Skip to main content
. Author manuscript; available in PMC: 2011 Feb 16.
Published in final edited form as: Biometrics. 2009 Jun 8;66(2):586–593. doi: 10.1111/j.1541-0420.2009.01278.x

Table 2.

Comparison among the optimal robust ROC curve method (OPT-ROC), logistic regression with backward selection (Mul LOG-REG, Dom LOG-REG, and Rec LOG-REG), and classification tree (CLA-TREE)

Cases:Controls 250:250 500:500 1000:1000

BIAS SD MSE BIAS SD MSE BIAS SD MSE
OPT-ROC 0.0158 0.0338 0.00139 0.0010 0.0205 0.00042 0.0007 0.0154 0.00024
Mul LOG-REG 0.0418 0.0250 0.00237 0.0210 0.0170 0.00073 0.0119 0.0122 0.00029
Dom LOG-REG 0.0433 0.0247 0.00249 0.0190 0.0174 0.00067 0.0123 0.0121 0.00030
Rec LOG-REG −0.0546 0.0242 0.00357 −0.0717 0.0176 0.00546 −0.1046 0.0108 0.01106
CLA-TREE −0.0195 0.0362 0.00169 −0.0229 0.0220 0.00101 −0.0225 0.0153 0.00074