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Abstract
Background—Genetic factors and previous alcohol experience influence alcohol consumption
in both humans and rodents. Specifically, a prior experience with ethanol increases ethanol intake
in both ethanol-preferring C57BL/6 (C57) and ethanol non-preferring DBA/2 (DBA) mice.
Whereas the ventral tegmental area (VTA) importantly regulates dopamine levels and ethanol
intake, it is unknown whether ethanol experience differentially alters synaptic properties of VTA
dopamine neurons in ethanol-preferring and non-preferring mice.

Methods—The properties of excitatory and inhibitory inputs and the ability to elicit long-term
potentiation (LTP) were assessed with whole-cell patch-clamp recordings in VTA dopamine
neurons from C57 and DBA mice 24 hours after a single ethanol (2 g/kg, IP) or equivalent saline
injection.

Results—Ethanol exposure increased γ-aminobutyric acid (GABA) release onto VTA dopamine
neurons in DBA mice, as previously observed in C57 mice. However, a single ethanol exposure
reduced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-
methyl-D-aspartate receptor (NMDAR) function and LTP in VTA dopamine neurons from DBA
but not C57 mice.

Conclusions—A single ethanol exposure selectively reduced glutamate receptor function in
VTA dopamine neurons from the ethanol non-preferring DBA strain but enhanced GABA
signaling in both C57 and DBA strains. These results support the notion that VTA dopamine
neurons are a central target of ethanol-induced neural plasticity, which could contribute to ethanol
consumption. Furthermore, these findings highlight the possible need for specialized therapeutic
interventions for alcoholism based on individual intrinsic differences.
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One major focus in alcoholism research is to identify neural adaptations responsible for the
pathological consequences of alcohol abuse. Determining the causes of alcoholism and
establishing effective treatment options is complex, because genetic factors (1) and previous
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experience with alcohol (2) can contribute to alcoholism. Similar to humans (1-3), rodent
strains exhibit varying degrees of ethanol preference (4-7), which can be affected by prior
ethanol experience (8-10). Many studies have examined differences between ethanol-
preferring C57BL/6 (C57) and ethanol non-preferring DBA/2 (DBA) mouse strains in
ethanol-related behaviors (4,5,11-14). For example, C57 mice prefer orally administered
ethanol relative to DBA mice (4,5), although intravenous ethanol intake is similar between
the strains (12). Ethanol produces greater conditioned taste aversion in DBA mice (12,13),
which could influence the motivation for ethanol due to taste. Nonetheless, a single ethanol
injection enhances ethanol consumption in both mouse strains (9). Thus, different plastic
mechanisms could underlie the increased ethanol intake in ethanol-preferring and non-
preferring mouse strains.

Ethanol can affect a number of molecular targets throughout the brain (15,16), but the
ventral tegmental area (VTA), a major dopamine-producing brain structure, is thought to be
especially important in the development of ethanol-related behaviors (3). For example, the
VTA is required for the development of ethanol conditioned place preference (17), and
rodents self-administer ethanol directly into the VTA (18,19). In addition, oral self-
administration of ethanol is enhanced by systemic administration of dopamine receptor
agonists and attenuated by dopamine receptor antagonists (20). Furthermore, ethanol intake
is attenuated by strong VTA inactivation (21,22) or infusions of dopamine receptor
antagonists into the nucleus accumbens (23,24), a region receiving strong VTA input.
Interestingly, VTA dopamine neurons from C57 mice are less sensitive to excitatory effects
of ethanol compared with DBA mice in vitro (25). Thus, the VTA and dopamine likely play
an important role in many although perhaps not all (26) ethanol-related behaviors.

Whereas dopamine receptor activation augments ethanol consumption during self-
administration, early withdrawal from ethanol is associated with a lower functionality of the
mesolimbic dopaminergic system in human alcoholic subjects, which might arise from
reduced glutamatergic input to dopamine neurons (27). A reduced dopaminergic function is
observed in rodents after early (28-30 [but see 31]) and more chronic withdrawal after
ethanol treatment (30,32,33), consistent with humans. These findings concur with the
hypothesis that enhanced drug seeking during early withdrawal can result from a decrease in
function in some brain circuits important for motivation and reinforcement (15,34).
Furthermore, experience with addictive drugs, including ethanol, can alter the synaptic
properties of VTA dopamine neurons, which is likely involved with many drug-related
behaviors (35-40). Because a single exposure to ethanol increases ethanol consumption in
rodents (9) and lower functionality of the dopamine system can be associated with increases
in ethanol intake (6,7,27,30,34), we hypothesized that a single ethanol injection would
reduce activity of the dopamine system, perhaps by altering the synaptic properties of VTA
dopamine neurons and thus promote drinking in order to restore normal dopaminergic
function (30). Here, we explored how a single in vivo exposure to ethanol and 24-hour
withdrawal affected inhibitory and excitatory synaptic properties as well as the ability to
elicit long-term potentiation (LTP) in VTA dopamine neurons from ethanol-preferring C57
and ethanol non-preferring DBA mice.

Methods and Materials
Electrophysiology

All procedures conformed to National Institutes of Health and Ernest Gallo Clinic and
Research Center standards. We prepared horizontal VTA brain slices (170–230 μm) from
P21–P25 C57 (Charles River, Hollister, California) or DBA (Jackson, Bar Harbor, Maine)
mice anaesthetized with halothane until loss of righting reflex. We prepared brain slices 24
hours after mice received a single IP injection of saline or ethanol as described previously
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(38). Solutions were saturated with 95% oxygen–5% carbon dioxide. Brain slices were cut
in a chilled solution containing, in mmol/L: 87 sodium chloride (NaCl), 2.5 potassium
chloride (KCl), 1.25 sodium dihydrogen phosphate (NaH2PO4), 25 NaHCO3, .5 calcium
chloride (CaCl2), 7 magnesium chloride (MgCl2), and 75 sucrose or 126 NaCl, 1.6 KCl, 1.2
NaH2PO4, 1.2 MgCl2, .625 CaCl2, 18 NaHCO3, and 11 glucose. Slices recovered >1 hour at
32°C in artificial cerebral spinal fluid, at 295–305 mOsm, and contained, in mmol/L: 126
NaCl, 2.5 or 1.6 KCl, 1.1 NaH2PO4, 1.4 MgCl2, 2.4 CaCl2, 11 d-glucose, and 26 NaHCO3.

We performed whole cell patch-clamp recordings with artificial cerebral spinal fluid
(approximately 33°C) continuously perfused at approximately 2.0 mL/min and made
recordings with 2–6 MΩ electrodes with an Axopatch 1D amplifier with filtering at 2 KHz
and digitizing at 10 KHz. Igor Pro (Wavemetrics, Lake Oswego, Oregon) was used for data
acquisition. Dopamine neurons were identified by the presence of Ih, which is found in
>98% of mouse VTA dopamine neurons (41). The γ-aminobutyric acid (GABA)A inhibitory
post-synaptic currents (IPSCs) were recorded with an internal solution containing 144
mmol/L KCl, 1 mmol/L CaCl2, 3.45 mmol/L potassium-1,2-bis(2-aminophenoxy)-ethane-
N,N,N,N-tetraacetic acid, and 10 mmol/L N-2-hydroxyethylpiperazine-N’-2-ethane sulfonic
acid (HEPES). Excitatory postsynaptic current (EPSC) recordings and LTP experiments
used an internal solution containing, in mmol/L: 130 potassium hydroxide, 105
methanesulfonic acid, 17 hydrogen chloride, 20 HEPES, glycolbis(2-aminoethylether)-
N,N,N’,N’-tetraacetic acid (EGTA), and 2.8 NaCl. Voltage clamp recordings of miniature
EPSCs (mEPSCs) used an internal solution containing: 117 mmol/L cesium
methanesulfonate, 20 mmol/L HEPES, .4 mmol/L EGTA, 2.8 mmol/L NaCl, 5 mmol/L
tetraethylammonium chloride. Internal recording solutions were 7.2–7.4 pH and 275–285
mOsm and contained 2.5 mg/mL magnesium adenosine triphosphate and .25 mg/mL
magnesium guanidine triphosphate.

A bipolar stimulating electrode was placed 100–300 μm rostral to the recording electrode for
stimulating IPSCs, EPSCs, and excitatory post-synaptic potentials (EPSPs) at .1 Hz. The
GABAA IPSCs were recorded in the presence of 2-amino-5-phosphonopentanoic acid (AP5;
100 μmol/L), 6-cyano-2,3-dihy-droxy-7-nitro-quinoxaline (CNQX; 10 μmol/L), strychnine
(1 μmol/L), and eticlopride (100 nmol/L) to block NMDAR, AMPAR, glycine, and
dopamine D2 receptors, respectively. To minimize D2 receptor-mediated effects during
IPSCs (42), we included eticlopride for IPSC experiments. For EPSC and LTP experiments
and bath application of glutamate receptor agonists, the GABAA blocker picrotoxin (100
μmol/L) was added. We held neurons at −70 mV for experiments with LTP, IPSCs, EPSCs,
and AMPA bath application and at +40 mV for experiments with the AMPAR/NMDAR and
NMDA bath application. Cyclothiazide (100 μmol/L) was added 10 min before and during
AMPA application to prevent desensitization of AMPARs that could confound accurate
measurements of receptor currents (43). To calculate the AMPAR/NMDAR, an average of
12 EPSCs was computed before and after NMDAR block with AP5 (50 μmol/L). The
NMDAR responses were calculated by subtracting the average response in the presence of
AP5 (AMPAR only) from the current before AP5 addition. The AMPAR EPSC peak was
divided by the NMDAR EPSC peak to yield the AMPAR/NMDAR.

We calculated paired-pulse ratios (PPR), with an interstimulus interval of 50 msec, as the
ratio between the second and first IPSC or EPSC averaged over 10 min. The LTP was
induced by pairing a set of five EPSPs with depolarizing current pulses sufficient to generate
an action potential (2 msec, 1–2 nA) at 10 Hz. The EPSP and current-pulse pairings were
repeated 20 times with 5 sec between each set. Spontaneous miniature EPSCs or IPSCs in
the presence of 500 μmol/L lidocaine or 500 nmol/L tetrodotoxin (Alomone Labs,
Jerusalem, Israel) were collected for 5 min or up to 300 detected events with Clampex
(Axon Instruments, Cupertino, California), filtered at 1 KHz, and analyzed with Mini
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Analysis program (Synaptosoft, Decatur, Georgia). Each event was visually inspected to
prevent noise disturbance of the analysis.

Results are presented as the mean ± SEM. Significance was determined between groups
with unpaired Student t test. We used a minimum of three mice/condition. The AMPA,
NMDA, and AP5 were purchased from Tocris (Ellisville, Missouri), TTX from (Alomone
Labs), and all other chemicals from Sigma-Aldrich (St. Louis, Missouri).

Results
Increased Probability of GABA Release After Ethanol Exposure in DBA Mice

A single ethanol exposure augments ethanol consumption in both C57 and DBA mice (9)
and is associated with an increase in spontaneous and stimulated GABA release onto VTA
dopamine neurons in C57 mice (38). However, it is unknown whether synaptic changes
occur on dopamine neurons from DBA mice 24 hours after a single ethanol injection (2 g/
kg, IP) relative to similarly treated saline-injected mice.

Therefore, in DBA mice, we first examined miniature IPSCs (mIPSCs) on VTA dopamine
neurons, which reflect the spontaneous GABA input onto the recorded neuron (44). Ethanol
exposure significantly increased mIPSC event frequency in ethanol-injected mice (saline: .
56 ± .10 Hz, n = 6; ethanol: 1.25 ± .24 Hz, n = 6; p < .05, Figures 1A–1C), which indicates
that ethanol treatment affected GABA release on VTA dopamine neurons. No change was
detected in mIPSCs amplitude between saline-injected (26.0 ± 1.4 pA, n = 6) and ethanol-
injected (23.7 ± 1.7 pA, n = 6, Figures 1A, 1D, and 1E) DBA mice, suggesting that ethanol
exposure did not alter post-synaptic GABA receptor function. Also, the PPR of IPSCs
(IPSC2/IPSC1), which can indicate changes in stimulated GABA release (38), was reduced
in ethanol-injected DBA mice (saline: .95 ± .09, n = 12; ethanol: .72 ± .07, n = 15; p < .05,
Figures 1F and 1G). These results are similar to those observed in C57 mice (38), although
unlike the C57 strain, GABAB receptor antagonists (100 μmol/L CGP-36742) did not
modulate the PPR of IPSCs in saline- or ethanol-exposed DBA mice (% of baseline PPR
after CGP: saline 87.4 ± 4.1%, n = 7; ethanol 105.1 ± 12.6%, n = 8). Nonetheless, these
results demonstrate that a single ethanol exposure increased both spontaneous and
stimulated GABA release on VTA dopamine neurons in DBA mice, consistent with our
hypothesis that ethanol exposure might enhance ethanol preference by reducing the
excitatory capacity of dopamine neurons.

Ethanol Exposure Alters Spontaneous Excitatory Input on VTA Dopamine Neurons in DBA
But Not C57 Mice

Although a single ethanol injection enhanced inhibitory input onto VTA dopamine neurons
in both C57 (38) and DBA mice (Figure 1), it is unknown whether a single in vivo ethanol
exposure affects excitatory input onto these neurons in either mouse strain after 24-hour
withdrawal. Thus, we examined the effect of an ethanol injection in C57 and DBA mice on
spontaneous miniature EPSCs (mEPSCs), which are mediated by AM-PAR currents at the
holding potential of −70 mV (43).

In C57 mice, ethanol exposure did not alter either the frequency (saline: 1.95 ± .33 Hz, n =
8; ethanol: 1.72 ± .27, n = 6, p > .05, Figures 2A–2C) or amplitude of mEPSCs (saline:
10.85 ± .68 pA; ethanol: 11.93 ± .56 pA, p > .05, Figures 2A, 2D, and 2E) on VTA
dopamine neurons, suggesting no change in glutamate release or post-synaptic AMPAR
currents (45). In addition, the PPR of EPSCs (EPSC2/EPSC1) was unaffected by ethanol
pretreatment (saline: .84 ± .07, n = 8; ethanol: .86 ± .06, n = 7, p > .05, Figures 2F and 2G),
suggesting that ethanol exposure did not alter glutamate inputs onto VTA dopamine neurons
of C57 mice.
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In DBA mice, ethanol treatment significantly reduced the amplitude of mEPSCs in VTA
dopamine neurons (saline: 12.5 ± 1.4 pA, n = 7; ethanol: 9.2 ± .6 pA, n = 8; p < .05, Figures
3A, 2D, and 2E), indicating a reduction in post-synaptic AMPAR currents by ethanol
exposure. In contrast, no changes by ethanol exposure in DBA mice were evident in mEPSC
frequency (saline: .59 ± .11 Hz, n = 7; ethanol: .92 ± .19 Hz, n = 8, p > .05, Figures 3A–3C)
or PPR (saline: .84 ± .03, n = 7; ethanol: .83 ± .03, n = 6, p > .05, Figures 3F and 3G),
suggesting that a prior ethanol exposure did not affect spontaneous or stimulated glutamate
release on dopamine neurons in DBA mice. Interestingly, the frequency of detected mEPSC
events was lower in saline-treated DBA relative to C57 mice (p < .01, Figures 1 and 2).
Regardless, these results suggest that ethanol exposure in DBA mice reduced post-synaptic
AMPAR currents but not glutamate release on VTA dopamine neurons, with no changes in
glutamatergic inputs in similarly treated C57 mice.

Ethanol Exposure Depresses the AMPAR/NMDAR in VTA Dopamine Neurons From DBA
But Not C57 Mice

To further explore how 24-hour withdrawal after a single ethanol experience affected
glutamate receptor currents in VTA dopamine neurons, we examined the AMPAR/
NMDAR, which is a commonly used measure of excitatory synaptic strength
(35,36,39,45,46). Because a single ethanol injection reduced AMPAR mEPSCs amplitude in
VTA dopamine neurons of DBA but not C57 mice, we expected the AMPAR/NMDAR
would also be reduced by ethanol experience in DBA but not in C57 mice. Consistent with
our prediction, acute ethanol withdrawal did not alter the AMPAR/NMDAR in C57 mice
(saline: .41 ± .05, n = 7; ethanol: .43 ± .07, n = 6, p > .05, Figures 4A and 4B), but
significantly reduced the AMPAR/NMDAR in DBA mice (saline: .49 ± .03, n = 12;
ethanol: .37 ± .03, n = 16, p < .05, Figures 4C and 4D). These results further support that
ethanol selectively alters VTA synaptic glutamatergic function in DBA but not in C57 mice.

Ethanol Exposure Alters Glutamate Receptor Currents in VTA Dopamine Neurons From
DBA But Not C57 Mice

A single ethanol injection reduced the amplitude of AMPAR mEPSCs in VTA dopamine
neurons of DBA mice (Figures 3D and 3E), which perhaps suggests a reduction in post-
synaptic AMPAR function. To directly ascertain the effect of previous ethanol exposure on
post-synaptic glutamate currents, we bath-applied specific glutamate receptor agonists to
dopamine neurons from saline- and ethanol-injected mice. The AMPA-induced current (2.5
μmol/L, 30 sec, held at −70 mV; see Methods) was not altered by ethanol exposure in C57
mice (saline: −724.3 ± 120.1 pA, n = 6; ethanol: −640.0 ± 116.1 pA, n = 6; Figures 5A and
5B), consistent with our results from the AMPAR mEPSC experiments (Figures 2D and 2E).
There were also no differences in the NMDA-induced current between treatment groups in
C57 mice in response to a 30-sec application of 10 μmol/L NMDA when holding the neuron
at +40 mV (saline: 310.7 ± 96.2 pA, n = 6; ethanol: 308.2 ± 72.3 pA, n = 6, Figures 5C and
5D).

Interestingly, ethanol treatment did not alter AMPA-induced currents in DBA mice (saline:
−468.8 ± 48.7 pA, n = 6; ethanol: −540.1 ± 73.2, n = 6; Figures 6A and 6B). Because
reduced mEPSC amplitudes in ethanol-exposed DBA mice (Figures 3D and 3E) could
indicate decreased synaptic AMPAR function, the lack of an effect on AMPA-generated
currents suggests that bath applied AMPA could primarily activate extrasynaptic AMPARs
(47). It should be noted that there was a non-significant trend for a greater AMPA current in
saline-exposed C57 relative to DBA mice (p = .08). Additionally, ethanol exposure in DBA
mice significantly reduced the NMDA-induced currents (saline: 404.2 ± 41.6 pA, n = 6;
ethanol: 185.6 ± 48.9 pA, n = 6, p < .05, Figures 6C and 6D). Together, our results indicate
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that withdrawal from a single ethanol injection alters AMPAR and NMDAR function in
VTA dopamine neurons in DBA mice, whereas no such changes are observed in C57 mice.

Ethanol Exposure Alters Synaptic Plasticity in VTA Dopamine Neurons From DBA But Not
C57 Mice

The effects of abused drugs on the synaptic plasticity of VTA dopamine neurons might be
involved in the development of drug-related behaviors (40,48), and in vivo drug exposure
alters the capacity of VTA dopamine neurons to express LTP (35-37,39), a synaptic process
thought to play a role in learning and memory (40,49,50). The LTP of excitatory synapses
on VTA dopamine neurons requires NMDARs (37,51), and we interestingly found that
ethanol exposure selectively reduced NMDAR function in DBA mice (Figures 6C and 6D).
Therefore, we hypothesized that a single injection of ethanol 24 hours prior would not alter
the induction of LTP in C57 mice but would attenuate LTP in DBA mice.

Long-term potentiation of EPSPs was generated in VTA dopamine neurons in C57 mice
receiving either a single injection of saline or ethanol (saline: 124.4 ± 12.3% of baseline
EPSP, n = 9; ethanol: 120.0 ± 10.1% of baseline EPSP, n = 6, Figures 7A–7C). However,
ethanol treatment significantly reduced LTP in DBA mice (saline: 135.4 ± 9.9% of baseline
EPSP, n = 6; ethanol: 111.4 ± 4.9% of baseline EPSP, n = 7, p < .05, Figures 7B and7D).
Thus, the reduced NMDAR function after ethanol exposure in DBA mice impaired LTP
generation, highlighting the physiological relevance of the selective ethanol-induced
alteration in VTA glutamatergic function in DBA mice.

Discussion
In this study, we examined the effect of withdrawal after a single ethanol injection on
synaptic inputs onto VTA dopamine neurons from ethanol-preferring C57 mice and ethanol
non-preferring DBA mice. We observed that, similar to C57 mice (38), ethanol-treated DBA
mice exhibited increased spontaneous and stimulated GABA release on dopamine neurons.
Interestingly, acute withdrawal from ethanol treatment reduced AMPAR and NMDAR
function and impaired the ability to generate LTP in VTA dopamine neurons from DBA
mice, with no observed changes in glutamatergic function in C57 mice. Because increased
ethanol consumption after acute withdrawal is associated with decreased dopamine system
function (27,30,34), the enhanced ethanol consumption after acute withdrawal from ethanol
exposure in C57 and DBA mouse strains might result in part from a lower functionality of
the dopamine system induced by the differential synaptic changes on VTA dopamine
neurons that we report here and in our previous work (38). Furthermore, we hypothesize that
augmented inhibitory GABAergic input onto dopamine neurons might be sufficient to
increase ethanol intake in the ethanol-preferring C57 strain (38), whereas both enhanced
GABAergic and reduced excitatory synaptic strength onto dopamine neurons are necessary
for promoting ethanol consumption in the ethanol non-preferring DBA strain.

Surprisingly, very little was known about the effect of ethanol on excitatory synaptic input
on VTA dopamine neurons, although it was recently suggested that this might be altered in
human alcoholic subjects in withdrawal (27). First, we found that ethanol exposure in DBA
mice reduced synaptic AMPAR function in dopamine neurons, indicated by a decreased
amplitude of AMPAR mEPSCs. The AMPAR/NMDAR, which is a measure of excitatory
synaptic strength (35,36,39,45), was attenuated in ethanol-injected DBA mice, likely
resulting from the decreased AMPAR function we identified in our mEPSC experiments,
although AMPAR/NMDAR alterations could also arise from changes in NMDAR function
or from functional changes in both AMPAR and NMDARs. As a final assessment of the
effect of ethanol experience on AMPAR function in the VTA, we bath-applied AMPA to
dopamine neurons and unexpectedly found no difference between saline- and ethanol-
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treated DBA mice. This finding suggests that currents generated by AMPA bath application
might primarily reflect extra-synaptic receptors (47), although we cannot rule out a possible
compensatory increase in extrasynaptic AMPAR as well as a decrease in synaptic AMPAR
after ethanol exposure in DBA mice, and this remains a question for future study.

We next examined NMDAR function after acute withdrawal from ethanol treatment and
found that the NMDA-induced current was significantly attenuated in ethanol-treated DBA
mice, suggesting a reduced NMDAR function. The NMDARs are critical for many forms of
LTP (37,51,52), a synaptic phenomenon thought to contribute to learning, memory, and
substance abuse (40,49,50). Accordingly, we also observed a reduced expression of LTP in
VTA dopamine neurons from ethanol-exposed DBA mice but not in C57 mice. Because the
NMDA-induced current was reduced in ethanol-treated DBA mice, we might have expected
that this would translate into a larger AMPAR/NMDAR, the opposite of what we observed.
However, as noted previously, bath application of glutamate receptor agonists can activate
synaptic and extrasynaptic receptors (47), whereas the AMPAR/NMDAR reflects activation
of synaptic glutamate receptors (45). Finally, it should be noted that the reduced function of
glutamate receptors we report could reflect either a reduced ionic conductance and/or
number of receptors expressed on the cell surface. Nonetheless, our results suggest that both
AMPAR and NMDAR function are inhibited after a single ethanol exposure selectively in
DBA mice.

Human and rodent studies demonstrate a reduced function of the dopamine system during
withdrawal from alcohol (27-30), and drug-seeking can result from decreased function in
some brain circuits important for reinforcement and motivation (15). Because the VTA and
dopamine are important for reinforcing behaviors and motivation (53,54), we hypothesize
that a reduced function of the dopamine system underlies the increased ethanol consumption
after withdrawal from ethanol exposure in C57 and DBA mice (9). Also, because ethanol
increases VTA dopamine neuron firing (25), increased ethanol consumption during early
withdrawal might serve to restore normal levels of dopamine function (15,30). Although our
study examined the differential synaptic changes after a single ethanol exposure that is
associated with increased ethanol consumption, we should note that several distinct
mechanisms could contribute to the many cellular and behavioral differences that have been
identified between C57 and DBA strains (9,12,14,55). Thus, differential ethanol
consumption between C57 and DBA mice is likely regulated in a complex manner by prior
ethanol experience (9), differences in metabolism (14,55), taste (14), and the baseline
properties of dopamine neurons including the differences in mEPSC frequency we report
here and in the excitability by ethanol application (25). We did not examine firing properties
here, although AMPARs, NMDARs, and GABA receptors can significantly regulate
dopamine neuron firing activity (31,56-59). Possible differences in the regulation of intrinsic
firing activity after ethanol treatment represent an interesting future direction, as will the
dose-response effect of ethanol exposure and the time course of the observed plastic changes
on VTA dopamine neurons.

Many have suggested that increased AMPAR function in VTA dopamine neurons might
contribute to an enhanced motivational importance of drugs or drug-related cues
(35,36,39,60), although increased excitatory synaptic input onto dopamine neurons does not
always associate with the development of drug-dependent behaviors (46,61,62). We believe
that the behavioral consequence of changes in glutamate receptor function varies, depending
upon the behavioral conditions and the timing of the observation; therefore, drug seeking is
likely not a unitary phenomenon (63). For example, antagonizing dopamine signaling
attenuates ethanol consumption (20,21,23,24), whereas lower dopamine system function
during acute withdrawal is associated with increased ethanol intake (30). Here, we observed
a decreased AMPAR/NMDAR after acute withdrawal from ethanol exposure only in DBA
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mice, in agreement with reduced mEPSC amplitudes and also with the hypothesis that
withdrawal from ethanol reduces dopaminergic function (15). We note that a previous study
found an increased AMPAR/NMDAR ratio in C57 mice 24 hours after ethanol exposure
(60), which was not observed here. This previous study used a 20% ethanol solution relative
to the 10% ethanol solution in our current findings, which could have elevated the AMPAR/
NMDAR through stress (60) associated with the irritant effect of ethanol.

Alcoholism research attempts to identify the neural adaptations associated with the disease,
whereby highlighting potential therapeutic targets. Because alcoholism involves both
genetic and environmental components (1,2), it is often difficult to determine the critical
neural regions associated with alcoholism, especially because the primary effects of ethanol
are widespread throughout the central nervous system (15,16), although a number of studies
have identified a role for the VTA and dopamine in ethanol-related behaviors
(3,17-19,21-23,64). Many lines of evidence suggest that lower function of the dopamine
system is associated with increased alcohol consumption in both rodents and humans
(6,7,27,30,34), perhaps reflecting the drive to overcome a low dopamine state during early
withdrawal (15). Thus, we speculate that the changes in both GABA and glutamatergic VTA
function in DBA mice that we observed might contribute to the ability of a single ethanol
exposure to increase ethanol consumption in this normally ethanol non-preferring mouse
strain, whereas only changes in GABA release are required to enhance intake in the ethanol-
preferring C57 mouse strain (9,38). These results not only demonstrate that VTA dopamine
neurons are a central target of ethanol-induced synaptic alterations but also suggest that
these neuroadaptations depend on preference to ethanol, which highlights the possibility that
differential therapeutic interventions might be warranted for treating human alcoholic
subjects.
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Figure 1.
A single ethanol injection increased the probability of γ-aminobutyric acid release on ventral
tegmental area dopamine neurons in ethanol non-preferring DBA/2 (DBA) mice. (A)
Example miniature inhibitory post-synaptic currents (IPSCs) from mice receiving an ethanol
(2 g/kg, IP) or equivalent saline injection 24 hours prior. Representative cumulative
probability distributions are shown for the miniature IPSC (mIPSC) frequency (B) and
amplitude (D) in saline- and ethanol-injected mice. The average mIPSC frequency (C) was
increased in ethanol-treated relative to saline-treated mice, whereas there was no change in
the average mIPSC amplitude (E). The paired-pulse ratio (with a 50-msec interstimulus
interval) of IPSCs was reduced in ethanol-treated mice compared with saline-treated mice in
a representative (F) and average of all recorded neurons (G).*p < .05 between treatment
groups.
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Figure 2.
A single ethanol injection did not affect miniature excitatory post-synaptic current (mEPSC)
or excitatory paired-pulse ratio (PPR) on ventral tegmental area dopamine neurons in
ethanol-preferring C57BL/6 (C57) mice. (A) Example mEPSCs from mice receiving an
ethanol or saline injection 24 hours prior. Representative cumulative probability
distributions are shown for the mEPSC frequency (B) and amplitude (D) in saline- and
ethanol-injected mice. There was no change in either the average mEPSC frequency (C) or
amplitude (E). The PPR of EPSCs was not different between saline- and ethanol-treated
mice in a representative (F) and average of all recorded neurons (G). p > .05 between
treatment groups.
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Figure 3.
A single ethanol injection reduced the probability of spontaneous glutamate release on
ventral tegmental area dopamine neurons in DBA mice. (A) Example mEPSCs from mice
receiving an ethanol or saline injection 24 hours prior. Representative cumulative
probability distributions are shown for the mEPSC frequency (B) and amplitude (D) in
saline- and ethanol-injected mice. The average mEPSC frequency (C) was decreased in
ethanol-treated relative to saline-treated mice, whereas there was no change in the average
mEPSC amplitude (E). The PPR of EPSCs was not different between saline- and ethanol-
treated mice in a representative (F) and average of all recorded neurons (G).*p < .05
between treatment groups. Abbreviations as in Figures 1 and 2.
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Figure 4.
A single ethanol injection reduced the α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid receptor (AMPAR)/N-methyl-D-aspartate receptor (NMDAR) in DBA mice, with no
effect in C57 mice. The AMPAR/NMDAR was calculated by taking an average of 12
EPSCs at +40 mV before and after application of the NMDAR blocker AP5 (50 μmol/L).
Thus, the current in the presence of AP5 (AMPAR only) would be subtracted from the total
current before AP5, yielding the NMDAR component of the evoked current. The peak of the
AMPAR EPSC was then divided by the peak of the NMDAR EPSC to yield an AMPAR/
NMDAR. Examples (A,C) and grouped data (B,D) showing depressed AMPAR/NMDARs
in ethanol-exposed DBA mice but not in ethanol-exposed C57 mice. *p < .05 between
treatment groups. Other abbreviations as in Figures 1 and 2.
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Figure 5.
A single ethanol injection did not affect AMPAR or NMDAR function on ventral tegmental
area dopamine neurons in C57 mice. (A) The time course of current change by a 30-sec
application of 2.5 μmol/L AMPA in the presence of 100 μmol/L cyclothiazide at −70 mV in
saline- and ethanol-injected C57 mice. (B) The maximal AMPA-induced change in current
in saline- and ethanol-injected mice. (C) The time course of current change by a 30-sec
application of 10 μmol/L NMDA at +40 mV in both saline- and ethanol-injected C57 mice.
(D) The maximal NMDA-induced change in current in both saline- and ethanol-injected
mice. p > .05 between treatment groups. Other abbreviations as in Figures 1, 2, and 3.
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Figure 6.
A single ethanol injection reduced NMDAR function on ventral tegmental area dopamine
neurons in DBA mice. (A) The time course of current change by a 30-sec application of 2.5
μmol/L AMPA in the presence of 100 μmol/L cyclothiazide at −70 mV in saline- and
ethanol-injected DBA mice. (B) The maximal AMPA-induced change in current in saline-
and ethanol-injected mice. (C) The time course of current change by a 30-sec application of
10 μmol/L NMDA at +40 mV in both saline- and ethanol-injected DBA mice. (D) The
maximal NMDA-induced change in current in both saline- and ethanol-injected mice. **p
< .01 between treatment groups. Other abbreviations as in Figures 1, 2, and 3.
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Figure 7.
A single ethanol injection impaired long-term potentiation (LTP) generation in DBA mice,
with no effect in C57 mice. The LTP was induced by pairing a set of five EPSPs with
depolarizing current pulses (2 msec, 1–2 nA) at 10 Hz. The EPSP and current-pulse pairings
were repeated 20 times with 5 sec between each set. (A) The time course of the average
change in EPSPs (left) and EPSPs of a representative neuron (right) from saline- and
ethanol-injected C57 mice. (C) The average percentage change in EPSPs 30–35 min after
induction in C57 mice injected with saline or ethanol. (B) The time course of the average
change in EPSPs (left) and EPSPs of a representative neuron (right) from saline- and
ethanol-injected DBA mice. (D) The average percentage change in EPSPs 30–35 min after
induction in DBA mice injected with saline or ethanol. Upward arrow (A,B) signifies time
of LTP induction. *p < .05 between treatment groups. Other abbreviations as in Figures 1
and 2.
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