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Introduction

Radiation therapy is an important treatment option for patients 
with localized, early stage prostate cancer. In patients with T1 to 
T3 lesions, without nodal or distant metastases, similar clinical 
results are obtained through surgery (radical prostatectomy) or 
radiation therapy. Radiation therapy can be delivered by any of 
several approaches: external beam, brachytherapy, and intensity 
modulated radiation therapy (IMRT). However, with surgery 
or with radiation therapy, a percentage of patients with well-
documented localized disease will experience the return of their 
malignancy.

In patients with low risk localized prostate cancer, treated with 
modern IMRT, actuarial PSA relapse-free survival is 85–89%. 
In unfavorable risk localized prostate cancer, the actuarial PSA 
relapse-free survival is 59–72%.1 Therefore, even in the group 
of patients with the best clinical features and the most favorable 
prognosis, 11–15% of these patients have intra-tumor characteris-
tics that lead to relapse of disease. One question is whether there 
are intra-tumor considerations for DNA repair pathways that may 
make some prostate cancer cells more resistant to radiation therapy, 
and therefore make those tumors more likely to clinically recur.
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Though considerable inter-patient differences in response 
to radiotherapy occur, the mechanisms behind these different 
responses are not well understood. A variety of patient, tumor, 
treatment and molecular factors contribute to the various out-
come of radiotherapy. The understanding of this mechanism 
may increase the predictability of outcome and selection of 
the optimal treatment. The work published by the Radiation 
Therapy Oncology Group (RTOG) investigated a total of 11 
potential prognostic markers, and only p53 and DNA ploidy 
showed association with overall survival.2 Since ionizing radia-
tion acts through creating various types of DNA damage, the 
inter-individual radiosensitivity may influence the patient’s 
response to such therapy. The genetic polymorphisms in DNA 
repair genes were believed to serve as the genetic basis for such 
inter-individual differences. It was also found that the genetic 
polymorphisms in DNA repair genes were differently distributed 
in ethnic groups and might contribute to the ethnic disparity of 
sensitivity to DNA-damaging chemotherapy.3

The types of DNA damage induced by radiation include 
DNA base damage and both single- and double-strand DNA 
breaks.4 Such lesions, if inadequately repaired, can lead to cell 
death by lethal chromosomal aberrations or apoptosis, the desired 
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not found when all patients were investigated. We conclude that the genetic polymorphisms in XRCC1 may affect the 
outcome in patients who received radiotherapy for localized prostate cancer.



14 Cancer Biology & Therapy Volume 10 issue 1

plays an important role in repairing radiation inflicted lesions, 
several PARP1 inhibitors have been tested in clinical trials to try 
to increase the effectiveness of ionizing radiation in the treatment 
of cancer.20-22

In addition to BER, the NER pathway also plays a role in 
removing multiple types of DNA damage, including those 
caused by UV light and platinum-containing chemotherapy 
agents. Important genes in the NER, ERCC1 and XPF, are essen-
tial for the 5' incision into the DNA strand that releases bulky 
DNA lesions.23,24 XPD is a 5'-3' helicase that participates in DNA 
strand separation prior to the 5' incision step performed by the 
ERCC1-XPF heterodimer.25

The aim of this study is to investigate the genetic polymor-
phisms in the DNA repair pathways that are involved in repair-
ing radiation induced DNA damage, and will focus on the NER 
and BER pathways.

Results

Five hundred and thirteen patients with CRPC were assayed 
for five single nucleotide polymorphisms (SNPs): ERCC1 
N118N (500C>T), XPD K751Q (2282A>C), XRCC1 R399Q 
(1301G>A), XRCC1 R194W (685C>T), and PARP1 V762A 
(2446T>C). The distribution of these SNPs among the 513 
patients studied was compared to the 152 healthy volunteer 
controls. Statistical analyses of the genotype prevalence for all 
five polymorphisms revealed no evidence of any differences 
between the two groups (table 1). All of the genotype distribu-
tions were in Hardy-Weinberg equilibrium in both cases and 
controls.

We determined whether the polymorphisms were associated 
with overall survival using the univariate method. None of the 
polymorphisms evaluated showed a trend toward an association 
with survival individually. The results are shown in table 2.

By comparing the individual median survival time in each geno-
type group, it was noted that the variant genotype (AA) of XRCC1 
R399Q had the longest survival time (11.12 years), while the 
patients having the XRCC1 R194W heterozygous genotype CT 
had the shortest median survival time (6.52 years). Interestingly, in 
the group of patients who received radiotherapy as their treatment 
for the localized prostate cancer, the individuals with the XRCC1 
R399Q AA or AG genotypes had median survival times as long 
as 10 years, while the individuals with the XRCC1 R194W CT 
genotype only had the median survival time of 6.81 years. Thus we 

outcome of radiation therapy. Multiple DNA repair pathways are 
involved to maintain the genomic integrity, and the homologous 
recombination (HR) and non-homologous end-joining (NHEJ), 
nucleotide excision repair (NER) and base excision repair (BER) 
pathways are thought to contribute heavily to remove the damage 
caused by ionizing radiation.4,5

XRCC1 was the first human gene cloned in the BER pathway, 
and cells lacking this gene product are hypersensitive to ionizing 
radiation.6 XRCC1 works as a stimulator and scaffold protein 
for other enzymes involved in this pathway. Polymorphisms have 
been previously identified in XRCC1 that correlate with phe-
notypic changes.7 One important polymorphism in XRCC1 is 
R194W, located in the linker region separating the NH

2
-terminal 

domain (NTD) from the central BRCT1 (BRCA1 C-terminus) 
domain, as illustrated in Figure 1. The linker region was also 
suggested to be a potential binding domain of several interactive 
proteins, and is rich in basic amino acids. The substitution of 
arginine to hydrophobic tryptophan may affect the protein bind-
ing efficiency. According to a review by Goode et al.8 the R194W 
polymorphism was related to reduced risk to cancer, and this was 
confirmed by two later association studies.9,10 However, another 
study showed a highly significant association (p = 0.0005) of 
R194W with the increased risk of head and neck cancer in a 
Korean population.11 The possible reasons for these confound-
ing results include that the epidemiological studies could be 
misleading and this polymorphism might not directly associate, 
but link to another relevant polymorphism to form haplotypes.7 
The second XRCC1 polymorphism, R399Q, is a well-studied 
single nucleotide polymorphism (SNP) located in the BRCT1 
domain, which is essential for PARP1 binding. Cells carrying 
this mutation have been shown to be defective in responding to 
both X-ray radiation and UV light.12 Studies correlated the poly-
morphisms in XRCC1 with either adverse effects13 or protective 
effects resulting from radiotherapy,14,15 or favorable response to 
therapeutic radiation16-18 in several cancers.

PARP1, another important gene in DNA repair, assists by 
recruiting XRCC1 after sensing DNA damage. The variation, 
V762A in PARP1, causes the loss of two methyl groups that in 
turn increases the distance between 762 and its closest neigh-
bor in the active site. This steric change looses the binding of 
NAD+ and reduces the enzymatic activity nearly two fold.19 As 
a consequence, the variant enzyme may be less able to sense the 
damage in DNA and reduce the recruitment of XRCC1 and 
other proteins involved in the repair process. Since PARP1 also 

Figure 1. Structure of XRCC1 domains and locations of the single nucleotide polymorphisms (SnPs) genotyped in this study. nTd, n-terminal domain; 
nLS, nuclear localization signal domain; BRCT, BRCa C-terminus domain; CK2, Ck2 phosphorylation sites, modified from.7
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XRCC1 R399Q AA genotype and the R194W CT genotype tend to 
be mutually exclusive. There is only one patient with this haplotype, 
and this patient is still living. When all patients were investigated, 
the median survival time was 9.81 years for the 53 patients with the 
R399Q AA/R194W CC genotype, 8.39 years for the 124 patients 
with the R399Q AG/R194W CC genotype, 6.52 years for the  

investigated the intragenic association of the two polymorphisms 
with the overall survival. Patients having either the R399Q AA or 
AG genotypes and patients having the R194W CT genotype were 
included in this investigation and four haplotypes were found: 
R399Q AA/R194W CC, R399Q AG/R194W CC, R399Q AG/
R914W CT and R399Q GG/R194W CT. It was noted that the 

Table 1. distribution of polymorphisms among healthy controls and patients

SNP Genotype Control* Patients OR 95% CI p value

ERCC1 CC 23 (0.21) 91 (0.21) Referent - -

n118n CT 53 (0.49) 197 (0.46) 0.940 0.5426–1.627 0.8899

(500C>T) TT 32 (0.30) 143 (0.33) 1.129 0.6218–2.052 0.7595

XPd aa 49 (0.42) 186 (0.43) Referent - -

K751Q aC 56 (0.47) 178 (0.42) 0.837 0.5419–1.294 0.4399

(2282a > C) CC 13 (0.11) 64 (0.15) 1.297 0.6608–2.546 0.5129

XRCC1 CC 120 (0.87) 402 (0.89) Referent - -

R194W CT 17 (0.12) 43 (0.09) 0.755 0.4154–1.372 0.3399

(685C>T) TT 1 (0.01) 7 (0.02) 2.090 0.2544–17.16 0.6893

XRCC1 GG 49 (0.46) 145 (0.41) Referent - -

R399Q aG 47 (0.44) 151 (0.43) 1.086 0.6850–1.721 0.8144

(1301G>a) aa 10 (0.10) 56 (0.16) 1.892 0.8967–3.994 0.1248

PaRP1 TT 80 (0.67) 315 (0.70) Referent - -

V762a CT 32 (0.27) 123 (0.27) 0.976 0.6163–1.546 0.9068

(2446T>C) CC 7 (0.06) 15 (0.03) 0.544 0.2147–1.380 0.1873

OR, odds ratio; Ci, exact confidence interval. *Values are number (percentage).

Table 2. Median survival, and two-tailed log-rank test p values

SNP Genotype Median survival (years)
Median  survival  

radiation group (years)
Median survival  

non- radiation group (years)

ERCC1 CC 8.21 9.72 6.915

n118n CT 7.84 10.35 4.781

(500C>T) TT 8.33 8.86 6.381

p value 0.7622 0.9649 0.4028

XPd aa 8.13 8.86 6.7

K751Q aC 8.21 10.33 5.32

(2282a>C) CC 7.155 9.22 4.15

p value 0.9925 0.9325 0.6019

XRCC1 GG 8.17 9.22 5.88

R399Q aG 7.77 10.41 5.41

(1301G>a) aa 11.12 11.75 8.305

p value 0.5256 0.8456 0.6261

XRCC1 CC 8.06 9.66 5.88

R194W CT 6.52 6.81 4.24

(685C>T) TT 9.22 9.22 10.595

p value 0.5493 0.3361 0.8515

PaRP1 TT 8.17 9.55 5.9

V762a CT 7.69 8.82 4.985

(2446T>C) CC 5.88 11.675 3.9

p value 0.8469 0.6805 0.0949
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In the NCI-60 cell line screening, the genotypes of the 5 
SNPs: ERCC1 N118N (500C>T), XPD K751Q (2282A>C), 
XRCC1 R399Q (1301G>A), XRCC1 R194W (685C>T), and 
PARP1 V762A (2446T>C), did not show significant correla-
tion to the sensitivity to DNA damaging chemotherapy agents 
cisplatin, carboplatin, oxaliplatin, and tetraplatin as reported 
previously.27

Discussion

The study presented here investigated the possible association 
between polymorphisms in NER and BER DNA repair genes 
and clinical outcome of radiotherapy in patients with prostate 
cancer. We observed several patterns with our data. First, all five 
SNPs assessed in this study were not associated with prostate 
cancer as compared to healthy volunteers. Second, there was a 
significant trend in patient survival to suggest the possibility that 
the XRCC1 R399Q genotype in combination with the XRCC1 
R194W may have an impact on the outcome of radiotherapy in 
prostate cancer. Neither the XRCC1 R399Q nor the XRCC1 
R194W was associated with overall survival individually (p = 
0.5256 and 0.5493, respectively). However, the combination of 
R399Q and R194W genotypes showed correlation to the overall 
survival in the patients receiving radiotherapy in prostate can-
cer. Patients possessing at least one variant allele A of R399Q 
and wild-type CC of R194W had significantly longer survival 
time after radiotherapy, while patients having at least one wild-
type allele G of R399Q and the heterozygous genotype CT of 
R194W had shorter survival time (p = 0.034). This outcome was 
not observed when patients received therapies other than radia-
tion were included.

As suggested by our study, the genotype of XRCC1 R399Q 
may be a prognostic factor to radiation therapy in patients 
with prostate cancer, and this effect is modified by the R194W 
genotype.

Laboratory studies indicated that the variant genotype of 
XRCC1 R399Q is more sensitive to X-ray and UV-light than 
the other two genotypes within this codon.12 XRCC1 R399Q 
is located in the BRCT1 domain (Fig. 1), a critical region 
that is required for PARP1 mediated recruitment of XRCC1 
upon DNA damage. This site is involved in survival after 
methylation damage.28 It was suggested that the substitution 
of an arginine to glutamine could cause the loss of a second-
ary structure feature such as an alpha helix that is important 
for correct protein-protein interactions in the BRCT1 domain, 
and thus compromising the DNA repair capability.29 Longer 
median survival was found in this study for patients possessing 
the variant genotype AA of the XRCC1 R399Q (11.12 years 
comparing to 7.77 years and 8.17 years for the other two geno-
types), though not statistically significant (p = 0.5256). A study 
showed that the number of variant alleles in APE1 D148Q and 
XRCC1 R399Q genotypes was significantly correlated with 
prolonged cell cycle delay following ionizing radiation (IR), 
which resulted in IR hypersensitivity in breast cancer cases 
(p = 0.001).30 Theoretically, the variant allele of the XRCC1 
R399Q may impair the interaction between XRCC1 and other 

19 patients with the R399Q AG/R194W CT genotype and 5.26 
years for the 13 patients with the R399Q GG/R194W CT geno-
type, with a global two-tailed p-value of 0.14. The probability of 
survival over time is shown in Figure 2a. However, in the radia-
tion treated subgroup, the median survival time showed an asso-
ciation with the XRCC1 haplotypes. The median survival time 
was 11.75 years for the 35 patients with the R399Q AA/R194W 
CC genotype, 12.17 years for the 63 patients with the R399Q 
AG/R194W CC genotype, 6.665 years for the 12 patients with 
the R399Q AG/R194W CT genotype and 6.21 years for the 9 
patients with the R399Q GG/R194W CT genotype (p = 0.034). 
The probability of overall survival over time is depicted for these 
patients in Figure 2b. These results suggest that the haplotype of 
the BER gene XRCC1 serve as a prognostic marker for radiother-
apy in prostate cancer.

Figure 2. Kaplan-Meier overall survival curves in patients with CRPC 
according to XRCC1 R194W (685C>T) and R399Q (1301G>a) haplotypes. 
The duration of survival was computed from the date of prostate cancer 
diagnosis until the date of death or last follow-up. P values are adjusted 
for haplotype analysis. (a) all patients are divided into four haplotype 
groups, and the median survival time 9.81 years for R399Q aa/R194W 
CC (n=53), 8.39 years for R399Q aG/R194W CC (n=124), 6.52 years for 
R399Q aG/R194W CT (n=19) and 5.26 years for R399Q GG/R194W CT 
genotype (n=13), p= 0.14. (B) Patients who received radiotherapy are 
grouped into the same four subsets according to their XRCC1 haplo-
type. The median survival time was 11.75 years for R399Q aa/R194W 
CC (n=35), 12.17 years for R399Q aG/R194W CC genotype (n=63), 6.665 
years for R399Q aG/R194W CT (n=12) and 6.21 years for R399Q GG/
R194W CT (n=9), p=0.034.
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to radiation in cells obtained from patients with cancer (p < 
0.001).

DNA repair pathways help to maintain genetic stability and 
prevent the development of cancer. However, they also represent 
a potential mechanism of resistance to DNA damaging chemo-
therapy and radiotherapy. The polymorphisms in DNA repair 
genes provide the genetic basis for various DNA repair capability. 
To identify radiosensitive cancer patients before treatment may 
allow tailored radiotherapy and optimize the effectiveness and 
toxicity of ionizing radiation in clinical practice.

Subjects and Methods

Five hundred and thirteen patients with castrate-resistant pros-
tate cancer (CRPC) were analyzed in this study. These include 
284 patients who received external beam radiotherapy (XRT) 
and/or brachytherapy and 229 patients with the same disease 
but did not receive radiotherapy. All patients were Caucasians 
and were enrolled in an institutional review board-approved 
clinical trial within the intramural program of the National 
Cancer Institute, and were arbitrarily assigned a number in 
our database to protect confidentiality. Informed consent was 
obtained from all subjects before trial participation. In addi-
tion, 152 male Caucasian control samples were analyzed. All 
volunteers had signed informed consent to allow their sam-
ples to be used for genotyping, and none had a diagnosis of 
cancer.

Genomic DNA was extracted from serum or white blood cell 
buffy coat layers of whole blood of patients, or NCI-60 cell pel-
lets as previously described.26 Polymerase chain reaction (PCR) 
and direct nucleotide sequencing were performed as described 
previously.3

Confidence intervals for the odds ratios of the distributions of 
individual polymorphisms relative to the wild-type between con-
trols and patients with cancer were determined using the exact 
method. The probability of survival as a function of time since 
diagnosis was determined by the Kaplan-Meier method. The 
statistical significance of the differences in survival among the 
genotypes was determined by the log-rank test. An adjustment 
was made to the p value comparing survival among patients with 
different haplotypes when the grouping was made after examin-
ing the data and selecting the better of the possible combinations. 
Except as noted, all p values are two-tailed and reported without 
adjustment for multiple comparisons.

proteins, resulting in inefficient removal of radiation induced 
DNA damage and prolonged cell cycle arrest, which delivers 
favorable response to radiotherapy.

The polymorphism of R194W is located in a linker region 
(residues 158–310) between the NTD and the central BRCT 
domain of XRCC1 (Fig. 1), enriched in basic amino acids. 
The high pI and overall positive charge of this region was sug-
gested to have an important role in proper secondary structure 
formation.31 This domain is also the potential protein-binding 
domain for several interactive protein partners (PCNA, APE1, 
etc.) of the XRCC1 protein. The transition from the positively 
charged arginine to a hydrophobic tryptophan could affect 
binding and DNA repair efficiency. An in silico study suggested 
that the presence of the variant allele of R194W might result 
in a damaging effect and an intolerant protein.7 We found a 
low frequency of the variant genotype TT of this SNP in our 
study population (1% in the healthy volunteers and 2% in the 
patient group). It is also noteworthy that in our patient group, 
the heterozygous genotype of the XRCC1 R194W tends to seg-
regate from the variant homozygous genotype of R399Q, which 
may indicate that the wild-type allele of R399Q has a protective 
effect that compensates the compromised protein function of 
XRCC1 caused by R194W allele. A previous study showed that 
the variant allele of R194W had higher frequency in radiation-
sensitive breast cancer cases (OR 1.98, 95% CI 0.92–4.17).32 
Our study also showed longer survival time in the patients 
with the variant genotype of R194W (9.22 years comparing to 
8.06 years and 6.52 years) but not statistically significant (p = 
0.5493). However, in the haplotype analysis, as the result of it’s 
tending to group with the wild-type allele of XRCC1 R399Q, 
the variant allele of R194W showed a protective effect on radio-
therapy. This is consistent with another study showing that the 
wild-type allele G of R399Q along with the variant allele T of 
R194W, and the wild-type allele of XRCC1 R280H had shorter 
overall survival than other haplotypes in patients with lung 
cancer that received radiotherapy (p = 0.04).18 Though some 
epidemiological studies did suggest the variant allele of XRCC1 
R194W confers reduced cancer risk,8 others suggested vice 
versa.11 Our data presented here seems to indicate that there may 
be a complicated intergenic interaction between the polymor-
phisms of XRCC1 R399Q and R194W. This intergenic inter-
action may be universal and extends to multiple DNA repair 
genes. As suggested by another study,33 possessing more than  
four SNPs in DNA repair genes resulted in hypersensitivity 
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