full model G(0) has the largest number of multi-locus genotype clusters (i.e., each
multi-locus genotype represents a separate cluster) and includes all p loci, it most likely

over-fits the data, and  is hence biased upward. To reduce the model’s complexity,
we gradually combine the multi-locus genotypes together and search for the best model that
has a more accurate AUC estimate. At each step of the backward clustering process, we
consider all possible multi-locus genotype clusterings that can be formed when two one-
locus genotypes are pooled together, and choose the clustering that leads to a minimum
decrease in the AUC when applied to the data. Thus, suppose we have p′ disease
susceptibility loci at backward clustering step t (i.e. p−p′ loci have been eliminated prior to

step t). For a genotype pair  at locus j, we combine the two
corresponding multi-locus genotypes that contain  or  and rank all the multi-locus
genotypes (some now being combined together) according to their LRs. We then form the

optimal ROC curve, which is denoted , and calculate the corresponding AUC,

. Step t consists of repeating this for all possible pairs of one-locus genotypes
 at all p′ loci, and the best candidate model at step t, denoted G(t), is chosen based on

having the highest AUC.
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We repeat the clustering process steps and so progressively combine the multi-locus
genotypes until all multi-locus genotypes finally cluster into one group. As a result, we
obtain a series of candidate models, G(0), G(1), …, G(T), where G(T) is the model with only
one cluster of multi-locus genotypes, which has an AUC value of 0.5. Note that for p
diallelic SNPs, the maximum number of backward clustering steps, T, is 2p and for a real
data application it would be fewer if not all multi-locus genotypes are represented in the
data. Clearly, nether G(0) nor G(T) is the appropriate model for building the test. G(0), the
most complex model with the largest number of multi-locus genotype clusters and including
all p loci, has a high but over-fitted AUC, while G(T), the simplest model with only one
cluster of multi-locus genotypes and excluding all p loci, gives a useless AUC. Letting nc(0),
nc(1), …, nc(T), the numbers of multi-locus genotype clusters for candidate models G(0),
G(1), …, G(T), describe the model complexity, a parsimonious model with a modest model
complexity nc(m) should exist between G(0) and G(T) that has a relatively high and accurate
AUC. To find the most appropriate number of multi-locus genotype clusters, nc(m), we use
K-fold cross-validation.

In K-fold cross validation, we randomly partition the data into K subsets. K−1 subsets are
used for the purpose of training and the remaining subset is used for the purpose of
validation. We first apply the above clustering algorithm to the training dataset to find the

candidate models, , k =1, 2, ···, K, and then apply these candidate models
(i.e., the order of the multi-locus genotypes from the training dataset) to the validation
dataset to construct the ROC curve and calculate the AUC. We repeat the cross-validation
process K times, with each of the K subsets used exactly once as the validation dataset. The
K results are then averaged to provide an estimate of the prediction AUC, which is denoted

, t =0,1, …, T. nc(m) is then chosen to be the value of nc(t) that maximizes the

, and the corresponding model, G(m), is chosen as the most parsimonious model.

A practical issue in the cross-validation process is that by chance some of the multi-locus
genotypes in the validation dataset may not be found in the training dataset, and hence we
cannot order these multi-locus genotypes. Instead of treating them as missing, we put them
into clusters whose order can be inferred from the multi-locus genotypes present in the
training dataset. In other words, we follow the same strategy of gradually clustering the
multi-locus genotypes in the training dataset until we arrive at clusters that are present in the
validation dataset, in the sense that each cluster in the training dataset corresponds to a
cluster in the validation dataset, though the latter may not include all the multi-locus
genotypes present in the training dataset cluster. We then calculate the LR statistics for the
clusters that are in the training dataset, and use those to infer the multi-locus genotypes’
order.

This backward clustering algorithm applies naturally to both the disease model and marker
selection. Ideally, by clustering the multi-locus genotypes on a particular locus, the method
automatically approaches the marker’s mode of inheritance or eliminates a “noise” marker.
For instance, if at a particular step the multi-locus genotypes with either A A or A Ā
genotype at SNP j are grouped together, this would suggest that SNP j follows a model in
which A is dominant and Ā is recessive. Further clustering of the A A and A Ā multi-locus
genotypes with their corresponding Ā Ā multi-locus genotype implies that SNP j is not
associated with the disease, and therefore we should remove it from consideration. In a
similar manner, by continuously clustering multi-locus genotypes of more than one locus,
the method is able to select an interaction model. The algorithm is also flexible enough to
incorporate biological information. For example, if at SNP j clustering two multi-locus
genotypes with A A and Ā Ā, but not the corresponding one with A Ā, is not considered
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biologically plausible, we might exclude this possible clustering from the algorithm, and
hence help improve the algorithm’s performance. A simple example of the clustering
algorithm is given in Web Appendix B.

4. Simulations
We conducted two sets of simulations to investigate the performance of the proposed
optimal robust ROC curve method. The first simulation is conducted under a well studied
disease scenario for which we know the causal loci and their mode of inheritance, the
second one is simulated under a scenario in which we have no such prior knowledge.

4.1. Simulation I
We assume we are interested in building a predictive genetic test from three independent
diallelic SNP loci (i.e., three diallelic SNPs in linkage equilibrium) with the disease
susceptibility allele frequencies 0.15, 0.1 and 0.2, respectively. In a real situation, we would
have other factors – e.g., age, gender and environmental factors – but here, for simplicity,
we concentrate on genetic factors only. Let rj1 (rj2) denotes the risk associated with
genotype Aj Aj (Aj Āj) relative to Āj Āj, where Aj and Āj respectively denote the risk and non-
risk allele. We assumed that at the first locus the rarer allele is recessive(r11=2.5; r12=1), at
the second locus multiplicative (r21 =2; r22=1.4), and at the third dominant (r31=r32=2).

We sampled equal numbers n of cases and controls (n = 250,500,1000) and investigated the
logistic regression model, the classification tree and the optimal robust ROC curve method
described in section 3.1. Because the mode of inheritance of each of the three loci is known,
we incorporated that information into the analysis by coding the genetic variables as
follows:

(6)

where c is an arbitrary positive number greater than 1. Since there is no gene-gene
interaction, we only considered the main effects in the logistic regression analysis and fitted
the model logit(μ) = α+ Zβ ̰, where β ̰ = (β1, β2, β3) are the coefficients for the three genetic
variables. To implement the classification tree, we built a tree that fits the data perfectly
(i.e., the largest possible tree). The AUC estimates from the three methods were then
compared with the true AUC value, which was calculated by using the method in Web
Appendix A. The average biases and standard deviations of the AUC estimates are
summarized in Table 1, based on 1000 replicate samples.

As expected, the methods perform better when the sample size is larger. For all three
simulated settings, the performance of the optimal robust ROC curve method is comparable
to that of logistic regression and classification tree, and the AUC estimates from all three
methods closely approximate the true AUC value. Therefore, for well studied disease
scenarios, it seems that logistic regression, classification tree and the optimal robust ROC
curve methods are equally appropriate tools for constructing predictive genetic tests.
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4.1. Simulation II
To mimic a more complex disease scenario, we simulated three disease loci and five “noise”
loci. The simulation for the three disease loci was similar to that in the previous simulation,
but with an additional interaction effect between locus two and locus three. If we denote by
H the high risk group with all possible genotype combinations having at least one of the
disease-susceptibility alleles at each of the two loci (i.e., A2, A3) and denote by C the low
risk group with all the other genotype combinations, a simple interaction effect can be
introduced by doubling the risk for all genotypes in the high risk group,

where pGl is the probability of disease for the low risk group. The allele frequency for each
noise locus was independently sampled from a uniform distribution. pj Uniform(0.1,0.9), j =
4, …,8. Following the same procedure, we created the simulated data (Ysamp, Xsamp) and
first fitted the data with logistic regression, classification tree and the optimal ROC curve
method described in section 3.2.

For the logistic regression, we considered all possible single locus and two-way interaction
effects, and implemented backward selection to choose the most parsimonious model with
the smallest value of Akaike’s A Information Criterion (AIC) (Akaike, 2001). The logistic
regression model and backward selection were performed using the glm and step functions
in R. Based on the selected model, we formed the ROC curve and estimated the AUC. Since
the underlying mode of inheritance of the disease markers was unknown, we assumed all
loci followed either multiplicative, dominant, or recessive models, and coded the predictors
using the corresponding formulas in equation (6). To perform the classification tree analysis,
we used the tree package in R and chose the deviance as the criterion to guide cost-
complexity pruning. For the optimal robust ROC curve analysis, we implemented the robust
approach described in section 3.2, and only considered as possible clusters those consistent
with a plausible biological model (i.e., we did not allow clustering together any multi-locus
genotypes containing Aj Aj and Āj Āj unless the corresponding genotypes containing Aj Āj
was also included in the cluster). Using 10-fold cross-validation, we chose the best model
and estimated the AUC. We compared the AUC estimates from our proposed method,
logistic regression and the classification tree, and summarize the results in Table 2.

For the sample sizes 500 and 1000, in this limited simulation, the performance of the
optimal robust ROC curve is slightly better than the other two approaches in terms of mean
squared error. The estimates from the optimal robust ROC curve also approximate the
underlying AUC values better than those from the logistic regression and classification tree
approaches, while the estimates from logistic regression usually have smaller variances than
those of the other two methods. For a sample size 2000, which is now commonly used for
GWA studies, the performance of the logistic regression that assumes a multiplicative or
dominant model could be comparable to the performance of the optimal robust ROC curve
in terms of mean squared error. However the estimates from the logistic regression that
assumed a recessive model seriously underestimated the underlying AUC value. Thus the
performance of logistic regression depends on how well the mode of inheritance is specified.
By assuming the “right” mode of inheritance, logistic regression can outperform the
classification tree, given a large enough sample. These results are consistent with the
findings of Austin (2007).
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Using the same simulated data, we then investigated two original nonparametric approaches,
the unordered optimal method and the jagged ordered method, introduced by Baker (2000).
Simply applying these methods to the genetic marker data without considering any disease
model and marker selection can cause over-fitting. With the simulated data, the average
biases of the AUC estimates from the unordered optimal method based on 1000 replicates
were 0.2922, 0.2339, and 0.2011 for the sample sizes 250, 500, and 1000, respectively,
while the average biases of the AUC estimates from the jagged ordered method were
0.2155, 0.2015, and 0.1778.

5. Application to Type 1 Diabetes Data from the Wellcome Trust
Consortium

The Wellcome Trust Consortium genome-wide association (GWA) study is one of the
largest and most comprehensive studies aimed at discovering the genetic contributions to
seven common complex diseases (Wellcome Trust Case Control Consortium, 2007). The
study was undertaken in the British population and consists of approximate 2,000 cases of
each of seven diseases and 3,000 shared controls. We used the Type 1 diabetes data in the
Wellcome Trust GWA dataset that comprises 1963 Type 1 diabetes patients and 2938
controls from both the 1958 British Birth Cohort and the UK Blood Services. Five diallelic
SNPs were detected in that study as showing strong association with Type 1 diabetes at a
significance level of 10−7, and later replicated in an independent study (Todd et al., 2007).
To evaluate the impact of these novel findings for clinical use, we constructed predictive
genetic tests using the three different methods: the optimal robust ROC curve approach,
logistic regression and classification tree. To perform the logistic regression analysis, we
coded genetic variants with multiplicative, dominant, and recessive models, and
implemented backward selection as indicated above to choose the most parsimonious model
from all five possible single locus main effects and all their possible higher order (i.e. 26)
interaction effects.

The classification accuracy of the predictive genetic test from the optimal robust ROC curve
method (AUC=0.7373) is comparable to that from the logistic regression that assumes a
multiplicative model (AUC=0.7420), but is superior to those from the other approaches - in
particular, the classification tree (AUC=0.6868) and logistic regression that assumes a
dominant model (AUC=0.6596) (Figure 1).

We applied replicated split-sample validation (Austin, 2007; Baker and Kramer, 2006;
Michiels, Koscielny, and Hill, 2005) to assess the tests’ performance in an independent
sample. To perform the replicated split-sample validation, we randomly chose 2/3 of the
data as the training dataset and used the remaining data as the validation dataset. The models
were first built on the training dataset using the various methods, and then applied to the
validation dataset to calculate the AUC. For instance, when applying the optimal robust
ROC curve method, we implemented ten-fold cross validation to select the most
parsimonious model in the training dataset, and used that model to estimate the prediction
AUC in the validation dataset. We repeated this process 1000 times and the AUCs
calculated from the validation datasets were then averaged. The prediction AUC values of
these five tests obtained this way were respectively 0.7349, 0.7213, 0.7038, 0.6888, and
0.6530 (Table 3), results consistent with our previous finding. The standard deviations of the
AUC estimates are also reported in table 3, and the ROC curves based on 100 repeated split
samples are plotted in Web Figure 1 to give a graphical view of the variability of the ROC
curves. It should be noted that in general the choice of SNPs to include in the test should be
part of the cross validation procedure. However, we did not do this in view of the fact that
an independent study (Todd et al., 2007) replicated the association of Type 1 diabetes with
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the five diallelic SNPs, and this would explain our finding that the AUC for the validation
dataset is only slightly lower than the AUC for the training data set.

Using the Type 1 diabetes data, we also investigated the unordered optimal method and the
jagged ordered method proposed by Baker (2000) (Web Table 1). Although both methods
gave slightly over-fitted AUC estimates in the training dataset, the predictive genetic tests
built by these two methods performed well in the validation dataset. Compared to the
unordered optimal method, the jagged ordered method appeared to result in less over-fitting
and hence a more robust performance, results consistent with the findings by Baker (2000).

Note that we evaluated the performance of the methods in terms of the AUC. Because the
AUC is a global measure of a test’s discriminative ability, it might not be a good measure
from a decision-theoretic viewpoint. For the purpose of decision making, we are only
interested in the clinically important part of the ROC curve, and should therefore use a
measure for the relevant part of the ROC curve (e.g., a partial AUC). The clinically
important region of the ROC curve can be determined based on the disease prevalence and
the ratio of profit to loss incurred on using the test (Baker and Kramer, 2007; Baker, 2000).
In our case, Type 1 diabetes is a rare disease with an estimated prevalence of 0.0017, and we
expect a large ratio of loss to profit on using the test owing to the lack of a successful
disease prevention approach. Therefore, as discussed by Baker and Kramer (2007), the part
of the ROC curve we are interested in would be the left portion of the ROC curve where the
FPR is low. If we compare the methods based on the region where the FPR is low (e.g., less
than 0.1), then the above conclusion for the comparison of the three methods will still hold -
except that now dominant logistic regression performs better than the classification tree.

6. Discussion
In this article we proposed two robust forms of the optimal ROC curve-based method for
building predictive genetic tests on the basis of genetic markers, one for the situation when
there is prior knowledge of the disease model and one for the situation when there is no such
prior knowledge. They can be looked upon as illustrations of the original optimality theory
based on the likelihood ratio (Egan, 1975). Such theory simply indicates that a decision rule
based on the likelihood ratio is best (Egan, 1975; McIntosh and Pepe, 2002). We have
shown elsewhere that a test built using the LR can attain the highest classification accuracy
in terms of the AUC (Lu and Elston, 2008).

Through simulations, we evaluated the new method and compared it with commonly used
approaches, such as logistic regression and classification tree. If we know the underlying
model (i.e., the causal loci, their modes of inheritance and interactions), the ROC curves
built with all three methods approach the underlying ROC curve very well and there are no
significant differences among them. However, their performances can be quite different if
we have no prior knowledge of the disease model, which is usually the case for complex
diseases. If we assume the “right” disease model, logistic regression could have a
comparable or even slightly better performance than the optimal robust ROC curve method.
However, when we have no prior knowledge of the disease model, we might assume the
“wrong” disease model and this could seriously underestimate the predictive genetic test’s
classification accuracy. As illustrated in simulation II, logistic regression assuming a
recessive model had poor performance when the disease loci followed a dominant or
multiplicative model. In another scenario, we have shown (Web Appendix C) that when all
three disease loci followed a recessive model the test build by logistic regression assuming a
dominant model had poor classification accuracy. In contrast to logistic regression, the
optimal robust ROC curve method does not require the assumption of a particular disease
model; i.e., it is genetic model free and is robust to a variety of underlying disease models.
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The performance of the optimal robust ROC curve method is always comparable to that of
the best logistic regression model (i.e., the one that assumes the “right” disease model). Note
that in the two simulations, although logistic regression assuming a multiplicative model had
a slightly worse performance than the optimal robust ROC curve method, overall it gave
quite robust AUC estimates. Thus, similarly to the optimal ROC curve method, logistic
regression assuming a multiplicative model could potentially be used for scenarios where
limited knowledge of the underlying disease model is known.

Another advantage of the optimal robust ROC curve method is that it is nonparametric. For
traditional parametric methods, such as logistic regression, the number of parameters grows
exponentially as we try to model higher order interactions among multiple genetic variables.
For instance, 31 (25 − 1) and 255 (28 − 1) parameters are required in order to model all
possible gene-gene interactions among the 5 loci of the real data example and the 8 loci used
for simulation II, respectively. Fitting a logistic regression model with 255 parameters and
then using backward selection to choose the most parsimonious model is computationally
difficult. Moreover, having too many parameters in the model can lead to biased estimates
and increased type I error (Peduzzi et al., 1996). To avoid these issues, Hosmer and
Lemeshow (2000) suggested that the number of parameters in the model should be less than
or equal to min (n1, n0)/(10 − 1), where n1 and n0 are the numbers of cases and controls,
respectively. If we apply their formula to the dataset with 250 cases and 250 controls, the
number of parameters should be less than 28, so that fitting a logistic regression model with
all possible gene-gene interactions (i.e., with 255 parameters) is inappropriate. Therefore,
compared with logistic regression, nonparametric methods such as the optimal robust ROC
curve and classification tree methods avoid the issue of an increasing number of parameters,
but nevertheless have the advantage of identifying the high order interactions.

Similar to a classification tree, the optimal robust ROC curve method gives an easily
interpretable result because the high risk group individuals will always appear on the left
part of the ROC curve and the low risk group will appear on the right part of the curve.
However, as illustrated by the simulation and real data examples, the tests formed by the
optimal robust ROC curve have better classification accuracy than that of the classification
tree in terms of the AUC.

The approach proposed in section 3.2 can also be looked upon as an extension of Baker’s
unordered optimal method that includes model selection, and we have illustrated the
importance of model selection when building predictive genetic tests. As we have shown in
simulation II, simple implementation of Baker’s unordered optimal method for genetic data
without considering model selection can bias the AUC estimate. Baker’s approach was
originally proposed in order to combine multiple tumor biomarkers for prediction proposes.
Although our method is derived for genetic marker data, it could also be used for tumor
biomarkers and clinical predictors, especially in those situations where we need to select the
predictors and are interested in investigating interactions among them.

The important role of predictive genetic tests on health care has been recognized by both
researchers and the public (Epstein, 2006; Evans, Skrzynia, and Burke, 2001; Jones M,
2000), and searching for successful predictive genetic tests has already been initiated for
several diseases (Weedon et al., 2006). With the recent completion of genome-wide
association studies, many novel associated genetic variants have been discovered. By using
the proposed method, we are able to form a powerful predictive genetic test with these new
discoveries, and therefore translate these findings into potential clinical use. We formed a
predictive genetic test for Type 1 diabetes based on 5 novel loci discovered from a GWA
study. The test reached a mid level of classification accuracy that is much higher than those
of the tests for other common diseases (e.g., Type 2 diabetes). With the discovery of more
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disease risk variants, and eventually their interactions, we might be able to form a predictive
genetic test for Type 1 diabetes that could be implemented in clinical use.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The five lines in the plot, from top to bottom, correspond to the ROC curves derived from:
logistic regression assuming a multiplicative effect, the optimal robust ROC curve, logistic
regression assuming a recessive effect, classification tree, and logistic regression assuming a
dominant effect. The estimated AUC values of these five approaches are 0.7420, 0.7373,
0.7079, 0.6868 and 0.6596, respectively.
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Table 3

AUC estimates and standard deviations (SD) for the five methods based on 1000 repeated split samples from
the Wellcome Trust dataset.

Training Dataset Validation Dataset

AUC SD AUC SD

Mul LOG-REG 0.7427 0.0051 0.7349 0.0100

OPT-ROC 0.7388 0.0100 0.7213 0.0103

Rec LOG-REG 0.7092 0.0052 0.7038 0.0104

CLA-TREE 0.6908 0.0083 0.6888 0.0105

Dom LOG-REG 0.6607 0.0052 0.6530 0.0106
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