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Abstract
AIM: To investigate the role of intestinal mucosal 
blood flow (IMBF) and motility in the damage of intes-
tinal mucosal barrier in rats with traumatic brain injury.

METHODS: Sixty-four healthy male Wistar rats were 
divided randomly into two groups: traumatic brain injury 
(TBI) group (n  = 32), rats with traumatic brain injury; 
and control group (n  = 32), rats with sham-operation. 
Each group was divided into four subgroups (n  = 8) as 
6, 12, 24 and 48 h after operation. Intestinal motility 
was measured by the propulsion ratio of a semi-solid 
colored marker (carbon-ink). IMBF was measured with 
the laser-Doppler technique. Endotoxin and D-xylose 
levels in plasma were measured to evaluate the change 
of intestinal mucosal barrier function following TBI. 

RESULTS: The level of endotoxin was significantly higher 
in TBI group than in the control group at each time point 
(0.382 ± 0.014 EU/mL vs  0.102 ± 0.007 EU/mL, 0.466 
± 0.018 EU/mL vs 0.114 ± 0.021 EU/mL, 0.478 ± 0.029 
EU/mL vs 0.112 ± 0.018 EU/mL and 0.412 ± 0.036 EU/mL 
vs  0.108 ± 0.011 EU/mL, P  < 0.05). D-xylose concentra-
tions in plasma in TBI group were significantly higher 
than in the control group (6.68 ± 2.37 mmol/L vs  3.66 ± 

1.07 mmol/L, 8.51 ± 2.69 mmol /L vs 3.15 ± 0.95 mmol/L, 
11.68 ± 3.24 mmol/L vs  3.78 ± 1.12 mmol/L and 10.23 
± 2.83 mmol/L vs  3.34 ± 1.23 mmol/ L, P  < 0.05). The 
IMBF in TBI group was significantly lower than that in the 
control group (38.5 ± 2.8 PU vs  45.6 ± 4.6 PU, 25.2 ±  
3.1 PU vs  48.2 ± 5.3 PU, 21.5 ± 2.7 PU vs  44.9 ± 2.8 PU, 
29. 4 ± 3.8 PU vs  46.7 ± 3.2 PU) (P  < 0.05). Significant 
decelerations of intestinal propulsion ratio in TBI groups 
were found compared with the control group (0.48% ± 
0.06% vs  0.62% ± 0.03%, 0.37% ± 0.05% vs  0.64% ± 
0.01%, 0.39% ± 0.07% vs  0.63% ± 0.05% and 0.46% 
± 0.03% vs  0.65% ± 0.02%) (P  < 0.05).

CONCLUSION: The intestinal mucosal permeability is 
increased obviously in TBI rats. Decrease of intestinal 
motility and IMBF occur early in TBI, both are impor-
tant pathogenic factors for stress-related damage of 
the intestinal mucosal barrier in TBI. 
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INTRODUCTION
Multiple system organ dysfunction syndrome (MODS) of-
ten occurs following the stress of  severe trauma, burn and 
acute necrotic pancreatitis[1-4]. However, its exact mecha-
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nism remains unclear. The gut origin hypothesis suggests 
that damage of  intestinal mucosal barriers as a result of  
these stress permits bacterial and endotoxin translocation, 
which triggers systemic immunoinflammatory response 
to release cytokines and inflammatory mediators. All of  
these might exacerbate systemic inflammatory response 
syndrome (SIRS) and MODS. Many patients with severe 
traumatic brain injury (TBI) often die of  MODS[5], but 
not of  the injury itself. So to prevent SIRS and MODS in 
TBI patients is one of  the important factors that affect 
the prognosis and sequelea.

Our previous studies have found the damage of  intes-
tinal mucosal morphology and barrier function following 
TBI[6]. Although very common, the pathophysiology of  
this stress-related change is far from understood.

Fortunately, researches over the past decades have 
provided insight into the potential mechanisms respon-
sible for the pathogenesis of  stress-induced gastrointes-
tinal dysfunction. The stressful situation is a multi-fac-
torial disorder involving dysregulation within the brain-
gut axis. Upon activation of  the brain-gut axis by stress, 
the release of  brain-gut peptides can profoundly affect 
gastrointestinal physiology and it is frequently associated 
with gastrointestinal motor, gastrointestinal mucosal 
blood flow (IMBF), enteric and central nervous system 
irregularities, and neuroimmune dysregulation[7]. 

The aim of  this study was to further elucidate the 
effects of  TBI on intestinal motility and IMBF, and to 
explore the putative mechanism of  this stress-induced 
change in the TBI process.

MATERIALS AND METHODS
Animal model of TBI 
Sixty-four healthy male Wistar rats, weighing 200-250 g 
(provided by Experimental Animal Center of  Genetics 
and Developmental Biology Institute, Chinese Academy 
of  Sciences), were randomly assigned to TBI model group 
(n = 32) and control group (n = 32). Each group was 
divided into four subgroups as 6, 12, 24 and 48 h after op-
eration (n = 8). Experimental procedures complied with 
the ethical requirements for animal care.

Establishment of animal models
TBI group (n  = 32): RATS with traumatic brain injury by 
free falling body method[8]. Rats were deprived of  food for 
12 h prior to experiment, and then was anesthetized with 
injection of  10% chloral hydrate (0.4 mL/100 g) and fixed 
on a stereotaxic apparatus. Scalp was cut along the median 
line and exposed the skull under steriled conditions. At 
the point of  2.0 mm rearward from the coronal suture 
and 2.0 mm left to the sagittal suture, open a 3.5 mm  
diameter bone window and maintain the integrity of  the 
duramater. Then 20 g metal bar was released and fallen 
freely from 50 cm height to strike the meninges to cause 
the brain injury.

Control group (n  = 32): rats with sham-operation with 
skull open operation alone and no brain injury.

Determination of endotoxin
One mL blood was collected from portal vein and placed 
into an apyrogenic tube (containing heparin) immediately. 
The levels of  endotoxin were measured by chromogenic 
limulus amebocyte lysate test. The test kit was purchased 
from Shanghai Yihua Clinical Technology Company 
(Shanghai, China).

Measurement of D-xylose concentrations in plasma
Intestinal permeability was quantified by D-xylose concen-
trations in plasma. The 5% D-xylose solution of  1.5 mL 
was administered into the stomach by gastric tube feeding, 
and blood samples were collected into chilled tubes con-
taining 100 U heparin 1 h later. The blood was centrifuged 
at 3000 r/min at 4℃ for 10 min. The plasma was stored 
at -70℃ until assayed. Levels of  D-xylose in plasma were 
measured with D-xylose kit.

Measurement of IMBF
IMBF was measured with Laser Doppler Flowmetry (LDF) 
equipment (PeriFlux System 5000, Perimed, Sweden). The 
laser probe was inserted through a small enterotomy at the 
point that 20 cm from pylorus of  the jejunal sac and held 
in a fixed position in the chamber solution at a distance of  
1-2 mm above the mucosa. The measurement was taken 
as the average flow over a 10-min period following an ini-
tial 20-min period of  stabilization. 

Measurement of intestinal transit 
Rats were fasted for 24 h prior to experiment, and 0.5 mL 
carbon-ink was administered into the stomach by gastric 
tube feeding. Twenty min later, the rats were killed at each 
time point, their intestines were removed from the pylorus 
through the ileocecal junction. The distance of  carbon-
ink from the pylorus to the most distal point of  stain was 
expressed as migration distance. Results were expressed as 
propulsion ratio (%) of  the migration distance to the total 
length of  the small intestine (the distance between the py-
lorus and the ileocecal junction).

Statistical analysis
Software SPSS 11.0 was used for the statistical analysis. 
The data were expressed as mean ± SD. Experimental 
results were analyzed by unpaired t test and P < 0.05 was 
considered as significant difference. 

RESULTS
Serum endotoxin levels
There were significant differences of  endotoxin levels 
between the TBI group and control group at each time 
point (0.382 ± 0.014 EU/mL vs 0.102 ± 0.007 EU/mL, 
0.466 ± 0.018 EU/mL vs 0.114 ± 0.021 EU/mL, 0.478 
± 0.029 EU/mL vs 0.112 ± 0.018 EU/mL and 0.412 ± 
0.036 EU/mL vs 0.108 ± 0.011 EU/mL, P < 0.05, re-
spectively). As shown in Table 1, the endotoxin was sig-
nificantly increased 6 h after TBI, and reached the peak 
at 24 h, and then declined at 48 h, but was still higher 
than that of  the control group.
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D-xylose concentrations in plasma
D-xylose concentrations in plasma in TBI rats were 
significantly higher than in the control group (6.68 ±  
2.37 mmol/L vs 3.66 ± 1.07 mmol/L, 8.51 ± 2.69 mmol/L  
vs 3.15 ± 0.95 mmol/L, 11.68 ± 3.24 mmol/L vs 3.78 
± 1.12 mmol/L and 10.23 ± 2.83 mmol/L vs 3.34 ±  
1.23 mmol/L, P < 0.01, respectively), indicating that the 
intestinal mucosal barrier was damaged (Table 2).

Changes of IMBF 
As shown in Table 3, IMBF was significantly lower in TBI 
group than that in the control group (38.5 ± 2.8 PU vs 45.6 
± 4.6 PU, 25.2 ± 3.1 PU vs 48.2 ± 5.3 PU, 21.5 ± 2.7 PU vs 
44.9 ± 2.8 PU, 29. 4 ± 3.8 PU vs 46.7 ± 3.2 PU) (P < 0.05). 
It began to decrease at 6 h, reached the lowest at 24 h, and 
did not reach the baseline by 48 h. 

Changes of intestinal transit 
The overall mean ratio of  intestinal propulsion under TBI 
stress was lower than that of  the control group (0.48% 
± 0.06% vs 0.62% ± 0.03%, 0.37% ± 0.05% vs 0.64% ± 
0.01%, 0.39% ± 0.07% vs 0.63% ± 0.05% and 0.46% ± 
0.03% vs 0.65% ± 0.02%) (P < 0.05), indicating that TBI 
stress could inhibit small intestinal motility (Table 4).

DISCUSSION
Gastrointestinal dysfunction is a common complication 
of  stress. Damage of  the gastrointestinal function, es-
pecially of  the gastrointestinal barrier function, permits 
translocation of  enterogenic bacteria and endotoxins, 
triggers systemic immunoinflammatory response to re-
lease cytokines and inflammatory mediators, which is an 
important initiator as well as a stimulator for occurrence 
of  SIRS, sepsis and MODS following major stress[9]. 
The stress including severe trauma, hemorrhagic shock, 
severe pancreatitis and burn[10,11]. So the gastrointestinal 
barrier function is one of  the important factors that af-
fect the prognosis and sequelea.

Intestinal mucosal barrier function could be evalu-
ated by measuring the permeability of  saccharide mo-

lecular probe. Lactulose/mannitol and D-xylose have 
previously been used to assess intestinal mucosal per-
meability[12-15]. Shi et al[16], reported that chronic restraint 
stress could cause damage of  the intestinal barrier func-
tion and increased intestinal permeability to D-xylose.

In this study, we used endotoxin and plasma D-xylose 
to evaluate the intestinal mucosa barrier function. We found 
that the endotoxin and plasma D-xylose levels in the TBI 
group were significantly higher than in the control group at 
6 h following TBI, and reached its peak at 24 h, and then 
declined at 48 h, but still markedly higher than that in the 
control group. All of  these demonstrated that TBI stress 
could be an initiating factor to increase the permeability of  
intestinal mucosa, suggesting that the intestinal mucosal 
barrier dysfunction initiated at the early stage of  TBI. 

At present, the specific pathogenesis and progress 
of  the intestinal mucosal barrier damage still remain 
unclear. Stress is known to alter ingestive behaviors and 
associated physiological events such as gastric acid secre-
tion and gastrointestinal motility. Mast cells translate the 
stress signal that has been transmitted through brain-
gut axis to release a wide range of  neurotransmitters and 
proinflammatory mediators, some of  them are brain-
gut peptides, such as 5-HT, SP, CGRP, CRP, CCK, NO, 
NE and VIP. Evidences implicated that the brain-gut 
peptides are involved in these physiological effects which 
can change the intestinal motility, modulate tight junc-
tion proteins and increase the intestinal permeability[7,17]. 
Animal studies suggest that cholecystokinin (CCK) acts 
via a vagal afferent pathway to decrease gastrointestinal 
motility[18] and substance P can stimulate a contractile 
function of  smooth muscle[19]. Studies in animal models 
showed that burn injury and cardiopulmonary bypass 
markedly down-regulated the expression of  occludin and 
tight junction associated protein ZO-1 in intestinal mu-
cosa of  rats. The close correlation between expression 
of  tight junctions and plasma levels of  diamine oxidase 
or d-lactate supports the hypothesis that intestinal per-
meability increases during and after stress events because 
of  decreases in the expression of  tight junctions[20,21].
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Table 1  Changes of endotoxin in plasma (mean ± SD) (EU/mL)

Groups 6 h 12 h 24 h 48 h

Control 0.102 ± 0.007 0.114 ± 0.021 0.112 ± 0.018 0.108 ± 0.011
TBI  0.382 ± 0.014a  0.466 ± 0.018a  0.478 ± 0.029a   0.412 ± 0.036a

aP < 0.05 vs control. TBI: Traumatic brain injury. 

Table 2  Changes of D-xylose in plasma (mean ± SD) (mmol/L)

Groups 6 h 12 h 24 h 48 h

Control 3.66 ± 1.07 3.15 ± 0.95   3.78 ± 1.12   3.34 ± 1.23
TBI  6.68 ± 2.37a  8.51 ± 2.69a  11.68 ± 3.24a  10.23 ± 2.83a

aP < 0.05 vs control. TBI: Traumatic brain injury. 

Groups 6 h 12 h 24 h 48 h

Control 45.6 ± 4.6 48.2 ± 5.3 44.9 ± 2.8 46.7 ± 3.2
TBI 38.5 ± 2.8  25.2 ± 3.1a  21.5 ± 2.7a  29.4 ± 3.8a

aP < 0.05 vs control. TBI: Traumatic brain injury. 

Table 4  Ratio of intestinal propulsion (mean ± SD) (%)

Groups 6 h 12 h 24 h 48 h

Control 0.62 ± 0.03 0.64 ± 0.01 0.63 ± 0.05 0.65 ± 0.02
TBI  0.48 ± 0.06a  0.37 ± 0.05a  0.39 ± 0.07a  0.46 ± 0.03a

aP < 0.05 vs control. TBI: Traumatic brain injury. 

Table 3  Changes of intestinal mucosal blood flow (mean ± 
SD) (PU)
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IMBF plays a vital role in intestinal mucosal defense 
system. Sufficient IMBF brings oxygen and nutrients to 
the mucosal cells, maintains the normal structure and 
function of  intestinal mucosa and is closely associated 
with the pathogenesis and healing of  intestinal muco-
sal lesions[22]. Our results revealed that IMBF decreased 
significantly at the early stage of  TBI, and the intestinal 
mucosal permeability increase occurred at the same time. 
As intestinal mucosa is very sensitive to the shortage of  
blood and oxygen, ischemia/reperfusion (I/R) is the main 
pathogenesis of  intestinal mucosal damage. The physiopa-
thology of  intestinal mucosal damage by I/R is not fully 
understood. But, it is believed that cytotoxic substances 
such as free radicals, nitric oxide, pro-inflammatory cyto-
kines, leukotrienes, serotonin and other related products, 
play important roles[23,24]. I/R not only damages the intes-
tinal mucosal barrier function but also alters the gastroin-
testinal motility[25].

It is widely believed that delayed intestinal motility 
could cause small intestinal bacterial overgrowth (SIBO). 
Gangarosa[26] demonstrated that intestinal motility served 
as a normal cleansing mechanism of  the intestine. Leveau 
et al[27] noticed a delay in intestinal transit time, appearing 
as an early event in acute pancreatitis, preceding SIBO, 
and suggested that impairment in intestinal motility may 
play a role in the development of  SIBO. Tsukada et al[28-30] 
demonstrated that the small intestinal transit was signifi-
cantly inhibited by restraint stress. Our results revealed 
that, at the early stage of  TBI, the intestinal propulsion 
ratio decreased significantly as compared with control 
group (P < 0.05). Damage of  intestinal mucosal barrier 
function occurred at the same time, indicating that the 
inhibition of  intestinal motility might be another vital 
factor of  gastrointestinal barrier dysfunction.

The mechanism may be explained by the fact that the 
prolonged small intestinal transit makes it possible that the 
small intestinal content remains in the intestinal tract for a 
long time, preceding SIBO, increasing the chance of  bacte-
rial and endotoxin translocation and producing a great deal 
of  gas. The defect of  intestinal barrier and the above factors 
of  small intestinal dysfunction may enhance each other. 

In summary, the damage of  intestinal mucosal barrier 
function following TBI is caused by multiple factors, the 
close correlation between decrease of  intestinal blood 
flow and motility and increase of  intestinal permeability 
supports the hypothesis that both of  them might play a 
very important role in the regulation of  intestinal epithe-
lial barrier dysfunction during and after TBI. Therefore, 
maintaining intestinal barrier function is a systematic 
engineering project. Further research that more precisely 
characterizes the role of  intestinal mucosal blood flow 
and intestinal motility in these diseases could put new in-
sights into the new therapies for stress-induced injury of  
intestinal mucosal barrier function.
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