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Abstract
Inflammatory bowel disease (IBD) arises from disruption 
of immune tolerance to the gut commensal microbiota, 
leading to chronic intestinal inflammation and mucosal 
damage in genetically predisposed hosts. In healthy in-
dividuals the intestinal microbiota have a symbiotic rela-
tionship with the host organism and possess important 
and unique functions, including a metabolic function (i.e. 
digestion of dietary compounds and xenobiotics, fer-
mentation of undigestible carbohydrates with production 
of short chain fatty acids), a mucosal barrier function 
(i.e. by inhibiting pathogen invasion and strengthening 
epithelial barrier integrity), and an immune modula-
tory function (i.e. mucosal immune system priming and 
maintenance of intestinal epithelium homeostasis). A 
fine balance regulates the mechanism that allows co-
existence of mammals with their commensal bacteria. 
In IBD this mechanism of immune tolerance is impaired 
because of several potential causative factors. The gut 
microbiota composition and activity of IBD patients are 
abnormal, with a decreased prevalence of dominant 
members of the human commensal microbiota (i.e. 
Clostridium  Ⅸa and Ⅳ groups, Bacteroides , bifidobac-
teria) and a concomitant increase in detrimental bac-
teria (i.e. sulphate-reducing bacteria, Escherichia coli ). 
The observed dysbiosis is concomitant with defective 

innate immunity and bacterial killing (i.e. reduced mu-
cosal defensins and IgA, malfunctioning phagocytosis) 
and overaggressive adaptive immune response (due 
to ineffective regulatory T cells and antigen presenting 
cells), which are considered the basis of IBD pathogen-
esis. However, we still do not know how the interplay 
between these parameters causes the disease. Studies 
looking at gut microbial composition, epithelial integrity 
and mucosal immune markers in genotyped IBD popu-
lations are therefore warranted to shed light on this ob-
scure pathogenesis.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic, relaps-
ing inflammatory disorder affecting the gastrointestinal 
tract which involves an imbalanced host-commensal 
microbiota interaction. Crohn’s disease (CD) and ulcer-
ative colitis (UC) are commonly included in the collec-
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tive term IBD, although the two diseases present with 
distinct pathogenesis, symptomatology, inflammatory 
profiles and gut microbiota composition. Inflammation 
associated with CD is discontinuous, may extend deeply 
into the submucosal regions and occurs anywhere along 
the alimentary canal. In UC, inflammation involves only 
the superficial layers of  the intestinal mucosa and is lo-
calised to regions of  the gut most highly colonized by 
bacteria, starting at the distal colon and moving proxi-
mally along the large bowel[1]. CD is predominantly as-
sociated with a type 1 helper-T-cell (Th1) and type 17 
helper-T-cell (Th17) immune responses, characterized 
by increased production of  interleukin (IL)-12, IL-23, 
IL-27, interferon-γ (IFN-γ) and tumor necrosis factor 
(TNF)-α. Diversely, UC seems to be associated with 
a type 2 helper-T cell (Th2) immune response, mainly 
leading to raised levels of  IL-5 and transforming growth 
factor-β (TGF-β)[2]. The etiology of  IBD is complex and 
multifactorial, where environmental, genetic and immu-
nological components appear to play a role[3].

A consistent body of  evidence implicates the gut mi-
crobiota in the pathogenesis of  IBD, including the consid-
eration that inflammation mainly occurs in the intestinal 
sites with the highest bacterial concentration (in UC), that 
antibiotic treatment often results in amelioration of  dis-
ease symptoms[4], and that germ-free mice do not sponta-
neously initiate colitis[5]. The most extensively investigated 
hypothesis is that IBD development might be due to an 
altered immune response and a disrupted mechanism of  
host tolerance to the non-pathogenic resident microbiota, 
leading to an elevated inflammatory response.

THE HUMAN INTESTINAL MICROBIOTA
The adult human gut contains around 1014 bacterial cells 
and up to an estimated 1000 different bacterial species, 
thus constituting the largest microbial community associ-
ated with the human body[6]. Recent studies using culture-
independent molecular microbiological techniques have 
shown that the most abundant bacterial phyla found in 
the healthy human large intestine are the Gram-negative 
Bacteroidetes and the Gram-positive, low GC% Firmicutes[6,7]. 
Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia 
phyla are relatively less abundant, but nonetheless are 
known to play important roles in human health[6]. The 
same studies have described the vast diversity of  bacterial 
species and identified the dominant bacterial groups to 
be Clostridium coccoides (C. coccoides)-Eubacterium rectale, Clos-
tridium leptum (C. leptum), Bacteroides-Prevotella, Bifidobacterium 
species and Atopobium species[8]. The gut microbial spe-
cies composition varies greatly between individuals, with 
each individual harboring a unique collection of  bacte-
rial species, which is highly stable over time[9]. Zoetendal  
et al[10] also showed that the gut microbiota composition 
of  spouses, who were living in the same environment and 
had similar eating habits, showed the least degree of  spe-
cies similarity, while siblings showed increased similarity in 
species make-up. Interestingly, the gut microbiota profiles 
of  identical twins showed a high degree of  similarity, but 

were yet distinct. These findings highlight that genetic fac-
tors play an important role in gut microbiota development, 
although environment also drives species acquisition. 
Studies have shown that the vast majority of  intestinal 
bacteria are novel, new to science and so far resist cultiva-
tion using traditional culture techniques, necessitating the 
use of  culture-independent molecular microbiology tech-
niques, such as 16S rRNA gene probing and polymerase 
chain reaction (PCR)-based strategies. 

Recently, the human body together with its gut micro-
biota has been referred to as a “superorganism” comprised 
of  human and bacterial genes[11]. It has been estimated that 
the human gut microbiome consists of  100 times more 
genes than the human genome. Therefore, the presence 
of  the intestinal microbiota enriches the human organism 
with important functions, especially functions involved 
in deriving energy from nutrients which escape diges-
tion in the upper gut and the metabolism of  xenobiotics. 
The gut microbiota acts as a “metabolic organ”, through 
breakdown of  complex indigestible dietary carbohydrates 
and proteins, with consequent generation of  fermentation 
end-products (short chain fatty acids, ethanol and gas) and 
also through production of  vitamins, ion absorption and 
conversion of  dietary polyphenolic compounds into their 
active form[12,13]. The commensal microbiota contribute 
to the “barrier effect”, which constitutes a real obstacle 
to pathogen invasion of  the intestinal mucosa. Recent 
studies have shown that a modulation of  the gut micro-
biota through dietary supplementation with a prebiotic 
(i.e. oligofructose) increases epithelial barrier integrity by 
increasing the expression of  tight junctions proteins (i.e. 
ZO-1 and occludin), with a mechanism that is dependent 
on the augmented secretion of  the GLP-2 gut hormone[14]. 
The immune regulatory function of  the intestinal micro-
biota consists of  priming the mucosal immune system and 
maintenance of  intestinal epithelium homeostasis. Studies 
in germ-free animals have demonstrated that the normal 
functioning of  intestinal epithelial cells (IEC) and of  the 
underlying immune cells are impaired in the absence of  
the gut microbiota. IEC expression of  microbial recogni-
tion receptors, defensins and antimicrobial peptides are 
reduced in germ-free animals[15,16]. Defective development 
of  gut-associated lymphoid tissues, antibody production 
(i.e. sIgA) and maturation of  isolated lymphoid follicles 
have also been shown in germ-free animals, together with 
reduced Peyer’s patches and mesenteric lymph node num-
ber and dimension[17,18]. 

IMMUNE TOLERANCE TO THE 
COMMENSAL MICROBIOTA
In health, finely balanced mechanisms regulate the host’s 
immunological tolerance to the continuous stimulus of  the 
resident gut microbiota and their metabolic end-products. 
Microbial recognition by antigen presenting cells (i.e. den-
dritic cells, DC) and epithelial cells is mainly carried out 
through sensing of  conserved microbial-associated mo-
lecular patterns (MAMPs) by toll-like receptors (TLR), ca-
pable of  detecting a variety of  bacterial components, such 
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as lipopolysaccharide (LPS), lipoproteins, CpG DNA[19], 
and by nucleotide-binding oligomerisation domain (NOD)-
like receptors (NLR), which recognise peptidoglycan mol-
ecules on the bacterial cell wall[20]. In healthy hosts the pro-
inflammatory pathways associated with TLR and NLR are 
suppressed by inhibitory molecules of  both human and 
bacterial origin [i.e. cyclooxygenase-2 (COX-2) inhibitors; 
LPS; A20; peroxisome proliferator-activated receptor-γ 
(PPAR-γ); nuclear factor-κB (NF-κB) inhibitor IκB-α; 
interferon-α/β (IFN-α/β); interleukin-10 (IL-10); TGF-β; 
eicosanoids][21,22]. Activated innate immune cells, such as 
mucosal DC, constantly sample luminal microbial antigens 
and present them to adaptive immune cells. Recent studies 
have shown that the intestine is home to specialised DC, 
whose function it is to induce a highly tolerogenic response 
from T and B cells, through induction of  regulatory T cells 
(Treg) and secretion of  IgA, respectively[23,24]. Commensal 
bacteria actively coordinate the host tolerogenic response, 
either through DC-mediated conversion of  naïve T cells 
into Treg, or through direct ligation of  TLRs on the sur-
face of  Treg. Certain resident bacterial populations, often 
referred to as “beneficial bacteria” (i.e. lactobacilli and 
bifidobacteria) can influence DC differentiation towards 
a more undifferentiated and monocyte-like phenotype, 
which may account for DC immune tolerance[25]. More-
over, incubation of  monocyte-derived DC with probiotic 
bacteria was shown to induce DC maturation and cytokine 
secretion, with strain-specific cytokine secretive profiles[26]. 
Repetitive TLR stimulation due to commensal bacterial 
exposure induces down-regulation of  the NF-κB path-
way and stimulates production of  antimicrobial peptides 
(i.e. defensins)[27]. Also, chronic NOD-2 stimulation has 
been demonstrated to lead to down-regulation of  pro-
inflammatory cytokines (TNF-α, IL-8, IL-1β) in primary 
human monocyte-derived macrophages after pre-treatment 
with muramyl dipeptide (MDP) and re-stimulation with 
NOD-2, TLR-2 and TLR-4 ligands[28]. Therefore, the host’
s mechanism of  tolerance to the resident microbiota offers, 
at the same time, protection from unwanted inflammatory 
responses and from pathogen invasion. Microbial ligands 
have also been shown to modulate the expression levels of  
miR-155, a miRNA that is involved in immune homeosta-
sis and whose absence causes a reduction in Treg numbers 
in miR-155-deficient mice[29]. However, since commensal 
and pathogenic bacteria possess many common motifs that 
are immunologically recognised by the host, how the host 
can tolerate resident bacteria whilst being able to mount an 
effective inflammatory response to invading pathogens is 
still not fully understood. Nonetheless, pathogenic bacte-
ria do differentiate themselves from commensals by their 
behaviour; breaching the intestinal epithelial barrier and, 
in healthy individuals, eliciting strong inflammatory reac-
tions when they trigger MAMPs basolaterally on epithelial 
cells[30]. 

In IBD, the homeostatic mechanisms that allow co-
existence of  the host organism and the commensal mi-
crobiota are disrupted. Polymorphisms in TLR (TLR4 
D299G associated with CD and UC; TLR1 L80P and 
TLR2 R753G, associated with pancolitis) and NLR (i.e. 

three mutations in NOD 2/CARD15 gene, Arg702Trp, 
Gly908Arg, and a frameshift deletion mutation at Leu1007, 
accounting for about 80% of  all CD-associated muta-
tions) have been implicated in increased susceptibility 
to IBD[19,31-33]. However, not everyone who carries these 
mutations develops IBD, indicating that other etiologic 
mechanisms might underlie IBD pathogenesis. 

INTESTINAL MICROBIOTA IN IBD
Evidence from several recent studies has highlighted that 
gut microbiota composition and activity in IBD patients 
are abnormal. In particular, several studies have demon-
strated that IBD patients are characterized by a reduced 
abundance of  dominant members of  the gut microbiota. 
Through a combination of  PCR of  total bacterial ge-
nomic DNA with universal bacterial primers and clone 
sequencing of  16S rRNA genes, Frank et al[34] showed 
that in mucosal biopsies taken from CD and UC patients 
there was reduced abundance of  rRNA sequences associ-
ated with Firmicutes and Bacteroidetes, and a concomitant 
increase in 16S rRNA sequences of  Proteobacteria and Ac-
tinobacteria, compared to non-IBD controls. In particular, 
the decreased relative abundance of  the Firmicutes phylum 
was due to decreases in populations of  Clostridium Ⅸa 
and Ⅳ groups. As a consequence of  this dysbiosis, the 
relative abundance of  Enterobacteriaceae was increased in 
IBD patients compared to healthy controls, although their 
absolute numbers remained unaltered. No differences 
were observed in fecal and mucosal bacterial population 
numbers between CD and UC patients. These findings 
are common to several other studies, which also observed 
decreased clostridia concentrations in IBD[35,36], although 
not always accompanied by a decrease in Bacteroides[34,37]. 

Aberrancies in Bifidobacterium populations in IBD have 
also been previously observed in another study, where 
significantly lower counts of  bifidobacteria were found in 
rectal biopsies of  patients with UC compared to patients 
without UC[38]. By employing fluorescent in situ hybrid-
ization (FISH), Macfarlane et al[38] showed that bacteria 
belonging to the C. leptum phylogenetic group were sig-
nificantly less abundant in fecal samples of  CD patients 
compared to healthy individuals. Moreover, through a 
metagenomic approach, the same authors reported a con-
spicuous loss of  microbial diversity in CD, mainly due to 
a reduction of  operational taxonomic units (OTU) within 
the C. coccoides group and the C. leptum group. A reduction 
in bacterial diversity was also previously observed by Ott  
et al[39] after analysis of  mucosa-associated microbiota of  
CD and UC patients through a combination of  single 
strand conformation polymorphism (SSCP) fingerprint, 
cloning and real time PCR. Additionally, Zhang et al[40] 
more recently showed that bacterial diversity of  lactobacilli 
and C. leptum group as determined by denaturing gradi-
ent gel electrophoresis (DGGE) analysis was also lower 
in ulcerated tissues compared to the non-ulcerated tissues 
within the same UC individual. These results suggest that 
microbial alteration in IBD patients might be caused by 
the physiological state of  the intestinal mucosa. How-
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ever, little is known about how inflammatory mediators 
(e.g. pro-inflammatory cytokines and chemokines) on the 
gut wall affect bacterial populations in vivo. We do know, 
however, that altered microbial composition may impact 
on important physiological processes in the intestinal en-
vironment. Clostridium and Bacteroides species are the main 
producers of  short chain fatty acids (SCFA) in the human 
colon. Decreased clostridia of  groups Ⅳ and ⅩⅣa, the 
main butyrate-producing bacteria in the gut, could there-
fore explain the decreased SCFA concentrations found 
in fecal samples of  IBD patients. Among the SCFA pro-
duced upon carbohydrate fermentation, butyrate serves as 
a major source of  energy for colonic epithelial cells[41] and 
as an inhibitor of  pro-inflammatory cytokine expression in 
the intestinal mucosa, through a mechanism that involves 
hyperacetylation of  histones and suppression of  NF-κB 
signaling[42]. Moreover, butyrate reinforces the mucosal 
barrier by inducing production of  mucin and antimicrobial 
peptides, and by strengthening epithelial barrier integrity 
through directly increasing the expression of  tight junction 
proteins[43]. A decrease of  butyrate levels could therefore 
be involved in the increased inflammatory state character-
istic of  IBD, and butyrate is already considered to be of  
possible therapeutic value in treating IBD[44-46]. Stimulation 
of  butyric acid production could be achieved through 
repopulation of  clostridial clusters Ⅳ and ⅩⅣa, or even 
through probiotic therapy with lactic acid bacteria, by in-
creasing butyrate production through enhancement of  car-
bohydrate fermentation (i.e. by supplementation with bu-
tyrogenic prebiotics such as inulin or oligofructose). Lactic 
acid can be employed as substrate for the production of  
high concentrations of  butyrate by clostridial cluster ⅩⅣa, 
in a process also known as cross-feeding[47]. Faecalibacterium 
prausnitzii (F. prausnitzii), a prevalent member of  the hu-
man gut microbiota belonging to clostridial cluster Ⅳ and 
an important butyrate producer, has been recently shown 
to be less abundant in the intestinal microbiota of  IBD pa-
tients[48,49]. In vitro and in vivo animal studies have also dem-
onstrated the anti-inflammatory and anti-colitic properties 
of  supernatants from F. prausnitzii cultures in peripheral 
blood mononuclear cells or in mouse models of  colitis, 
respectively[48]. This effect appeared to be due to an as yet 
unidentified metabolite produced by the microorganism, 
but was shown to be independent of  butyrate production. 

Overgrowth of  a class of  microorganisms referred to 
as sulphate-reducing bacteria (SRB) was also previously 
observed in IBD gut microbiota in concomitance with a 
decrease in clostridia of  groups Ⅳ and ⅩⅣa, especially 
in UC and pouchitis patients[50]. SRB metabolize sulphate 
into hydrogen sulphide, which is toxic to colonocytes, 
blocks butyrate utilization, induces cell hyperprolifera-
tion, and inhibits phagocytosis and bacterial killing[51]. It 
was previously demonstrated that the presence of  intesti-
nal microorganisms is necessary for induction of  dextran 
sodium sulphate (DSS) colitis in animal models, thus 
emphasizing the possible role of  SRB in IBD, through 
their reduction of  sulphate in DSS into the cytotoxic 
and inflammatory trigger molecule H2S[52]. SRB numbers 
or their metabolic activity were found to be significantly 

higher in studies comparing UC patients to controls or 
to UC patients in remission[53-55]. 

In the search for a putative microbial cause of  IBD, 
the theory of  bacterial pathogen-induced intestinal in-
flammation has also been put forward. A wide range of  
microorganisms have been suggested as etiologic agents 
of  IBD, including mycobacteria, Listeria monocytogenes  
(L. monocytogenes), Chlamydia, Enterobacteriaceae [including 
strains of  Escherichia coli (E. coli) and Helicobacter] and also 
reoviruses and paramyxovirus[56-58]. However, when con-
sidering the diversity of  IBD lesions and disease course, 
and the fact that no single pathogenic agent can routinely 
be isolated from diseased tissue, there is no conclusive 
evidence that a single pathogen is the cause of  the disease. 
Among the Enterobacteriaceae genus, E. coli is the bacterium 
most commonly related to IBD. It was observed that IBD 
patients harbor increased Enterobacteriaceae, in particular  
E. coli belonging to the B2+D group (i.e. with increased 
virulent potential), compared to controls[59]. Adherent 
invasive E. coli was commonly found in ileal CD patients, 
particularly associated with ileal mucosal lesions[60,61]. On 
the other hand, E. coli isolated from UC patients was less 
invasive compared to CD[62]. Mycobacterium avium subspe-
cies paratuberculosis (MAP) is an obligate intracellular patho-
gen that causes spontaneous granulomatous enterocolitis 
in cattle by evading phagocytosis. Therefore, MAP infec-
tion would be favored in those individuals with defective 
innate immunological defenses, such as CD patients. MAP 
presence was found with significantly higher frequency in 
CD patients compared to non-IBD controls, but not in all 
individuals[63]. No significant correspondence was found 
between CD-associated NOD-2 polymorphisms, especial-
ly in ileal CD, and MAP infection[64,65]. Moreover, clinical 
studies failed to demonstrate the efficacy of  antimycobac-
terium triple antibiotic therapy in inducing persistent re-
sponse in CD patients[66]. Detection of  MAP by molecular 
techniques (i.e. detection of  insertion element-900 (IS-900) 
by PCR) has the limitation of  picking up environmental 
mycobacteria and presents high variability among labo-
ratories[67-69]. Hence, the etiologic role of  MAP in IBD 
pathogenesis remains to be demonstrated.

Therefore, microbial dysbiosis consisting of  a decrease 
in beneficial bacteria and their metabolic end-products, 
together with an increase of  detrimental bacterial popula-
tions and their toxic metabolites, might alter gut luminal 
environment; thus contributing to the pathogenesis of  
IBD. 

COMPROMISED EPITHELIAL BARRIER 
FUNCTION, DEFECTIVE INNATE IMMUNE 
RESPONSE TO BACTERIA AND LOSS OF 
IMMUNOTOLERANCE
Efficient functioning of  the gut mucosa is achieved by 
means of  a combination of  intact epithelial barrier and ef-
fective bacterial killing through secretion of  antimicrobial 
peptides (e.g. defensins), secretory IgA and phagocytosis. 
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In IBD these mechanisms of  mucosal defence are com-
promised at all levels and they all contribute to disease pro-
gression. A potential mechanism of  pathogenesis of  IBD 
is summarized in Figure 1. Disease arises from the initial 
epithelial barrier dysfunction that brings about increased 
bacterial translocation through the lamina propria, where 
microbial antigens elicit a strong inflammatory response, 
due to ectopic (i.e. basolateral) TLR stimulation, activa-
tion of  the NF-κB pathway and consequent induction of  
pro-inflammatory chemokine and cytokine secretion. This 
inflammatory process is aggravated by the decreased in-
nate immune defense (i.e. reduced luminal defensin and 
IgA, defective phagocytosis in IBD), which amplifies the 
magnitude of  bacterial translocation through the “leaky” 
epithelial layer. Disease progression mainly results from a 
more global defective immunoregulation and immunotol-
erance in response to the initial inflammatory insult, due to 
overaggressive T cell reaction, dysfunctional regulatory T 
cells and antigen presenting cells (APC) (Figure 1).

IBD, and especially CD, presents with a characteristic 
increased epithelial permeability, due to underexpression 
of  certain tight junction proteins [e.g. claudins, junction 
adhesion molecule-A (JAM-A)] concomitant with up-reg-
ulation of  other pore-forming proteins (i.e. claudin-2)[70,71]. 
Defective bacterial clearance due to impaired defensin 
and IgA production contributes to increased bacterial 
translocation from the gut lumen across the lamina pro-
pria. α-Defensins (i.e. human defensin 5 and 6 (HD5 and 
HD6)) are antibactericidal compounds produced by Pa-
neth cells efficacious against Enterobacteriaceae (e.g. E. coli, 
Salmonella typhimurium, L. monocytogenes) and Bacteroides vul-
gatus, and were found significantly reduced in association 
with ileal CD, in particular in patients with NOD-2 muta-
tions[72,73]. On the other hand, colonic CD, but not UC, 
was observed to be associated with lower copy number 
of  β-defensins 2 and 3, which are the main antimicrobial 
peptides found in the colon. This reduction in β-defensins 
was shown to be due to a chromosomic polymorphism, 
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Figure 1  Suggested mechanism of inflammatory bowel disease pathogenesis. Intestinal dysbiosis in inflammatory bowel disease (IBD) consists of decreased 
prevalence of putative beneficial bacteria (e.g. bifidobacteria) and concomitant increase in detrimental bacterial (e.g. sulphate-reducing bacteria). This microbial 
imbalance causes reduced intraluminal levels of butyrate (because of decreased production through fermentation and decreased utilization due to increased H2S 
levels), thus contributing to down-regulation of epithelial tight junction protein expression and increased epithelial permeability. Epithelial barrier dysfunction brings 
about increased bacterial translocation through the lamina propria, which is worsened by decreased luminal IgA and defensin concentrations. Killing of bacteria 
reaching the lamina propria through the “leaky” epithelium is also impaired by a genetically predisposed defective phagocytosis by macrophages. Ineffective bacterial 
clearance leads to excessive toll-like receptor (TLR) stimulation, secretion of pro-inflammatory cytokines and activation of innate and T-cell mediated immune 
responses. The disrupted mechanism of tolerance in epithelial cells and antigen presenting cells (APC) amplifies innate immune cell recruitment (i.e. neutrophils). 
Additionally, defective T-reg and APC cause excessive T-cell response (Th1 and Th17), with consequential intensification of the inflammatory response and 
granulomatous reaction. IL: Interleukin; IFN-γ: Interferon-γ; TNF: Tumor necrosis factor; TGF-β: Transforming growth factor-β; LPS: Lipopolysaccharide.
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since chromosome 8 presented with a lower copy number 
of  β-defensin 2 in colonic CD[74,75]. 

Microbial clearance can also be impaired because of  
reduced levels of  protective secretory IgA (SIgA) in IBD. 
IgA constitutes the most abundant immunoglobulin phe-
notype present in the human body[76]. In the gut, IgA is 
produced by lamina propria B cells, then translocates to 
the lumen by attaching to a basolateral receptor on epithe-
lial cells, and finally is transported to the luminal surface of  
epithelial cells, where it forms SIgA clusters that elicit mul-
tiple roles in the intestinal lumen. Firstly, IgA in the mucus 
layer entraps bacteria and dietary antigens, down-regulates 
epitope expression on the bacterial cell surface and, there-
fore, regulates microbial intestinal colonization[77-79]. More-
over, SIgA prevents pathogen attachment and invasion of  
epithelial cells and removes bacteria breaching the epithe-
lial barrier by translocating them back to the lumen and by 
promoting their clearance by dendritic cells, neutrophils 
and phagocytes[80-82]. In IBD, intestinal IgA is usually re-
duced and this is compensated for by increased secretion 
of  IgG, which induces pro-inflammatory cytokine produc-
tion and mounting of  adaptive immune responses to the 
resident microbiota[83]. Mucosal secretory IgG was found 
to be significantly higher in UC and CD patients com-
pared to control patients with irritable bowel syndrome[84]. 
In addition, the same study showed that both CD and UC 
patients presented with increased mucosal IgG bound to 
fecal bacterial cytoplasmic antigens compared to control 
patients with irritable bowel syndrome and to non-IBD 
controls with intestinal inflammation[84].

Malfunctioning bacterial killing in IBD has also re-
cently been linked to dysfunctional autophagy. Autophagy 
is a constitutive pathway of  cellular homeostasis and organ-
elle turnover. However, it has recently been demonstrated 
that autophagy plays a key role in innate and adaptive 
immunity. Macrophages use autophagy to capture and 
effectively kill intracellular and extracellular invading bac-
terial pathogens, including Legionella, E. coli, Streptococcus 
and Mycobacterium species, by fusion of  the phagocytic 
compartment with the lysosome[85,86]. Epithelial cells also 
employ autophagy to kill invading bacteria and the gene 
ATG 16L1 has been shown to be necessary for starting 
the autophagic process against the cytoplasmic invasion 
of  Salmonella typhimurium[87]. Mutations in ATG 16L1 have 
recently been associated with CD, thus implicating defec-
tive bacterial killing by autophagy in IBD[87]. Autophagy 
impairment might also influence the adaptive immune 
response to bacteria, since autophagy is involved in 
major histocompatibility complex (MHC) class Ⅱ load-
ing in the lysosome, where the autophagic cytoplasmic 
content is also delivered[88]. Therefore, a defect in the 
autophagy pathway could influence antigen presentation 
by APC, epithelial cells and immune surveillance. Finally, 
autophagy has been implicated in the regulation of  T cell 
death and proliferation, and ATG 16L1 is central to these 
autophagy-regulated processes[89]. Alteration of  ATG 
16L1 in CD might therefore, at least in part, explain the 
pathologic behaviour of  T cells in IBD. In IBD the coex-
istence of  compromised epithelial barrier and defective 

innate immunity aggravates the impaired mechanism of  
tolerance to the resident microbiota and causes inflam-
matory granulomatous reaction (Figure 1). Defective in-
teraction between regulatory T lymphocytes in the lamina 
propria and epithelial cells is central to the process of  loss 
of  tolerance, through a mechanism that involves NF-κB 
signaling. Epithelial NF-κB activation in healthy hosts is 
normally suppressed by anti-inflammatory cytokines pro-
duced by the underlying T lymphocytes, such as TGF-β 
and IL-10, while in IBD Th1- and Th17-type immune 
responses are predominant and lead to chronic inflam-
mation and worsening of  the epithelial layer damage[90]. 
Perpetuation of  the epithelial damage causes increased 
basolateral as opposed to physiological apical stimulation 
of  TLR-9 receptors, thus causing activation, rather than 
blockade, of  NF-κB signaling[30]. This leads to a vicious 
cycle of  aberrant immune response, mucosal inflamma-
tion, altered microbiota composition and/or activity and 
increased mucosal permeability, which would explain the 
persistent and recurrent nature of  IBD.

THERAPEUTIC IMPLICATIONS OF 
GUT MICROBIOTA-HUMAN HOST 
INTERACTION
The increasing understanding of  the gut microbiota-host 
immune system interaction has recently drawn interest 
towards a modulation of  intestinal bacterial communities 
as a novel potential adjuvant in IBD therapy. Although an-
tibiotic therapy constitutes an established therapeutic tool 
for the treatment of  specific IBD-associated symptoms 
(e.g. abscesses and fistulae), as well as a possible preventive 
measure, research studies that demonstrate antibiotic ef-
ficacy in IBD are still limited[91]. Promising outcomes have 
been observed after gut microbiota modulation through 
probiotic, prebiotic and synbiotic supplementation in CD 
and UC to change IBD-associated dysbiosis. Treating 
CD patients with the probiotic strain E. coli Nissle 1917 
has been shown to induce remission more rapidly than 
untreated control patients, although it did not influence 
the number of  patients achieving remission[92]. In UC, 
E. coli Nissle 1917 was proven as effective as mesalazine 
in maintaining remission[93,94]. Maintenance of  remission 
after probiotic supplementation was observed in a study 
with the yeast probiotic Saccharomyces boulardii (reduced 
percentage of  relapses in probiotic + mesalamine-treated 
CD patients, compared to control mesalamine-treated CD 
patients), although the significance of  the study is some-
what restricted because of  the low number of  subjects 
involved (n = 32)[95,96]. Positive results were also observed 
in a double-blind, randomised controlled trial with Bifido-
bacterium breve and Bifidobacterium bifidum fermented milk 
supplementation in 20 UC subjects for 12 wk, where 
a significant decrease of  clinical indices was observed 
compared to unsupplemented controls[97]. The probiotic 
mixture VSL#3 showed convincing effects in the main-
tenance of  remission in UC patients[98-100], and it was later 
shown to prevent the onset of  pouchitis[101]. On the other 
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hand, the data with regard to VSL#3 supplementation 
in CD are still preliminary. VSL#3 supplementation did 
not result in a reduction in post-surgical relapse when ad-
ministered to pediatric CD patients, compared to control 
mesalamine-treated patients[102]. In general, it appears that 
this probiotic supplementation is more effective in reduc-
ing disease onset or recurrence, rather than diminishing 
active inflammatory symptoms. 

Prebiotic supplementation with inulin was shown 
to improve clinical condition in pouchitis patients, and 
to increase tolerance (i.e. through decreased TLR-2 and 
TLR-4 expression on DC) and fecal bifidobacteria levels 
in CD patients[103-105]. Synbiotics (i.e. a synergy of  pro- and 
pre-biotics in a single preparation) also showed potential 
therapeutic effect, although the number of  studies in 
IBD is still limited. Supplementation of  the inulin-derived 
prebiotic, Synergy-1, together with Bifidobacterium longum, 
in 18 UC patients for 4 wk significantly decreased rectal 
pro-inflammatory cytokine levels and down-regulated the 
expression of  inflammation-associated β-defensins[106].

In summary, some evidence has already indicated a 
promising therapeutic effect of  pro-, pre- and synbiotics 
in IBD. However, the studies are still very few, under-
powered and their design and selection of  active agent 
are sometimes less than optimal. Indeed, this topic de-
serves further investigation in studies using an adequate 
number of  subjects and employing functional food 
products targeting the gut microbiota, that have been 
specifically selected for their anti-inflammatory proper-
ties from preliminary in vitro and animal studies.

CONCLUSION 
Despite the observation that IBD is associated with an 
abnormal gut microbiota composition, the question as 
to whether the altered gut microbial dysbiosis is a cause 
of  disease or a consequence of  the inflammatory state 
of  the intestinal environment still remains unanswered. 
Although several studies implicate the gut microbiota in 
IBD pathogenesis, so far no pathogenic/infectious mi-
croorganism has been identified as sole disease causing 
agent. It is more likely that microbial dysbiosis and lack 
of  beneficial bacteria, together with genetically predis-
posed increased epithelial permeability, bacterial translo-
cation into the lamina propria, defective innate immunity 
and loss of  tolerance to the resident microbiota, may 
lead to the abnormal inflammatory response and granu-
lomatous reaction characteristic of  IBD. A modulation 
of  the gut microbiota through pro-, pre- and synbiotics, 
specifically designed to reduce IBD-associated dysbiosis 
and inflammation, constitutes an interesting approach in 
the field of  novel therapeutic approaches for IBD.
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