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Abstract

Despite progress in the determination of miR interactions, their regulatory role in cancer is only beginning to be unraveled.
Utilizing gene expression data from 27 glioblastoma samples we found that the mere knowledge of physical interactions
between specific mRNAs and miRs can be used to determine associated regulatory interactions, allowing us to identify 626
associated interactions, involving 128 miRs that putatively modulate the expression of 246 mRNAs. Experimentally
determining the expression of miRs, we found an over-representation of over(under)-expressed miRs with various predicted
mRNA target sequences. Such significantly associated miRs that putatively bind over-expressed genes strongly tend to have
binding sites nearby the 39UTR of the corresponding mRNAs, suggesting that the presence of the miRs near the translation
stop site may be a factor in their regulatory ability. Our analysis predicted a significant association between miR-128 and the
protein kinase WEE1, which we subsequently validated experimentally by showing that the over-expression of the naturally
under-expressed miR-128 in glioma cells resulted in the inhibition of WEE1 in glioblastoma cells.
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Introduction

MicroRNAs (miRs) are small non-coding RNAs with mature

transcripts of 18 to 25 nucleotides that have been implicated in the

maintenance of the pluripotent cell state during early embryogen-

esis in mammals [1] as well as in tissue-specific or organ-specific

development [2]. miRs interact with their target coding mRNA,

inhibiting translation by degradation of the mRNAs, or blocking

translation by direct and imperfect binding to the 39 and 59 un-

translated regions (UTR) of targeted genes [3,4,5,6,7]. Further-

more, miRs exert control in combination with other regulatory

elements such as transcription factors [8].

Focusing on cancer, over-expressed miRs might diminish the

level of expression of targeted tumor suppressor genes - oncomirs -

in tumors whereas miRs acting as tumor suppressors are silenced/

down-regulated, leading to a higher expression rate of targeted

oncogenes and contributing to the neoplastic process [9].

Additionally, miRs are frequently located in regions of loss of

heterozygosity, genomic regions of amplification or common

breakpoint regions [10] and have been identified to regulate the

expression of tumor-associated genes in several tumors including

glioblastomas (GBM) [9,11,12,13].

Astrocytic tumors represent the most common form of glial

tumors. According to the WHO classification [14], tumor

anaplasia and aggressiveness increases from grades I to IV with

glioblastomas (GBM-WHO grade IV) being the most malignant

form of these tumors. Non-random genetic and epigenetic

perturbations potentially lead to abnormal oncogene activation

and/or tumor suppressor gene inactivation [14,15,16,17,18,19].

Several studies have analyzed miR expression profiles in normal

brain [1,20,21] and brain tumors [12,13,22], as well as tested their

use as potential therapeutic tools [11,22,23]. Initial analysis of

murine and human brain miRs predominantly indicated distinc-

tive expression of miRs-9, -101, -124, -127, -128, -131 and -132

[1,21]. Furthermore, alterations of miR-levels have been impli-

cated in the de-regulation of critical players in major cellular

pathways, modifying the differentiation, proliferation and survival

of tumor cells. For instance, miR-7 and miR-221/222 were shown

to be involved in the activation of the Akt and epidermal growth

factor receptor (EGFR) signaling pathways [23,24,25,26,27] while

miR-34a is a key downstream regulator of p53 [23,24,25,26,27].

miRs -10b and -21 have been consistently found highly over-

expressed in astrocytic tumors [12,13,22] as well. Putatively, miRs-

10b and -21 work as ‘oncomirs’ and decrease apoptosis in malignant

cells. Down-regulated miRs-124 and -137 are involved in the

differentiation of glioma stem cells [13], occurring with miR-128

that targets Bmi1 and E2F3a, promoting a pro-survival, undiffer-

entiated self-renewing state [28,29]. Regulation of both metabolic
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pathways in cancer cells and increase in their migration capabilities

are also relevant properties that have been found to be controlled by

miR-451 in glioma stem cell lines. Furthermore, miR-326 has been

recently shown to regulate Notch-1 and -2 in such cells [30,31].

Generally, miRs predominantly play an important role in signal

transduction and regulation processes in various tumor types. To

provide a better understanding of complex regulatory mechanisms

that involve miRs, we computationally determined miRs that are

significantly associated to expression changes of genes involved in

signaling pathways of human gliomas. We combined data of

physical interactions between miRs and the 39UTR of mRNAs

and gene expression profiles of 11 non-tumor control and 27

glioblastoma (GBM) samples. To assess the quality of our

predictions we performed a high-resolution genomic analysis of

the miR expression in the underlying tumor and control cases.

Comparing in-silico predictions to our large-scale measurements

we found that the combination of physical interactions of miRs

and mRNAs and the expression change of the given genes indeed

allowed an assessment of the influence of individual miR

candidates on gene expression changes in the absence of any

epigenetic effects and genomic alterations.

As an experimental proof of concept, we predicted associated

miRs that influence the expression of WEE1, a tyrosine kinase that

phosphorylates CDK1 [32,33]. To validate our computational

analysis and better understand the way WEE is regulated by miRs,

we investigated the involvement of miR-128 and miR-27 and

showed that expression of miR-128 is indeed strongly linked to the

expression of mRNA and protein levels of WEE1.

Results

miR and mRNA expression in tumor samples
To investigate whether the expression levels of miRs have

changed in glioblastomas we utilized 27 samples of glioblastoma

(GBM) patients that belong to the GA subgroup [34] and 11 non-

tumor control brain samples. 24 miRs had a lg2-fold-change FC of

,21, while we found 251 miRs with FC.1 (Table S1). As for the

expression of mRNAs, we observed 1,495 over-expressed and

3,922 under-expressed mRNAs with |FC|.1 (Table S2).

Computational prediction of associations between
binding miR and expression of mRNAs

Utilizing computational predictions from sources as algorithmi-

cally diverse as TargetScan [35], PicTar [36] and miRanda

[37,38], we assembled 48,939 interactions between 386 miRNAs

and 6,725 mRNAs. In particular, we only selected interactions

between miRs and mRNAs if they were at least predicted by two

methods (Fig. 1A).

Our objective was to determine small sets of physically

interacting miRs that are significantly associated to the expression

of the underlying mRNA. As such, a significant association might

indicate a significant role in the regulation of the underlying gene’s

expression. To identify groups of genes that were characterized by

significant expression changes we assembled 184 annotated

signaling pathways from the Pathway Interaction Database (PID)

[39].

We calculated the mean fold change of all miRs that physically

can interact with any given gene in the signaling pathways.

Specifically, we found a weak inverse correlation (Pearson’s

r = 20.06, P,0.05), suggesting that putatively only a fraction of

miR-mRNA interactions may play a role in the expression of the

given genes. Identifying combinations of miRs that putatively are

associated to altered mRNAs expression levels we applied the

random forest algorithm [40], an ensemble-learning-algorithm

that constructs regression trees with bootstrap data samples and

random choices of predicting variables. We characterized each

mRNA by its mean fold change and a x-dimensional binary vector

(Fig. 1B). Referring to a miR, each of the x vector units is 1 if the

corresponding miR can physically interact with the mRNA, and 0

otherwise. Applying the random forest algorithm, we performed a

regression of the mean fold change of 1,277 mRNAs as a function

of 355 interacting miRs. As a measure of a miRs impact on the

regression process we assessed each miRs local importance for the

fold change of each mRNA by randomizing mean fold change

levels and interactions between miRNAs and mRNAs 100 times.

Determining the significance of a miRs local importance with a Z-

test (Fig. 1C) and correcting for multiple testing [41] we found 626

significant associations (P,0.05), involving 128 miRs that tuned

the expression of 246 mRNAs (Table S3). Comparing our results,

we utilized the HMDD database [42], that manually collects and

curates associations of miRs and diseases from literature. In

particular, we found a significant overlap of 8 miRs (P,10214,

hypergeometric test) out of 32 miRs that are associated with

GBMs in HMDD.

In Fig. 1D, we show a subset of miRs that appeared most

frequently in such associations (the full list is available in Table S4).

Specifically, we counted the number of significant associations a

given miR is involved in, allowing us to observe that such miRs are

largely over-expressed in GBMs.

In Fig. 2A, a sigmoidal curve described the fold change of all

genes present in signaling pathways that were not significantly

associated with miRs. Focusing on those mRNAs that are

associated to miRs, we observed that the corresponding distribu-

tion strongly shifted toward lower and higher fold changes. In

particular, the cumulative frequency distribution formed a plateau

ranging from lg2-fold-changes 21 to +1, suggesting that associated

miRs significantly changed the expression of the corresponding

genes in GBMs. In a subsequent step, we calculated the mean fold

change of all miRs that were significantly associated with the

underlying mRNAs. In Fig. 2B, we found that the expression fold

change of mRNAs is significantly correlated with the expression of

its associated miRs (Pearson’s r = 20.30, P,1026), a remarkable

5-fold increase, demonstrating our ability to identify miRs that

potentially play a role in the expression of given genes.

To better understand where significantly associated miRs

actually bind mRNAs we calculated the cumulative frequency of

significantly associated miRs as a function of their distance to the

start of the 39UTR. Considering sequence alignments of a given

39UTR and a miR, we defined the position of the first aligned

nucleotide of the 39-UTR as the distance to the start of the un-

translated region. In the absence of splice-version specific sequence

data of 39UTRs in GBMs we accounted for all alignments of miRs

and un-translated regions of a given mRNA. In comparison to

non-associated miRs we observed an enrichment of associated

miRs that bind near the start of the 39UTR of the corresponding

mRNAs (inset, Fig. 2C). Assuming that the placement of binding

sites of significantly associated miRs was a non-random process we

hypothesized that such binding sites might increasingly be

occupied by over(under)-expressed miRs. Therefore, we deter-

mined the enrichment of over-expressed miRs (fold-change FC.1)

in sets of all miRs that interacted within a certain distance from the

start of the 39UTR. In Fig. 2C, we observed a strong tendency of

over-expressed miRs to increasingly bind nearby the 39UTR start.

In addition, we observed a similar result for under-expressed

miRs, (FC,21). However, the distribution is shifted several

100 bp away from the start of the 39UTR. Assuming that their

efficacy was mediated by occupying binding sites nearby the stop

codon, miRs might spatially block ribosomes from finishing

Associated microRNAs
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translation and therefore avoid degradation of the underlying

mRNA [43]. Our results suggest that over-expressed miRs,

corresponding to under-expressed genes, potentially utilize these

proximal positions on the 39-UTR, thereby allowing under-

representation of those mRNAs.

Utilizing all 626 significant associations between 128 miRs and

246 genes, we constructed a bipartite matrix between miRs and

signaling pathways if a given pathway shared at least one gene

with the associated targets of a miR. Narrowing our focus, we

considered signaling pathways that are over(under)-expressed in

GBMs. In particular, we applied GSEA [44], allowing us to find

21 enriched signaling pathways (P,0.05) that are largely

overrepresented in GBMs. Among such enriched pathways we

found several prominent signaling pathways that have been

implicated in tumor biology. We established a link if pathways

shared at least one gene with associated targets of a miR. While a

majority of 87 miRs thus obtained were over-expressed (expression

fold change FC.1), we found a small minority of miRs that were

under-expressed in GBMs (FC,21). Hierarchically clustering the

bipartite matrix, we observed two large clusters of pathways as well

as 2 large clusters of miRs. Specifically, we highlighted a dense

cluster that pooled most of the under-expressed miRs and

prominent pathways such as the p53 downstream and myc

activation pathway (Fig. 3A). Mapping all associations of miRs and

genes that appeared in the corresponding pathways, we found

significant interactions of prominent miRs (Fig. 3B). Specifically,

miR-124a was previously reported as a regulator of CDK6 in

GBM [13] and medulloblastoma [45]. Furthermore, we predicted

that both miR-29b and -29c were strongly associated with

extracellular matrix proteins such as LAMC1 and COL1A2.

Previous reports confirmed that these miRs regulate the expression

of extracellular matrix proteins in nasopharyngeal carcinomas

[46], contributing to positive regulation of osteoblast differentia-

tion [47] and playing an important role in cardiac fibrosis [48].

WEE1 is over-expressed in GBM and TIC
As an experimental proof of concept, we predicted significantly

associated miR interactions that influence the expression of

WEE1, a tyrosine kinase that phosphorylates CDK1 at the

tyrosine-15 (CDK1-Y15) position [32]. Previously published data

suggested that over-expression of WEE1 is critical for the viability

of some cancer types, and cell lines displaying higher levels of

WEE1 expression are sensitive to WEE1 inhibition [33]. Utilizing

expression data from primary glial tumors, we confirmed that

WEE1 is strongly over-expressed in gliomas compared to non-

tumor control cases (Fig. 4A). To validate our computational

Figure 1. Determination of significantly associated miRs. In (A) we show the overlaps between sets of different sources of physical miR-mRNA
interactions. Only accounting for potential interactions that at least were predicted by two methods we assembled 48,939 interactions. In (B) we
assumed that the expression fold change of mRNAs is a function of the miRs that specifically bind the underlying mRNAs. As such, we represented
the presence/absence of binding miRs as a binary (1/0) matrix, where each of the units is 1 if the corresponding miR can physically interact with the
mRNA and 0 otherwise. mRNAs are represented as a vector of their corresponding expression fold changes. Utilizing random forest regression we
determined miRs that are significantly associated with the fold change of mRNAs. Specifically, each pair of mRNA and miR is represented by a local
importance measure reflecting the drop/gain of regression accuracy of a mRNAs fold change if the underlying miR is excluded. (C) Determining their
statistical significance by a Z-test, we iteratively permuted the vector of fold changes and the binding matrix of miRs and calculated local importance
values after each permutation step. (D) Utilizing a set of human genes that are involved human signaling pathways, we determined 128 miRs that are
significantly associated to the fold change of mRNAs, comparing 27 GBM samples to non-tumor control cases (P,0.05). In the table we show miRs
that have been found to be significantly associated to N$10 mRNAs. We observed that such miRs are predominantly over-expressed(X, expression
fold change FC.1), while a minority of miRs are under-expressed (Y, FC,21) or unchanged (,, 21#FC#1) in GBMs.
doi:10.1371/journal.pone.0014681.g001

Associated microRNAs
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analysis and better understand how WEE1 is regulated by miRs,

we first assayed the absolute levels of WEE1 mRNA expression in

5 GA subgroup GBMs, 5 non-tumor brain samples, four GBM-

derived tumor initiating/stem cell lines (TICs) and two normal cell

lines (human fibroblasts and HUVEC), using quantitative reverse

transcription polymerase assays (RT-qPCR). As seen in Fig. 4B,

the RT-qPCR data demonstrated that WEE1 mRNA is over-

expressed in both GBMs and TIC lines compared to non-tumor

controls. Since the WEE1 genomic locus is not placed in an area of

chromosomal number alteration (CNA) in any of our glioma

specimens we ruled out that the levels of WEE1 gene expression

are simply explained by alterations of gene copy numbers (data not

shown).

We found 36 miRs that were predicted to interact with WEE1

mRNA based purely on their seed sequence in the WEE1 39 UTR.

However, our analyses demonstrated just 10 significantly associ-

ated miR/WEE1 mRNA interactions in our GBM samples

(Fig. 5A). Among our set of associated miRs, we discovered an

accumulation of binding-site sequences within the first 500 bp of

the WEE1 39UTR region (Fig. 5B). miR-128 and miR-27ab were

among these miRs that bind nearest to the start of the 39UTR, an

interesting observation given that miR-128 has been shown to

target Bmi1 and E2F3a, thereby promoting an undifferentiated

self renewal state in glioma cells [28,29]. Utilizing RTqPCR

TaqMan assays we validated that miR-128 and miR-27b were

highly under-expressed in our GBM samples and 308 TIC cell line

whereas miR-27a was over-expressed (Fig. 5C).

WEE1 is a direct target of miR-128 and miR-27 and affects
cell cycle progression

We transiently transfected the naturally under-expressed miR-128

and miR-27a/b along with a WEE1 39-UTR luciferase reporter

construct into TIC308 cells to experimentally verify their binding to

the WEE1 39UTR (Fig. 5D). Expression of all three miRs significantly

downregulated the luciferase activity (Fig. 6A). In contrast, mutations

of the miR-128 and 27a/b binding nucleotides 14 and 236 of the 39-

UTR relieved the miR-mediated repression of luciferase activity. This

effect even held when these miRs were transiently over-expressed,

indicating the specificity of the miR impact.

On the other hand, mutations of the binding site around

nucleotide 465 have the lowest relieving effect, confirming that the

highly over-expressed miR-93 that binds this downstream site has

a lower effect on expression. Over-expression of miR-128 and

miR-27b directly reduced WEE1 mRNA and protein levels in

synchronized cells of TIC208 (Fig. 6BC). Consistent with a

significant biological effect of miR-128 and miR-27b knockdown

of WEE1, we observed a corresponding increase in CDK1-Y15

phosphorylation similar to the effects, following down-regulation

of WEE1 by a specific siRNA treatment (Fig. 6C).

Discussion

Although a growing appreciation of the importance of miRs in

cancer biology is emerging, much remains to be learned about

their roles in specific regulatory programs. Utilizing GBM

Figure 2. Characteristics of significantly associated miRs. (A) A sigmoidal curve described the fold change of all mRNAs that appeared in
signaling pathways and were not bound by significantly associated miRs. Focusing on mRNAs that appeared to be regulated by significantly
associated miRs, the corresponding distribution significantly shifted toward higher and lower fold changes. (B) For each mRNA, we calculated the
mean fold change of all miRs that were significantly associated with a given mRNA. Specifically, we found that the expression fold change
significantly decreased with increasing expression of miRs (Pearson’s r = 20.30, P,1026). In the inset of (C), we utilized the binding positions of miRs
on the 39UTR of a given mRNA and calculated the cumulative frequency of significantly associated miRs. In comparison to other miRs we observed an
overrepresentation of associated miRs that bind near the start of the 39UTR. Focusing on associated miRs, we determined the enrichment of over-
expressed miRs (fold change.1) in sets of miRs that bind within a certain distance from the start of the 39UTR. We clearly observe that over-expressed
miRs tend to increasingly bind nearby the 39UTR start. Considering under-expressed miRs (FC,21), we find that the enrichment distribution peaks
around 500 bp form the start of the 39UTR.
doi:10.1371/journal.pone.0014681.g002

Associated microRNAs
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samples, we showed that the mere knowledge of physical

interactions of miRs and the expression change of the underlying

interacting mRNAs allows a prediction of associated miRs that

drive the expression of their targets. Utilizing random forests, an

ensemble machine learning approach, we determined combina-

tions of significantly associated miRs that contributed to the

expression fold change of the underlying targets. At this point of

the analysis, we deliberately refrained from using large expression

data sets of miRs and focused entirely on physical interactions

between un-translated regions of mRNAs and miRs. Subsequent-

ly, we utilized large-scale expression data of miRs to assess the

quality of our results, allowing us to observe that under- and over-

expressed miRs are predominantly interacting with over- and

under-expressed genes. Furthermore, we observed that signifi-

cantly associated interactions were characterized by an inverse

relationship between expression levels of a specific miR and its

target mRNA. This result is consistent with existing models,

suggesting that mRNAs are usually under-expressed following

binding of certain miRs. Accordingly, our associated interactions

allowed us to find that such over-(under)expressed miRs

predominantly interacted through binding sites that were placed

near the start of the 39UTR of the target mRNA.

Figure 3. Significantly associated miRs in signaling pathways. (A) Utilizing all significant associations between 128 miRs and 246 genes, we
constructed a bipartite matrix between miRs and signaling pathways that are over(under)-expressed in human GBMs. We established a link if the sets
of genes in a pathway overlapped with mRNAs that are associated with a certain miR. Specifically, we found 21 pathways that are largely over-
expressed in GBMs and 87 miRs. While a majority of miRs ware over-expressed (expression fold change FC.1), we found a small minority of miRs that
was under-expressed in GBMs (FC,21). In particular, we highlighted a small cluster that pooled most of the under-expressed miRs and prominent
pathways such as the p53 downstream and myc activation pathway (box). In (B) we mapped all interactions between associated miRs and genes that
appeared in the corresponding pathways. Confirming our predictions, we found significant interactions between genes of the extracellular matrix
and miR-29bc and -124a that have been previously implicated in glioblastomas and other cancer types (shaded area). Furthermore, miR-124a was
previously reported as a regulator of CDK6 in GBMs.
doi:10.1371/journal.pone.0014681.g003

Associated microRNAs
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Figure 4. Expression patterns of WEE1. (A WEE1 is over-expressed in GBMs and Oligodendrogliomas. (B) Expression of WEE1 was validated by
quantitative reverse transcription polymerase reaction (RT-qPCR) in five representative GBM tumor samples that belong to the GA subtype, five non-
tumor samples, four tumor initiating/stem cell lines (TICs) and two unperturbed cell lines (human fibroblasts and HUVEC). We observed that TIC 308
showed an average WEE1 fold change that was similar to the corresponding averages in the GBM samples.
doi:10.1371/journal.pone.0014681.g004

Figure 5. Significantly associated miRs of WEE1. In (A) we show all significantly associated interactions between the mRNA of WEE1 and miRs
where miR-128ab were under-expressed (fold change FC,21) and miR-27a/93 were over-expressed (FC.1) in our GBM samples. (B). Corresponding
miR binding sites in the WEE1 39UTR are located in three main binding areas within the first 500bp from the 39UTR start. Specifically, miR-128/27 have
two binding sequences around nucleotides 15 and 236 while miR-302abcd/372/93 potentially recognize a common binding site around nucleotide
465. (C) Using RTqPCR TaqMan assays, we detected that miR-128/27b were under-expressed and miR-27b was strongly over-expressed in tumor
samples. We found a similar miR expression profile in the tumor initiating/stem cell line, TIC308, where miR-128 and miR-27b kept their low
expression levels. (D) Transfection of miR-specific expression vectors of TIC308 cells allowed the recovery of miR-128/27b levels as measured by
RTqPCR.
doi:10.1371/journal.pone.0014681.g005

Associated microRNAs
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In an attempt to validate one such computationally derived

association, we utilized WEE1 as a representative example and

found 10 miR candidates out of a pool of 36 miRs. Generating a

small tractable set of testable hypotheses our computational

analysis constrained the pool of regulatory candidates by more

than 60%. Experimentally, we demonstrated that WEE1 is

predominantly influenced by miR-128/27b in a sequence-specific

manner following binding to sites nearby the start of the WEE1

39UTR. Consistent with our results, miR-128 has been previously

described as down-regulated in gliomas [12], playing a potential

role in tumor biology by targeting the transcription factors E2F3a

[28] as well as Bmi-1 [29]. Similarly, a critical effect on cell

division mediated by WEE1 was observed in hESC [49] where

miR-195 expression in Dicer-knockdown cells rescued cell cycle

kinetics by directly targeting WEE1 39UTR. Finally, the necessity

for WEE1 in cell division has recently been described in primary

fibroblasts [50], and its specific importance in human glioblastoma

has been demonstrated thereby independently validating our

computational findings [51].

Additionally, miR-124 has also been extensively implicated in

glioma pathogenesis [13,23] although the association with

extracellular matrix proteins expression presented in our study is

completely novel, necessitating further exploration of their

biological relevance.

In summary, we have shown that the mere knowledge of

physical interactions between specific mRNAs and miRs can be

used to predict putative causal regulatory interactions in human

tumor specimens. However, we have to stress that we assessed the

influence of individual miR candidates on expression changes of

genes assuming the absence of any epigenetic effects and genomic

alterations. In this light, we have found evidence suggesting that

miRs that interacted more proximally in the 39UTR, near the

translation stop site, may have greater regulatory effects on mRNA

levels than those that bind more distally. Finally, our analysis

allowed us to predict and subsequently validate an association

between miR-128/27b and the protein kinase WEE1, a protein of

central importance in cellular proliferation and survival, demon-

strating the potential power of this computational approach.

Materials and Methods

Tumor and Tumor Initiating Cell (TIC) samples
After written consent tumor samples were obtained from

patients undergoing surgery at the National Institutes of Health

(NIH) in accordance with the surgical procedures of the National

Cancer Institute’s Institutional Review Board that specifically

approved this study. We used 27 samples that were provided as

snap frozen sections. Utilizing a computational classification

scheme [34], we confirmed that these samples were members of

the GA subgroup of glioblastomas. As a control, 11 non-tumor

samples (temporal lobe resection of epileptic patients) were

analyzed concurrently to provide a baseline for the miR/mRNA

expression values. Procedures regarding the derivation of TICs

were described previously [52].

Total RNA extraction
Following the manufacturer’s instructions, 100 mg of tissue

were used to extract total RNA using the Trizol Plus isolation

protocol (Invitrogen, Carlsbad, CA). While RNA quantity was

determined using the NanoDropH ND-1000 spectrophotometer

the integrity of the RNA was verified with the Bioanalyzer System

(Agilent Technologies, Palo Alto, CA) using the RNA Pico Chips

with a RIN.7.

miR profiling and statistical analysis
miR expression in 27 glioblastoma tumors and 11 non-tumor

brain cells was profiled using the NCodeTM Multi-Species miRNA

Microarray v2 (Invitrogen Corp.) which contains ,1,100 unique

Figure 6. Effects of significantly associated miRs on WEE1 expression. (A) miRs-128/27a/27b that are under-expressed in glioma were
transiently over-expressed in TIC308 cells with corresponding pEp-miR-expression vectors. Co-transfecting this cells with a luciferase reporter
constructs that contained the whole UTR region of WEE1, we observed decreasing luciferase activity (brown/green bars). Furthermore, co-
transfection with reporters containing mutated sequences of seed regions in the three potential binding sites around nucleotides 15, 236 and 465 of
the WEE1 39UTR (yellow bars) showed an increase in luciferase activity when binding sites 15 and 136 of miR-128/27 were mutated. However, we did
not find an effect when position 465 was mutated where binding of the naturally over-expressed miRs-302/372/93 was predicted. Our results allowed
us to conclude that miRs-128/27a/27b indeed bind the 39UTR of WEE1, and their low expression in gliomas potentially plays a crucial role in the high
levels of WEE1 expression in these tumors. (B) Similarly to silencing WEE1 with a corresponding siRNA, ectopic expression of miR-128 and miR-27b
reduced WEE1 mRNA and protein levels in synchronized cells of TIC308. (C) Downstream effects of WEE1 modulation by miRs was observed as
CDK1_Y15 phosphorylation is similar compared to when WEE1 was directly down-regulated by a specific siRNA treatment. In particular, we observed
that the recovery of miR-128 as well as over-expression of miR-27b constrained WEE1 expression.
doi:10.1371/journal.pone.0014681.g006

Associated microRNAs
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probes printed in triplicates for detecting validated miRs in H.sapiens,

M. musculus, R. norvegicus, C. elegans, D. melanogaster and Zebrafish. 553

probes were designed to detect human miRs (ver. Sanger 9.0).

Extracted RNA was labeled with Alexa FluorH Dye using

NCodeTM miR Labeling System and hybridized to species-specific

antisense miR probes on the array. Quality of all arrays was

initially checked by the internal Alexa fluor dye control. Arrays

were analyzed using GenePix Pro 6.0, and .gpr files for individual

arrays were generated. After correcting background noise by

subtracting median background signals, data were normalized

using Loess method in Partek Genome Suite version 6.5.

mRNA profiling and data treatment
Utilizing T7-linked Oligo (dT) primer we converted 6 mg of

total RNA to cDNA with superscript reverse transcriptase

(Invitrogen) and in-vitro transcribed complementary DNA with

the T7 Bioarray High Yield RNA Transcript Labeling Kit (ENZO

Diagnostics) to generate biotinylated cRNA. 20 mg of purified

cRNA were fragmented and hybridized to the GenechipH Human

Genome U133 Plus 2.0 Expression arrays (Affymetrix, Inc., Santa

Clara, CA). Following the manufacturer’s recommendations the

arrays were processed using fluidics station 450 and high-

resolution microarray scanner 3000. Finally, initial gene expres-

sion analysis data files were generated using Affymetrix GeneChip

Operating Software (GCOS) version 1.3.

Utilizing parameters in .rpt files generated by GCOS, all arrays

were checked if they complied with minimal quality control

standards. Specifically, we tested if a scaling factor is ,5 when the

expression values are scaled to a target mean signal intensity of

500. Similarly, we controlled that the signal intensity ratios of the

39 to 59 end of the internal control genes of ß-actin and GAPDH is

,3. As a final requirement, Affymetrix spike controls (BioC,

BioDN and CreX) were always present with present call rates of

.35 % for brain tissue. Arrays that passed the minimal quality

control were normalized at the PM and MM probe level using

dChip [53]. Using the average difference model to compute

expression values, model-based expression levels were calculated

with normalized probe level data, and negative average differences

(MM.PM) were set to 0 after log-transforming expression values.

While the normal specimen section came from non-tumor

bearing patients, we demanded that the behavior of the global

gene expression profiles had to resemble the normal tissue in

exploratory data analysis of microarrays using principle compo-

nent analysis (PCA) and hierarchical clustering (HC). Accounting

for weak signal intensities, all probe sets with more than 10% of

zero log-transformed expression values were removed. Represent-

ing each gene, we chose the corresponding probe set with the

highest mean intensity in the tumor and control samples.

miR-mRNA Interactions
Available prediction methods have strongly varying degrees of

sensitivity and specificity. Therefore, we assumed that a combi-

nation of methods profoundly mitigates the problem of picking up

false positives and negatives and only accounted for potential

interactions that at least were predicted by two algorithmically

different methods. We assembled 48,939 interactions between 386

miRNAs and 6,725 mRNAs, utilizing human specific data from

PicTar [36], miRanda [37,38] and TargetScanS [35].

Molecular Pathways
As a comprehensive collection of human signaling pathways we

utilized pathway information from the NCI/NIH/Nature Path-

way Interaction Database (PID) [39]. Specifically, PID provides

information about 184 different human signaling pathways.

Random Forests
Random Forests is an ensemble learning method [40] where

regression trees are constructed using N different bootstrap samples of

the data (‘bagging’). In addition, random forests change how regression

trees are constructed by splitting each node, using the best among a

subset of M predictors randomly chosen at that node (‘boosting’), and

new data is predicted by aggregating the predictions of N trees.

Fitting the fold change of mRNAs in GBM samples as a

function of miRs that bind the 39UTR of the underlying mRNAs,

we represented each mRNA by a fold change value und a variable

list that contains 1’s, if the corresponding miR can bind the

underlying mRNA and 0 otherwise. Growing 50,000 trees, we

sampled M ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NmiRNA

p
out of all N miRs (i.e. variables).

The importance of a miR for the regression process can be

assessed by the increase of the prediction error when out-of-bag data

(i.e. data not in the bootstrap sample) is permuted. Specifically, we

utilized the local importance that reflects the influence of a miR on

the fold change of the underlying mRNA. Assuming that only a

subset of miRs significantly contributed to the fit, we assessed each

miRs local importance by a permutation analysis. Randomizing

binding miRs and expression fold changes of mRNAs 100 times, we

determined the average importance �IIi and standard deviation s�II i
of

each miR i. Subsequently calculating a miRs score by Zi ~
�II i {Ii

s�II i

,

we determined it’s statistical significance by a one-tailed p-value

from a standard normal cumulative distribution function. We

corrected P-values using [41] and collected all interactions between

miRNAs and mRNAs with P,0.05.

Enrichment
To obtain an estimate if over(under)-expressed miRs (fold

change |FC|.1) predominantly bind nearby the start of the 39-

UTR, we calculated the corresponding fraction of such miRs that

bind within a distance d as fd ~ mdj j= Mdj j, where Md is the

number of all miRs within distance d from the start of the 39-UTR

in the underlying sample. As a null hypothesis, we randomly

picked sets of over(under)-expressed genes represented by the

fraction fr,d ~ mr,dj j= Mdj j. We defined the enrichment of over(-

under)-expressed genes that bind within a distance d as

ERd ~ fd=fr,d and found an enrichment if ERd.1 and vice versa.

Transfections
TIC308 cells were transfected using the mouse NSC Nucleofector

kit (Amaxa, Cologne, Germany) program A-33. miR expression

vectors for the induction of miRs-128/27a/27b (pEp-hsa-mir-

vectors, Cell Biolabs, San Diego, CA) or miR-null negative controls

were used at 2 mg per transfection. For small interfering RNA

(siRNA)-mediated target knockdown of WEE1, four siRNAs in the

ON-TARGETplus SMARTpool L-005050-00-0005 were used

(Thermo Fischer Scientific, Lafayette, CO) with a final concentration

of 3 pmol of each duplex. Transfection efficiency was measured using

GFP max vector (Amaxa, Cologne, Germany) in every condition.

Luciferase assay
miR expression vectors for the induction of miR-128/27a/27b

(Cell Biolabs, San Diego, CA) were co-transfected with WEE1 39

UTR/ Empty UTR Luciferase reporter vector (SwitchGear

Genomics, Merlo Park, CA) using mouse NSC Nucleofector kit

(Amaxa, Cologne, Germany) in TIC308. Also, seed regions in the

WEE1 39UTR were mutated and cloned into WEE1 39 UTR

Luciferase reporter vector (SwitchGear Genomics, Merlo Park, CA)

using the QuikChange II XL mutagenesis kit (Stratagene). Specifi-

cally, we generated mutants for binding sites close to nucleotide 15
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(CCTGAACACTGTGA to CCTGAACgggcTGA), nucleotide 236

(GGTTAACCACTGTG to GGTTAACCgggGTG) and nucleotide

465 (TGGGAGCACTTTG to TGGGAGCACgggG).

72 hours post-transfection GFP+ cells were sorted by fluores-

cence-activated cell-sorting (FACS) and/or incubated with Hoechst

33342 and propidium iodide for cell cycle analysis. Luciferase

expression was measured in GFP+ cells using the Steady-Glo

Luminescence kit (Promega, Madison, WI) after 48 hours.

mRNA/miR and protein levels
Expression of WEE1 and GAPDH genes as well as miRs of

interest were analyzed using specific TaqManH Assays in the

7900HT Real Time PCR system (Applied Biosystems, Foster City,

CA) following standard protocol. Synchronized cells were

collected for protein lysates 72 hours post-transfection. Protein

levels were measured with antibodies against WEE1 (sc-5285),

CDK1-total (Cell Signaling, Beverly, MA, #9112) and Phospho-

CDK1 (tyr15) (Cell Signaling, Beverly, MA #4569). An anti-

tubuline antibody was used to test equal protein loading.

Supporting Information

Table S1 List of 462 miRs and their lg2-fold change of

expression in 27 GBM and 11 non-tumor samples.

Found at: doi:10.1371/journal.pone.0014681.s001 (0.05 MB XLS)

Table S2 List of 20,288 genes and their lg2-fold change of

expression in 27 GBM and 11 non-tumor samples.

Found at: doi:10.1371/journal.pone.0014681.s002 (1.31 MB

XLS)

Table S3 List of 626 predicted associations between mRNA and

miR (P,0.05). We indicated if the underlying miRs and mRNAs

are over (X, lg2 fold change.1) or under (Y, lg2 fold change,21)

expressed in GBMs.

Found at: doi:10.1371/journal.pone.0014681.s003 (0.07 MB

XLS)

Table S4 List of 128 miRNAs that significantly interact with a

gene (P,0.05). In particular, we counted the number of significant

interactions (N) and indicate if the underlying miR is over (X, lg2

fold change.1) or under (Y, lg2 fold change,21) expressed or

largely unchanged (,) in GBMs.

Found at: doi:10.1371/journal.pone.0014681.s004 (0.03 MB

XLS)
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