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Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is often used for the
structural characterization of proteins that elude other techniques, such as X-ray crystallography
and nuclear magnetic resonance (NMR). However, high-resolution structures are difficult to
obtain due to uncertainty in the spin label location and sparseness of experimental data. Here, we
introduce ROSETTAEPR, which has been designed to improve de novo high-resolution protein
structure prediction using sparse SDSL-EPR distance data. The “motion-on-a-cone” spin label
model is converted into a knowledge-based potential, which was implemented as a scoring term in
ROSETTA. ROSETTAEPR increased the fractions of correctly folded models (RMSDCα < 7.5Å) and
models accurate at medium resolution (RMSDCα < 3.5Å) by 25%. The correlation of score and
model quality increased from 0.42 when using no restraints to 0.51 when using bounded restraints
and again to 0.62 when using ROSETTAEPR. This allowed for the selection of accurate models by
score. After full-atom refinement, ROSETTAEPR yielded a 1.7Å model of T4-lysozyme, thus
indicating that atomic detail models can be achieved by combining sparse EPR data with ROSETTA.
While these results indicate ROSETTAEPR’s potential utility in high-resolution protein structure
prediction, they are based on a single example. In order to affirm the method’s general
performance, it must be tested on a larger and more versatile dataset of proteins.

Keywords
de novo protein structure determination; ROSETTA; site-directed spin labeling; electron paramagnetic
resonance; SDSL-EPR

© 2010 Elsevier Inc. All rights reserved.
Correspondence should be addressed to: Stephanie Hirst stephanie.j.hirst@vanderbilt.edu Vanderbilt University 7330 Stevenson
Center Station B 351822 Nashville, TN 37235 Phone: +1 (615) 936-5662 Fax: +1 (615) 936-2211.
Supporting Information In the Supporting Information, we include the options used for both de novo folding and high-resolution
refinement in ROSETTA. We also include a figure comparing the ROSETTAEPR knowledge-based potential to the bounded potential
(Figure S1), a description of the EPR distance data used during benchmarking (Table S1 and Figure S2), a list of residues over which
RMSDs and rotamer recovery were computed (Table S2), weight optimization benchmarking results (Table S3), and enrichment of
models obtained for each round of refinement (Table S4).
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it
is published in its final citable form. Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Struct Biol. Author manuscript; available in PMC 2012 March 1.

Published in final edited form as:
J Struct Biol. 2011 March ; 173(3): 506–514. doi:10.1016/j.jsb.2010.10.013.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Introduction
Protein modeling with ROSETTA can serve as an alternative means of structure elucidation

The vast majority of proteins in the Protein Data Bank (PDB) have been determined by X-
ray crystallography or nuclear magnetic resonance (NMR) [1]. However, a large number of
biomedically relevant proteins continue to evade structural elucidation by these techniques
due to membrane environment [2], high flexibility [3], and size [4]. Alternative techniques,
such as computational structure prediction methods, can be employed in order to define the
structure of such proteins. The usual experimental bottlenecks, such as obtaining highly
pure, concentrated samples of protein, are thereby avoided. ROSETTA routinely folds soluble
proteins of less than 150 amino acids correctly [5]. It is generally among the top performers
in the Critical Assessment of protein Structure Prediction (CASP) experiments [6-10]. In
addition, ROSETTA’s ability to obtain the correct fold of membrane proteins of various sizes
and topologies has been demonstrated [11-13]. More recently, Das et al introduced
ROSETTAFOLD-AND-DOCK, which allows for the de novo structure prediction of homomeric
proteins [14].

ROSETTA’s sampling and scoring capabilities for protein folding have been reviewed
extensively elsewhere [15-18]. Briefly, the ROSETTA de novo protein structure prediction
algorithm is divided into two steps: low-resolution protein folding to obtain the overall
topology and high-resolution refinement of the backbone and sidechains. Metropolis Monte
Carlo peptide fragment insertion is driven by a variety of knowledge-based potentials to
rapidly predict protein folds. In high-resolution refinement, the protein backbone ϕ and ψ
angles are perturbed while the overall fold is maintained. Sidechain conformations are
predicted via a Metropolis Monte Carlo search of rotamer space, and all torsional degrees of
freedom are subjected to gradient-based minimization.

Sparse NMR restraints can be combined with ROSETTA to obtain atomic detail structures
While the algorithm described above performs well in the de novo prediction of relatively
small, soluble proteins, effectively sampling protein conformational space remains the
limiting factor in the accurate prediction of more complex proteins. To this end, distance and
orientational restraints, such as those obtained by NMR, have been incorporated into the
ROSETTA protein folding protocol [19]. Chemical shifts are converted into backbone torsional
angle restraints, which are used in the generation of the peptide fragment libraries. Distance
restraints from nuclear Overhauser effects (NOEs) are also employed in this process.
Additionally, distance and orientaitonal restraints (NOEs and residual dipolar couplings, or
RDCs, respectively) have been incorporated into the scoring function and are evaluated
during protein folding. Bowers et al demonstrated that ROSETTA, combined with a sparse set of
NOEs (approximately one restraint per residue) and backbone chemical shifts, can produce
models with atomic detail accuracy [20]. Similarly, a combination of sparse RDCs and
chemical shifts was used to produce correctly folded models [16]. Shen et al have made
significant progress in improving the robustness and accuracy of CS-ROSETTA with incomplete
chemical shift datasets, obtaining atomic detail models based on much data that would
otherwise be considered unsuitable for high-resolution structure determination [21-23].

SDSL-EPR offers an advantage over traditional structure determination techniques
Despite such advances, some proteins remain un-amenable to structure determination by
these methods. Site-directed spin labeling electron paramagnetic resonance spectroscopy
(SDSL-EPR) allows for structural studies of membrane proteins and large macromolecular
assemblies in native or native-like environments [24-31]. SDSL involves mutating residues
of interest to cysteines, which can be reacted with a paramagnetic spin label, such as
methanethiosulfonate (MTS). A sensitive structural probe at a known sequence position is
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created, forgoing the need to “assign” signals in the spectrum as is necessary in NMR
spectroscopy. Additionally, resolution of SDSL-EPR is not limited by the size of the system.
Similar to fluorescence and NMR spectroscopy, however, SDSL-EPR generates information
concerning both the local environment of the spin label and the overall global fold of the
protein. SDSL-EPR has been used to characterize conformational changes, such as those
seen in MsbA [28,29], rhodopsin [32-34], and KcsA [27,35,36]. More recently, it has been
demonstrated that the fold of a protein can be determined by structural restraints derived
from SDSL-EPR data alone [37].

Atomic detail protein structure determination by SDSL-EPR is difficult and
computationally demanding

Challenges in using SDSL-EPR structural data arise from the possible perturbation of the
system by introduction of the spin label, sparseness of datasets resulting from the need to
construct a dedicated mutant for every data point collected, and uncertainty in the position
and dynamics of the spin label relative to the protein backbone. In the past, proteins have
displayed a surprising robustness with respect to the introduction of spin labels [38-42].
Molecular dynamics simulations [43] and crystallography [39,44] have been employed to
explicitly model the spin label in order to help interpret SDSL-EPR structural data.
However, these calculations are relatively slow and computationally demanding. In addition,
most studies of this nature are designed to examine a specific protein and are not easily
expanded to other systems. For the purpose of protein structure determination, a faster,
broadly applicable approach to relate the spin label position to the protein backbone is
needed. As an exhaustive experimental mapping of intra-protein distances is infeasible given
time and the labor intensiveness of the SDSL-EPR method, a limited dataset that
unambiguously defines the fold of the protein needs to be defined (see Kazmier et al,
accompanying article in this issue).

ROSETTAEPR is designed specifically to work with sparse SDSL-EPR data
In 2008, Alexander et al introduced the implicit “motion-on-a-cone” model, or cone model
(Figure 2B), which is based on the structure of the MTS spin label (Figure 2A) [37]. This
model was used to convert an observed spin label distance, dSL, into an “allowed” range for
the distance of the Cβ atoms, dCβ ∈ [dSL–12.5Å, dSL+2.5Å] (Figure 2C). The authors
demonstrate that these distance restraints are sufficient to determine the structure of T4-
lysozyme to atomic detail accuracy from 25 SDSL-EPR restraints The present study
introduces ROSETTAEPR, which replaces the soft interpretation of the distance constraints used
in the previous study with a knowledge-based restraint potential optimized for SDSL-EPR
distance data. Alexander et al utilized ROSETTANMR, with the consequence that all dCβ
distances falling within the allowed range were considered equally favorable during de novo
folding. All other distances were disfavored using a quadratic penalty function (Figure S1).
However, while the distance difference, dSL–dCβ, falls within a wide range, values between
0Å and 5Å are more likely than values outside this range. We used the cone model, in
combination with the PDB, to derive a probability function for dSL–dCβ, which was then
converted into a scoring function using the Boltzmann relation. We demonstrate that
treatment of SDSL-EPR distance restraints with this scoring function is superior. Following
the benchmarking presented in this paper, ROSETTAEPR will be made available to the scientific
community.

Materials and Methods
The protocol described in the present work is outlined in Figure 1. It is divided into two
subsections corresponding to the implementation and development of ROSETTAEPR and the
prediction of the T4-lysozyme structure to atomic detail.
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Conversion of the motion-on-a-cone model into a knowledge-based potential
The dSL–dCβ histogram (Figure 2D) was generated by placing a cone model-based simulated
spin label at every exposed amino acid position in 3,584 proteins from a non-redundant
protein database [45] . That is, the simulated spin label was placed at residue positions that
had a neighbor count [46] of less than ten, resulting in over 140 million measured distances.
For every pairwise distance within each protein, the protein’s dCβ was subtracted from the
simulated dSL and stored in 0.5Å-wide bins. Because the highest frequency of dSL–dCβ
values was on the order of 106, a pseudocount of 106 was added to the total counts computed
so that less commonly observed values are also considered.

The potential (Figure 2E) was calculated by taking the negative logarithm (−ln) of the
propensity of each dSL–dCβ value, where the propensity is defined as:

PseudoCount equals 106, and # bins equals 64. The resulting values were normalized and
shifted such that they were all negative. This relationship is based on the Boltzmann
relationship, which is used to correlate a population of a species to an associated energy. The
potential was re-scaled to give a maximum bonus of −1.0 for dSL–dCβ values between −12.0
and 12.0 (observed by the cone model) and a 0.0 penalty for values outside this range.

Model quality was assessed according to RMSDCα relative to the 2LZM crystal structure
In order to best assess the ability of ROSETTAEPR to recover native-like folds, only the α-
helical core domain of T4-lysozyme (residues 58-164) was modeled, as experimental
restraints for other regions of this protein were not available. The experimentally determined
distances used as restraints are reported in Table S1 and are mapped onto the T4-lysozyme
crystal structure in Figure S2. Models of the protein were generated a) without restraints, b)
with restraints using ROSETTAEPR’s knowledge-based potential, and c) with restraints defined
by the same boundaries as those used by Alexander et al. Model quality was assessed by
computing the RMSDCα relative to the X-ray crystal structure of T4-lysozyme (PDBID:
2LZM [47]). Only core residues 70-155, excluding loops, were considered in computing the
RMSDCα (see Table S2).

Weight optimization for the knowledge-based SDSL-EPR restraint potential
To optimize the factor by which the ROSETTAEPR scoring function should be applied, 10,000
models of the α-helical region of T4-lysozyme were constructed for a wide variety of
weights (Table S3). The fraction of models with RMSDCα values below 7.5Å was taken as
measure for the correct fold. The fraction of models with RMSDCα values below 3.5Å was
employed to identify candidate models for successful atomic detail refinement; models
generated with this level of accuracy are considered to be “native-like.” The knowledge-
based potential was implemented as a spline approximation in the ROSETTA

AtomPairConstraint score. The bounded restraint uses the AtomPairConstraint score as
computed according to a bounded quadratic equation (Figure S1).

ROSETTA was used to de novo fold and refine T4-lysozyme
Secondary structure prediction of the 107 C-terminal residues of T4-lysozyme was
performed using Jufo [48], Psipred [49], and Sam [50]. Peptide fragments to be used in de
novo structure prediction were generated as previously described, and fragments based on
homologous proteins were excluded during folding. ROSETTA’s low-resolution de novo protein
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folding algorithm was used to generate 10,000 models of T4-lysozyme guided by
experimental restraints (Table S1) [37] weighted to various extents, resulting in models
containing structural information of the protein backbone only. During de novo folding,
residues are represented as superatoms, or “centroids” [15]. After determining that the
ROSETTAEPR knowledge-based potential optimally predicts the fold of T4-lysoyzme when
multiplied by a factor of 4.0, this weight was used in the generation of 500,000 models of
the protein.

The 500,000 models were filtered according to their overall ROSETTA energy and the extent to
which they satisfied the experimental restraints. Only the top 1% of models by total score
that had a restraint score of at least 85% of the optimum value was included in the filtered
ensemble. These 1,388 models were then refined to atomic detail, in which the centroids
were replaced with sidechain rotamers based on a backbone-dependent rotamer library [51].
During refinement, ROSETTA’s full-atom scoring potentials are used to guide refinement
through an iterative cycle of sidechain repacking and gradient-based minimization [17,52].
Each round of refinement yielded ten times the initial number of models. That is, one round
of refinement resulted in 13,880 new, refined models. All de novo folding and full-atom
refinement computations were performed using ROSETTA trunk revision 34586.

Structure determination with ROSETTAEPR is computationally feasible
All models were generated by independent simulations using Vanderbilt University’s Center
for Structural Biology computing cluster and the university’s Advanced Computing Center
for Research and Education (ACCRE). Computations were performed on a combination of
AMD Opteron and Intel Nehalem processor nodes. The average time needed to fold one
model of the 107 C-terminal residues of T4-lysozyme was approximately 240 seconds. The
same time is required for a single round of high-resolution refinement for one model.

Results
Knowledge-based potential reflects likelihood of model in light of observed SDSL-EPR
distance

Cone model-based statistics were collected over a database of non-redundant proteins (see
Meterials and Methods) and compared to dSL–dCβ values determined experimentally for T4-
lysozyme and αA-crystallin (Figure 2D). The set of cone model statistics recovers several
features of the experimental data, including the range of dSL–dCβ values and a shift towards
dSL–dCβ values greater than 0Å. The shift towards positive dSL–dCβ values indicates that
spin labels are more likely to point away from each other. This is expected for soluble
proteins, where mutations of surface residues are not expected to destabilize the protein.

For conversion into a knowledge-based potential, the negative logarithm (−ln) of the
propensity of each dSL–dCβ value was computed such that less frequently seen dSL–dCβ
values are considered less favorable than one that is more often observed (Figure 2E).. In
result, a restraint that is fulfilled in the most likely area of the distribution improves the total
score by one point, and a restraint that is violated is not counted towards the total score. This
knowledge-based potential was then incorporated into ROSETTA’s low-resolution scoring
function where it is affiliated with a dedicated weight (see Knowledge-based potential
section below). The current model is an improvement upon the original implementation of
the cone model, in that a) protein structures, not ellipsoids, were used to generate the
statistics, and b) the knowledge-based potential considers the likelihood of dSL–dCβ values
instead of a simple binary classification.
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Knowledge-based potential achieves up to 55% correctly folded T4-lysozyme models
Ten thousand T4-lysozyme models were folded de novo in the presence of the same
restraints used previously (Table S1 and Figure S2) [37]. Restraints were incorporated with
various weights, and the results were compared to the bounded potential used by Alexander
et al (Table S3). The usage of restraint scoring functions results in more native-like folds
than when folding with no restraints at all (Figure 3 and Table 1). This reaffirms that
experimental data increases sampling of more native-like structures. ROSETTAEPR recovers the
native topology of the T4-lysozyme α-helical region in up to 55% of the models. This
compares to 7% if no restraints are used and 42% when using bounded restraints.
Furthermore, folding with bounded restraints consistently resulted in approximately
1.0-1.5% of all built models having native-like conformations, compared to 2.1% when
using the EPR knowledge-based potential with an optimal weight of 4.0. This improvement
is significant, as additional starting structures for high-resolution refinement increase the
chance of successfully obtaining atomic detail models (see Ten-fold enrichment of low-
RMSD models). Further, conversion to a knowledge-based potential enabled fine-tuning of
the weight of the SDSL-EPR potential for optimal performance, while the bounded potential
provided constant suboptimal performance over wide ranges of the weight.

Knowledge-based function improves correlation of score and model quality
The correlation of the scoring function with model quality is key to selection of native-like
models when the structure is not known. The correlation coefficient improves from 0.42 in
the absence of restraints to 0.51 when using the bounded function and further to 0.62 when
using ROSETTAEPR (Figure 4). To quantify the value of the score for filtering native-like
models, the enrichment for each optimized scenario was also computed (see Table 1). For
the knowledge-based potential weighted by a factor of 4.0, the benchmark resulted in an
enrichment of 7.0. The same analysis was performed on the models folded with the equally
weighted bounded restraint potential, resulting in an enrichment of 5.3. The ensemble of
models generated with no restraints contained only three native-like models, all of which
were among the 10% best-scoring models, but this method was unable to produce enough
native-like models to justify any high-resolution refinement.

Ten-fold enrichment of low-RMSD models through knowledge-based SDSL-EPR score for
high-resolution refinement

500,000 models of T4-lysozyme were de novo folded in ROSETTA guided by 25 EPR distance
restraints (weight equals 4.0). From the 1% best-scoring models, models achieving at least
85% of the optimal knowledge-based restraint score were selected for high-resolution
refinement. The enrichment of native-like models in the filtered pool was 10.6, while the
enrichment of correctly folded models was 2.3, where enrichment was defined as the
fraction of native-like or correctly folded models in the filtered pool divided by the fraction
of native-like or correctly folded models in the entire ensemble. Filtering decreases the
number of models considered for high-resolution refinement to a more manageable
ensemble and enriches the fraction of low-RMSD models such that more native-like folds
are refined to full-atom detail.

High-resolution refinement of T4-lysozyme yields structural model that is accurate at
atomic detail

The resulting 1,388 models of T4-lysozyme were refined to high-resolution using ROSETTA’s
full-atom potentials, which include knowledge-based van der Waals attraction, repulsion,
hydrogen bonding, solvation, and electrostatic terms [17]. Each input model was refined ten
times without experimental restraints, resulting in 13,880 models. Ideally, low-RMSD
models would be considered energetically favored according to ROSETTA’s scoring function.
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Therefore, the models were then filtered such that only the top 10% by total score were
carried on to the next round of refinement. This process was repeated through eight
iterations, at which point the score of the refined models converged. The total score of each
model was plotted against its RMSDCα (Figures 5A). The correlation between energetically
favorable and low-RMSD models improves after each round of refinement until it converges
after the eighth iteration. The lowest energy model produced with this strategy had an
RMSDCα of 1.76Å relative to the native (Figure 6), and the lowest RMSDCα observed was
1.73Å. The previously reported model was determined to have an RMSDCα of 1.66Å.

The ability of ROSETTA to recover native-like sidechain conformations was tested by
comparing sidechain rotamer agreement of refined models of T4-lysozyme with the X-ray
crystal structure. A rotamer of a given amino acid residue is defined by its χ1-4 angles.
Sidechain conformations are classified by assigning them to the closest rotamer in terms of
χ1-4 angle deviation [51,53]. The total ROSETTA energy is plotted as a function of the
percentage of incorrectly predicted sidechain rotamers (Figure 5B). In general, the ROSETTA

energy correlates well with rotamer agreement, with the percent of correct rotamers
predicted increasing after each round of refinement.

Discussion
The ROSETTAEPR knowledge-based potential proves to be superior to the bounded potential
during de novo folding

We have demonstrated the advantages of using a knowledge-based potential to convert EPR
distance data into structural restraints. The potential is derived from the cone model [37] and
has been shown to perform better than a simple bounded potential. From a conceptual
standpoint alone, the energetic bonus correlates with the likelihood of observing dSL–dCβ
values. As a result, the knowledge-based potential inherently uses the structural information
from SDSL-EPR data more completely compared to the bounded scoring function used by
Alexander et al. Furthermore, the knowledge-based potential, in combination with ROSETTA’s
low-resolution scoring function and de novo folding algorithm, proves more robust in
obtaining low-RMSD models of T4-lysozyme, from which atomic detail structures can be
generated through full-atom refinement.

The correlation between score and RMSD improves through multiple rounds of
refinements

The ROSETTA full-atom scoring function allows the most native-like model to be identified
unambiguously by its overall score, if model accuracy is better than 2.0Å. This model
should have the lowest overall ROSETTA energy and therefore exhibit not only the correct
topology, but also native-like sidechain and backbone conformations. Similarly, less
favorable conformations should have higher computed energies; these models will also have
higher computed RMSDs relative to the native structure. One therefore expects to observe
an energy “funnel” after several rounds of full-atom refinement, where both the score and
RMSD of the models converge to the native structure. The overall scores of the predicted
models of T4-lysozyme are plotted against their RMSDCα relative to the crystal structure in
Figure 5. The correlation improves after each round of filtering and refinement, resulting in
several atomic detail models with ROSETTA energies comparable to the 2LZM crystal structure,
which was refined using the same potentials as the predicted models.

ROSETTAEPR will be developed continuously as more data become available
Although a larger benchmarking set would be ideal, there are a limited number of systems
for which both experimentally determined three-dimensional structures and EPR data can be
obtained. However, the resulting atomic detail models of T4-lysozyme generally satisfy the
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experimental EPR data, and benchmarking will be expanded to more diverse systems as
more data become available. In the mean time, a larger benchmark on a variety of proteins
of known structure using simulated data will be performed to assess the general performance
of the method. The current work serves as a proof of principle. It will be interesting to test
whether the similar results will be obtained for other proteins. It has already been shown that
NMR restraints greatly aid ROSETTA’s ability to recover native-like models [16,19,20,54,55], a
method which is widely applicable to other biological systems, including the fumarate
sensor DcuS [56] and a chordin-like cysteine-rich (CR) repeat from procollagen IIA [57]. It
is believed that the same will be true with ROSETTAEPR after further testing and refinement.

Sparse SDSL-EPR distance data alone are not able to yield atomic detail models
SDSL-EPR affords several advantages over other structure determination techniques, such
as X-ray crystallography and NMR. No crystallization is required, there are few size
constraints, proteins, and membrane proteins in particular, can be studied in a native-like
environment, and there is no need to assign resonance signals. Thereby, SDSL-EPR
overcomes some experimental limitations in the high-resolution structure determination of
proteins that are large, highly flexible, or natively reside in lipid bilayers.

However, while quantitative in nature, the structural information obtained by SDSL-EPR is
limited due to the flexibility of the spin label, which adds large uncertainties to the distances
determined. Introduction of spin labels into proteins requires removal of native cysteine
residues without affecting the protein structure and assumes that the spin label does not
perturb the structure. Datasets obtained by SDSL-EPR remain sparse due to the requirement
to create a dedicated double-mutant for each distance to be measured. Therefore, SDSL-EPR
a) will be applied to systems where crystallography and NMR spectroscopy are not
applicable and b) will be combined with crystallography and other techniques to study
structural dynamics of proteins.

The current work and the results presented by Alexander et al [37] provide the first
indication that sparse (approximately 0.25 restraints per residue) SDSL-EPR distance data
can be combined with ROSETTA for de novo protein structure elucidation with atomic detail
accuracy. While ROSETTAEPR can be applied to soluble proteins, it is expected that the need
and applicability of ROSETTAEPR will be highest for the structure determination of membrane
proteins, the majority of which continue to evade more traditional techniques. A benchmark
of ROSETTAEPR involving more proteins and membrane proteins in particular will be executed
as suitable datasets become available

ROSETTAEPR will be accessible to the scientific community
Other researchers will have access to ROSETTAEPR via software licenses granted by the
ROSETTACOMMONS (www.rosettacommons.org). These licenses are free for academic and
non-profit institutions. To encourage usage of ROSETTAEPR, web tutorials will be made
available.

Conclusions
ROSETTAEPR is the first tool designed to generate high-resolution protein structures from
sparse EPR data. It can also be used in combination with an optimized restraint-selecting
algorithm (see Kazmier et al, accompanying article in this issue) to assist experimentalists in
determining protein structures to high-resolution. In the future, ROSETTAEPR will be modified
such that it can be used to effectively determine the structures of membrane proteins, an
EPR accessibility knowledge-based potential will be implemented, and high-resolution
modeling of the MTS spin label will be included. The ultimate goal of this research is to
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optimize the structural information that can be achieved through EPR spectroscopy.
ROSETTAEPR will enable the high-resolution structure elucidation of a plethora of proteins for
which structures have, until now, not yet been determined.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

EPR electron paramagnetic resonance

NMR nuclear magnetic resonance

PDB Protein Data Bank

SL spin label

SDSL site-directed spin labeling

MTS methanethisulfonate

Cα α-carbon on the protein backbone

Cβ β-carbon on the amino acid sidechain

dCβ distance between two β-carbons on the protein in angstroms (Å)

dSL distance between two MTS spin labels on the protein in angstroms (Å)

RMSD root mean square distance in angstroms (Å)
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Figure 1.
Flowchart outlining the currently described protocol.
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Figure 2.
The “motion-on-a-cone” model. A) Methanethiosulfonate (MTS) spin label. The Cβ-SL
distance is approximately 8.5Å. B) In the cone model, the Cβ-SL distance (SLeffective) is
assumed to be 6Å, and the cone has an opening angle of 90°. The Cα-Cβ-SLeffective angle is
restrained to angles 135° ≤ (∠CαCβSLeffective) ≤ 180°. C) The cone model is used to
calculate dSL-dCβ values. D) The normalized frequency of dSL-dCβ values for a database of
proteins (black line, right y-axis) compared to experimentally observed values for T4-
lysozyme and αA-crystallin (open and filled bars, respectively, left y-axis. E) The propensity
of dSL-dCβ values can be converted into a knowledge-based potential according to the
Boltzmann relation. The resulting energies were normalized such that the most favored dSL-
dCβ value correlates with an energy of −1.0 ROSETTA Energy Unit (REU), and the least favored
dSL-dCβ value correlates with a ROSETTA energy of 0.0 REU.
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Figure 3.
] Comparison of the ROSETTAEPR knowledge-based potential to the bounded potential. T4-
lysozyme was folded de novo in ROSETTA guided by 25 experimental restraints. Restraint
violations were scored according to either a bounded potential or the EPR knowledge-based
potential. The RMSDCα distributions of the resulting models when folded with optimally
weighted restraint energies are compared to folding without restraints.
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Figure 4.
Correlation between total ROSETTA energy and RMSDCα of de novo folded models. Score vs.
RMSDCα for 10,000 models de novo folded A) with no restraints, B) with 25 bounded
restraints, and C) with 25 restraints guided by the ROSETTAEPR knowledge-based potential.
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Figure 5.
Correlation between ROSETTA energy and RMSDCα of refined models. A) Score vs. RMSDCα
plot of T4-lysozyme models for eight cycles of full-atom refinement. Each cycle of
refinement resulted in ten times the number of input models. After each cycle, the refined
models were filtered by total ROSETTA energy, and the top 10% were refined again. Color key:
refined crystal structure – black; round 1 = sky blue; round 2 = bright blue; round 3 = dark
blue; round 4 = light green; round 5 = dark green; round 6 = yellow; round 7 = orange;
round 8 = red. B) Percent of incorrectly predicted sidechains of core residues (see Table S2)
as a function of total ROSETTA score. The same coloring scheme in Figure 5A was used.
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Figure 6.
Atomic detail model of T4-lysozyme de novo folded with ROSETTAEPR. A) Superimposition
of the lowest-scoring model of T4-lysozyme (rainbow) with the 2LZM crystal structure
(gray). The RMSDCα for the lowest-scoring model to the native is 1.76Å. Sidechains are
displayed as sticks. B) Residues 86-104. C) Residues 126-154.
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Table 1

Summary of benchmarking results of T4-Lysozyme using no restraints, 25 restraints scored according to the
optimally weighted ROSETTAEPR knowledge-based potential, and 25 bounded restraints with a weight of 4.0a

Restraint Type % Models with
RMSDCα < 3.5Å

% Models with
RMSDCα < 7.5Å Enrichmentb

none 0.03 7.17 --c

knowledge-based potential (weight = 4.0) 2.05 42.08 7.0

bounded restraints (weight = 4.0) 1.62 41.09 5.3

a
Results for all tested weights reported in Table S3

b
Enrichment = (fraction of low-RMSD models in filtered ensemble) ÷ (fraction of low-RMSD models of all models generated); filtered ensemble =

within the top 1% of models by total score, the top 35% of models according to restraint score

c
Enrichment could not be computed as with the other data sets due to lack of restraint score
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