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Summary

The plant pathogenic bacterium Xanthomonas
campestris pv. vesicatoria utilizes a type III secretion
(T3S) system to inject effector proteins into eukary-
otic cells. T3S substrate specificity is controlled by
HpaC, which promotes secretion of translocon and
effector proteins but prevents efficient secretion of
the early substrate HrpB2. HpaC and HrpB2 interact
with the C-terminal domain (HrcUC) of the FlhB/YscU
homologue HrcU. Here, we provide experimental evi-
dence that HrcU is proteolytically cleaved at the con-
served NPTH motif, which is required for binding of
both HpaC and HrpB2 to HrcUC. The results of mutant
studies showed that cleavage of HrcU contributes to
pathogenicity and secretion of late substrates but is
dispensable for secretion of HrpB2, which is presum-
ably secreted prior to HrcU cleavage. The introduc-
tion of a point mutation (Y318D) into HrcUC activated
secretion of late substrates in the absence of HpaC
and suppressed the hpaC mutant phenotype.
However, secretion of HrpB2 was unaffected by
HrcUY318D, suggesting that the export of early and late
substrates is controlled by independent mechanisms
that can be uncoupled. As HrcUY318D did not interact
with HrpB2 and HpaC, we propose that the substrate
specificity switch leads to the release of HrcUC-bound
HrpB2 and HpaC.

Introduction

Gram-negative plant and animal pathogenic bacteria
often employ type III secretion (T3S) systems to deliver
bacterial effector proteins directly into eukaryotic cells, a

process referred to as translocation (Ghosh, 2004). Type
III effector proteins manipulate host cellular pathways to
the benefit of the bacteria and thus allow successful
multiplication of the bacteria in the host tissue (Block
et al., 2008; Galan, 2009). Translocation-associated T3S
systems are evolutionarily related to flagellar T3S
systems, which are the key bacterial motility organelles
(Desvaux et al., 2006). Both T3S systems consist of a
membrane-spanning secretion apparatus (basal body)
but differ in their extracellular appendages. The flagellar
basal body is linked via an extracellular hook to the flagel-
lar filament, whereas the translocation-associated basal
body is connected to a pilus (plant pathogens) or needle
(animal pathogens) that serve as protein transport
devices to the host–pathogen interface (Ghosh, 2004;
Macnab, 2004). The T3S pilus from plant pathogenic bac-
teria is considerably longer (up to 2 mm) than the T3S
needle (40–80 nm) and presumably spans the plant cell
wall (Jin and He, 2001; Koebnik, 2001; Li et al., 2002;
Ghosh, 2004). Needle and pilus are directly or indirectly
connected to the bacterial channel-like T3S translocon in
the host plasma membrane, which mediates effector
protein translocation (Büttner and Bonas, 2002a;
Coombes and Finlay, 2005; Mueller et al., 2008).

Translocation-associated T3S systems from plant and
animal pathogenic bacteria secrete at least three different
sets of substrates, i.e. (i) proteins involved in the assem-
bly of the extracellular needle or pilus, (ii) components of
the T3S translocon and (iii) effector proteins. Efficient
secretion and/or translocation of T3S substrates depends
on a signal that is often located in the N-terminal protein
region and is not conserved on the amino acid level
(Anderson and Schneewind, 1997; Lloyd et al., 2001;
Petnicki-Ocwieja et al., 2002; Arnold et al., 2009; Sam-
udrala et al., 2009). Furthermore, in some cases bacterial
cytoplasmic T3S chaperones are involved that bind to
secreted substrates and promote their stability and/or
secretion (Parsot et al., 2003; Ghosh, 2004).

It is postulated that the secretion of extracellular com-
ponents of the secretion apparatus precedes effector
protein translocation. This implies that the substrate
specificity of the T3S system switches from ‘early’ to ‘late’
substrates. In animal pathogenic bacteria the T3S sub-
strate specificity is controlled by so-called T3S substrate
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specificity switch (T3S4) proteins that are themselves
secreted. Examples are YscP from Yersinia spp. that
switches the T3S substrate specificity from needle to
translocon and effector proteins, and FliK from flagellar
T3S systems that promotes secretion of filament proteins
after hook assembly (Minamino et al., 1999a,b; Journet
et al., 2003; Agrain et al., 2005; Sorg et al., 2007). The
T3S substrate specificity switch depends on the interac-
tions between T3S4 proteins and the cytoplasmic
domains of conserved inner membrane proteins that
belong to the FlhB/YscU family (Minamino and Macnab,
2000a; Ferris and Minamino, 2006; Waters et al., 2007;
Botteaux et al., 2008). Members of this family contain four
transmembrane helices and a C-terminal cytoplasmic
domain that is proteolytically cleaved off but probably
associates with the remaining part of the protein and was
proposed to act as a substrate acceptor site (Allaoui et al.,
1994; Minamino and MacNab, 2000a,b; Fraser et al.,
2003; Deane et al., 2008; Berger et al., 2010). Cleavage
of FlhB/YscU family members occurs autocatalytically
between the asparagine and proline residues of a con-
served NPTH (letters refer to amino acids) motif and
results in a reorientation of the PTH loop (Minamino and
MacNab, 2000a; Lavander et al., 2002; Ferris et al., 2005;
Sorg et al., 2007; Deane et al., 2008; Zarivach et al.,
2008; Björnfot et al., 2009; Lountos et al., 2009; Wiesand
et al., 2009). It was proposed that the cleavage and pre-
sumably a conformational change in the C-terminal
domain of FlhB/YscU family members that is induced
upon binding of T3S4 proteins contribute to the T3S sub-
strate specificity switch (Williams et al., 1996; Edqvist
et al., 2003; Ferris et al., 2005; Cornelis et al., 2006;
Deane et al., 2008; Minamino et al., 2008; Zarivach et al.,
2008; Björnfot et al., 2009; Lountos et al., 2009; Wiesand
et al., 2009). This model is corroborated by the finding that
the wild-type phenotype in T3S4 mutants from Salmonella
typhimurium, Yersinia pseudotuberculosis and entero-
pathogenic Escherichia coli can be restored by extragenic
suppressor mutations in the C-terminal regions of FlhB,
YscU and the homologous EscU protein respectively
(Kutsukake et al., 1994; Williams et al., 1996; Edqvist
et al., 2003; Zarivach et al., 2008).

While the molecular mechanisms underlying control of
T3S substrate specificity have intensively been studied in
animal pathogenic bacteria, little is known about the
mechanisms in plant pathogens. In our laboratory, we
study Xanthomonas campestris pv. vesicatoria, which is
the causal agent of bacterial spot disease in pepper and
tomato plants and one of the model systems for the analy-
sis of T3S. The T3S system from X. campestris pv.
vesicatoria is encoded by the chromosomal hrp (hyper-
sensitive response and pathogenicity) gene cluster, which
contains 25 genes that are organized in eight transcrip-
tional units (Bonas et al., 1991; Büttner et al., 2007;

Weber et al., 2007). Comparative sequence analysis of
hrp gene products revealed that eleven proteins (referred
to as Hrc for Hrp conserved) are conserved among plant
and/or animal pathogenic bacteria (Büttner and Bonas,
2002b; He et al., 2004). They probably constitute the core
components of the membrane-spanning secretion
apparatus. Mutant studies revealed that hrc and most hrp
genes are essential for pathogenicity (Fenselau et al.,
1992; Fenselau and Bonas, 1995; Wengelnik et al., 1996;
Huguet and Bonas, 1997; Rossier et al., 2000). Only in a
few cases, mutations of individual genes of the hrp gene
cluster do not completely abolish the bacteria–plant
interaction. The corresponding gene products were there-
fore designated Hpa (Hrp associated) and proposed to be
involved in the control of T3S (Huguet et al., 1998; Büttner
et al., 2004; 2006; Lorenz et al., 2008a,b). We have pre-
viously shown that the efficient secretion and transloca-
tion of effector proteins such as AvrBs1, AvrBs3, AvrBsT,
XopC, XopJ and XopF1 depend on the T3S chaperone
HpaB, which interacts with effector proteins and presum-
ably targets them to the T3S system-associated ATPase
HrcN (Büttner et al., 2004; 2006; Lorenz et al., 2008b).
HpaB binds to HpaC, an additional cytoplasmic control
protein that promotes secretion of translocon and effector
proteins but prevents efficient secretion of HrpB2, which is
required for pilus assembly and is therefore presumably
one of the first substrates that travels the secretion appa-
ratus (Rossier et al., 2000; Weber et al., 2005; Lorenz
et al., 2008b). As HpaC differentially regulates the secre-
tion of early (HrpB2) and late (effector and translocon
proteins) T3S substrates, it likely acts a cytoplasmic T3S4
protein. This hypothesis is corroborated by the finding that
HpaC interacts with the C-terminal domain of HrcU, which
is a member of the FlhB/YscU family of inner membrane
proteins (Lorenz et al., 2008b). Interestingly, however,
HpaC does not interact with the full-length HrcU protein,
suggesting that the interaction with the C-terminal domain
of HrcU depends on a certain protein conformation that is
altered in the context of the full-length HrcU protein
(Lorenz et al., 2008b). In addition to HpaC, the C-terminal
domain of HrcU was shown to interact with HrpB2 but not
with other T3S substrates and is therefore presumably not
a general T3S substrate acceptor site (Lorenz et al.,
2008b).

In this study, we investigated the contribution of the
T3S4 protein HpaC and the C-terminal cytoplasmic
domain of HrcU (HrcUC) to T3S of early and late sub-
strates from X. campestris pv. vesicatoria. The analysis of
HrcU derivatives mutated in the NPTH motif suggests that
the efficient cleavage of HrcU but not the cleavage event
per se is required for pathogenicity and T3S of late sub-
strates whereas HrpB2 is presumably secreted prior to
HrcU cleavage. The results of protein–protein interaction
studies revealed that the NPTH motif of HrcU is required
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for binding of both HrpB2 and HpaC to HrcUC. Notably, the
introduction of a P265G mutation into HrcU abolished the
HrcUC–HrpB2 interaction and also the efficient secretion
of HrpB2. In contrast, secretion of HrpB2 was unaffected
upon introduction of a point mutation (Y318D) into HrcUC,
which suppressed the hpaC mutant phenotype with
respect to pathogenicity and T3S of translocon and effec-
tor proteins. We therefore assume that the control mecha-
nisms underlying secretion of early and late substrates
can be uncoupled. Given the finding that HrcUY318D did not
interact with HrpB2 and HpaC, the substrate specificity
switch in X. campestris pv. vesicatoria likely leads to the
release of HrcUC-bound HrpB2 and HpaC.

Results

Efficient proteolytic cleavage of HrcU depends on the
conserved NPTH amino acid motif

The FlhB/YscU homologue HrcU from X. campestris pv.
vesicatoria strain 85-10 contains four transmembrane
helices and a C-terminal cytoplasmic region that is pro-
teolytically cleaved in both E. coli and X. campestris pv.
vesicatoria (Fig. 1A; Lorenz et al., 2008b; Berger et al.,
2010). Cleavage of HrcU presumably occurs at the con-
served NPTH motif (amino acids 264–267) as was
described for HrcU homologues from animal pathogenic
bacteria. To study the contribution of the NPTH motif of
HrcU to protein cleavage and function, we introduced
point mutations that led to an exchange of each amino
acid residue of the NPTH motif by alanine respectively.
The resulting HrcU mutant derivatives were analysed as
C-terminally c-Myc epitope-tagged proteins in E. coli and
X. campestris pv. vesicatoria strain 85-10DhrcU by
immunoblotting. Using a c-Myc epitope-specific antibody,
we detected the full-length HrcU-c-Myc, HrcUT266A-c-Myc
and HrcUH267A-c-Myc proteins and/or corresponding cleav-
age products (Fig. 1B). As full-length HrcU-c-Myc was
only detectable in E. coli but not in X. campestris pv.
vesicatoria, we assume that the proteolytic cleavage of
HrcU-c-Myc in X. campestris pv. vesicatoria was nearly
complete (Fig. 1B). We detected increased levels of
uncleaved HrcUT266A-c-Myc and HrcUH267A-c-Myc when
compared with HrcU-c-Myc, suggesting that mutations of
amino acids T266 and H267 of HrcU affect the efficiency
of the proteolytic cleavage. The C-terminal HrcU cleavage
product was not observed for HrcUN264A-c-Myc and only in
significantly reduced amounts for HrcUP265A-c-Myc (upon
overexposure of the blot; Fig. 1B and C). We also intro-
duced an additional mutation into HrcU that led to an
exchange of the proline residue at position 265 by a
glycine. Notably, the P265G exchange resulted in a com-
plete loss of detectable HrcU cleavage (Fig. 1C).

In addition to the full-length proteins, we generated
HrcU derivatives lacking the N-terminal 205 amino acids

(HrcU206–357-c-Myc). HrcU206–357-c-Myc was expressed at
higher levels than HrcU-c-Myc, which facilitated the
detection of the C-terminal cleavage product. Immunob-
lot analysis revealed the presence of cleavage products
for HrcU206–357-c-Myc and corresponding T266A and
H267A mutants in both E. coli and X. campestris pv.
vesicatoria (Fig. 1D). Cleavage was not observed for
HrcU206–357/N264A-c-Myc; however, small amounts of the
cleavage product were detectable for HrcU206–357/P265A-c-
Myc, which supports the above finding that proteolytic
cleavage is not completely abolished by the P265A
mutation (Fig. 1D).

Mutations in the NPTH motif of HrcU interfere with
protein function

To analyse whether HrcU mutant derivatives complement
the hrcU mutant phenotype, X. campestris pv. vesicatoria
strains 85-10 and 85-10DhrcU carrying the empty vector
or hrcU expression constructs were inoculated into leaves
of susceptible Early Cal Wonder (ECW) and resistant
ECW-10R pepper plants. ECW-10R plants carry the Bs1
resistance (R) gene and induce the hypersensitive
response (HR) upon recognition of the type III effector
AvrBs1 that is delivered by strain 85-10 (Ronald and
Staskawicz, 1988; Escolar et al., 2001). The HR is a rapid
local plant cell death at the infection site that is activated
by a plant R gene upon recognition of an individual type III
effector [also termed avirulence (Avr) protein; Jones and
Dangl, 2006].

As expected, strain 85-10 induced water-soaked
lesions in ECW and the HR in ECW-10R plants whereas
no plant reactions were observed after inoculation of
strain 85-10DhrcU (Fig. 2A). The hrcU mutant phenotype
was complemented by construct pBRMhrcU, which
encodes a C-terminally c-Myc epitope-tagged HrcU
derivative under control of the lac promoter (Fig. 2A).
Partial complementation was observed for HrcUT266A-c-
Myc and HrcUH267A-c-Myc, whereas strain 85-10DhrcU
carrying HrcUN264A-c-Myc, HrcUP265A-c-Myc and HrcUP265G-
c-Myc, respectively, did not cause visible plant reactions
(Fig. 2A). We also performed infection assays with hrpG*
strains that carry a mutated version of the key regulator
HrpG and thus constitutively express the T3S genes
(Rossier et al., 1999; Wengelnik et al., 1999). Notably, we
observed a partial complementation of the hrcU mutant
phenotype by HrcUP265A-c-Myc but not by HrcUP265G-c-Myc
in the presence of hrpG* (Fig. 2A). We have previously
observed that constitutive expression of the T3S genes
promotes in planta symptom formation (Büttner et al.,
2004; 2007; Lorenz and Büttner, 2009). The partial
complementation of the hrcU mutant phenotype by
HrcUP265A-c-Myc is in agreement with the finding that this
HrcU mutant derivative is partially cleaved (see Fig. 1C).
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HrcU cleavage is required for T3S of late substrates

Next, we analysed T3S in strains 85-10hrpG* (85*) and
85*DhrcU carrying HrcU-c-Myc or derivatives mutated in
the NPTH motif. For this, bacteria were incubated in
secretion medium and total-cell extracts and culture
supernatants were analysed by immunoblotting. The

translocon protein HrpF and the effector protein AvrBs3
(ectopically expressed from construct pDSF300) were
detected in the culture supernatants of strains 85* and
85*DhrcU carrying HrcU-c-Myc or the mutant derivatives
HrcUP265A-c-Myc, HrcUT266A-c-Myc and HrcUH267A-c-Myc
respectively. However, the secretion efficiency in the
presence of HrcUP265A-c-Myc and HrcUH267A-c-Myc was
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Fig. 1. Proteolytic cleavage of HrcU depends on the NPTH motif.
A. Schematic representation of HrcU. HrcU contains four transmembrane helices and a C-terminal cytoplasmic region that is proteolytically
cleaved. Cleavage presumably occurs at the NPTH motif and results in a conformational change of the PTH loop as was shown for HrcU
homologues from animal pathogenic bacteria. Numbers refer to amino acid positions. IM, inner membrane.
B. Proteolytic cleavage of HrcU and point mutant derivatives. Equal amounts of total-cell extracts from E. coli and X. campestris pv.
vesicatoria strain 85-10DhrcU (DhrcU) encoding HrcU-c-Myc (wt), HrcUN264A-c-Myc (N264A), HrcUP265A-c-Myc (P265A), HrcUT266A-c-Myc (T266A)
and HrcUH267A-c-Myc (H267A), respectively, from corresponding expression constructs were analysed by immunoblotting using a c-Myc
epitope-specific antibody.
C. HrcUP265A-c-Myc is partially cleaved. Equal amounts of total-cell extracts from E. coli and X. campestris pv. vesicatoria strain 85-10DhrcU
(DhrcU) carrying the empty vector (-) or encoding HrcU-c-Myc (wt), HrcUN264A-c-Myc (N264A), HrcUP265A-c-Myc (P265A) and HrcUP265G-c-Myc
(P265G), respectively, from corresponding expression constructs were analysed as described in (B). For the better visualization of the HrcU
cleavage product, the blot was overexposed.
D. Mutations in the NPTH motif of HrcU206–357-c-Myc affect proteolytic cleavage. Equal amounts of total-cell extracts from E. coli and X.
campestris pv. vesicatoria strain 85-10DhrcU265–357 (DhrcU265–357) encoding HrcU206–357-c-Myc (wt), HrcU206–357/N264A-c-Myc (N264A),
HrcU206–357/P265A-c-Myc (P265A), HrcU206–357/T266A-c-Myc (T266A) and HrcU206–357/H267A-c-Myc (H267A), respectively, from corresponding expression
constructs were analysed as described in (B).
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Fig. 2. Complementation studies with HrcU mutant derivatives.
A. The conserved asparagine residue of the NPTH motif of HrcU is essential for pathogenicity. X. campestris pv. vesicatoria strains 85-10 (wt),
85* (wt), 85-10DhrcU (DhrcU) and 85*DhrcU (DhrcU) carrying the empty vector (-) or encoding HrcU-c-Myc (wt), HrcUN264A-c-Myc (N264A),
HrcUP265A-c-Myc (P265A), HrcUT266A-c-Myc (T266A), HrcUH267A-c-Myc (H267A) and HrcUP265G-c-Myc (P265G), respectively, from corresponding
expression constructs were inoculated into leaves of susceptible ECW and resistant ECW-10R pepper plants. Disease symptoms were
photographed 8 and 11 dpi as indicated. For the better visualization of the HR, leaves were bleached in ethanol 2 dpi. Dashed lines mark the
infiltrated areas.
B. The N264A mutation abolishes T3S of translocon and effector proteins but does not affect secretion of the pilus assembly protein HrpB2. X.
campestris pv. vesicatoria strains 85* (wt) and 85*DhrcU (DhrcU) carrying the empty vector (-) or encoding HrcU-c-Myc (wt), HrcUN264A-c-Myc
(N264A), HrcUP265A-c-Myc (P265A), HrcUT266A-c-Myc (T266A) and HrcUH267A-c-Myc (H267A), respectively, were incubated in secretion medium.
Total-cell extracts (TE) and culture supernatants (SN) were analysed by immunoblotting using antibodies specific for the translocon protein
HrpF, the effector protein AvrBs3 (ectopically expressed from construct pDSF300) and HrpB2.
C. HrcUP265G does not promote secretion of HrpB2. X. campestris pv. vesicatoria strains 85* (wt) and 85*DhrcU (DhrcU) carrying the empty
vector (-), HrcU-c-Myc (HrcU), HrcUP265A-c-Myc (P265A) and HrcUP265G-c-Myc (P265G), respectively, were incubated in secretion medium. TE
and SN were analysed by immunoblotting using HrpF- and HrpB2-specific antibodies respectively.
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reduced when compared with HrcUT266A-c-Myc (Fig. 2B).
This is in agreement with the finding that HrcUP265A-c-Myc
and HrcUH267A-c-Myc were less efficiently cleaved than
HrcUT266A-c-Myc (see above). No secretion of HrpF and
AvrBs3 was observed for strains 85*DhrcU and 85*DhrcU
carrying HrcUN264A-c-Myc (Fig. 2B).

We also analysed secretion of the early substrate HrpB2.
When compared with strain 85*, increased amounts of
HrpB2 were present in the culture supernatant of strain
85*DhrcU carrying HrcU-c-Myc, suggesting that ectopic
expression of hrcU-c-myc positively affects HrpB2 secre-
tion (Fig. 2B). Notably, HrpB2 was also present in the
culture supernatant of strain 85*DhrcU carrying HrcUN264A-
c-Myc, HrcUP265A-c-Myc, HrcUT266A-c-Myc and HrcUH267A-c-
Myc respectively (Fig. 2B). This finding was unexpected
and suggests that HrpB2 secretion can occur in the
absence of efficient HrcU cleavage. Interestingly, however,
HrpB2 was not detected in the culture supernatant of strain
85*DhrcU containing HrcUP265G-c-Myc (Fig. 2C). As we
observed a similar finding for the translocon protein HrpF,
we assume that the P265G exchange abolishes secretion
of both early and late substrates (Fig. 2C).

To confirm these results we introduced the hrcUP265G

mutation into the genome of X. campestris pv. vesicatoria
strains 85-10 and 85* respectively. The resulting mutant
strains 85-10hrcUP265G and 85*hrcUP265G did not elicit
visible disease symptoms and the HR when inoculated
into leaves of susceptible and resistant pepper plants
respectively (Fig. 3A). Furthermore, T3S of the translocon
protein HrpF, the effector proteins AvrBs3, XopJ-c-Myc
and XopE2-c-Myc (ectopically expressed from corre-
sponding expression constructs) and HrpB2 was abol-
ished in strain 85*hrcUP265G, which supports the finding
that the P265G mutation in HrcU leads to a loss of protein
function (Fig. 3B). Loss of efficient HrpB2 secretion was
also observed in strain 85*hrcUP265GDhpaC, suggesting
that HrpB2 oversecretion in the hpaC deletion mutant is
suppressed in the presence of HrcUP265G (Fig. 3C). The
hrcUP265G mutant phenotype was restored with respect to
virulence and T3S (shown for HrpF secretion) upon
ectopic expression of hrcU-c-myc (Fig. 3A and D).

The C-terminal domain of HrcU is essential for
pathogenicity and functions in trans

In addition to the NPTH motif, we studied the contribution
of the C-terminal domain of HrcU (HrcUC, amino acids
265–357, which correspond to the predicted C-terminal
HrcU cleavage product) to bacterial pathogenicity and
T3S. For this, we deleted codons 265–357 of the chromo-
somal hrcU gene in X. campestris pv. vesicatoria strain
85-10. The resulting deletion mutant strain 85-10DhrcU265–

357 did not elicit disease symptoms and the HR in suscep-
tible and resistant pepper plants, respectively, suggesting

that HrcUC is essential for pathogenicity (Fig. 4A). The
mutant phenotype was complemented by HrcU-c-Myc
whereas a partial complementation was observed when
we provided a c-Myc epitope-tagged derivative of HrcUC

in trans (HrcU265–357-c-Myc; Fig. 4A). However, HrcU265–357-
c-Myc complemented the DhrcU265–357 mutant phenotype
in the presence of hrpG* (Fig. 4A). Immunoblot analyses
of total-cell extracts from X. campestris pv. vesicatoria
confirmed that HrcU-c-Myc and HrcU265–357-c-Myc were
synthesized (Fig. 4B). As described above, we did not
detect the full-length HrcU-c-Myc protein in cell extracts of
X. campestris pv. vesicatoria. Furthermore, the amounts
of HrcU265–357-c-Myc were increased when compared with
the amounts of the cleavage product of HrcU-c-Myc and
presumably do not reflect native protein levels (Fig. 4B).
The analysis of additional expression constructs encoding
HrcU265–357-c-Myc under control of an alternative promoter
(e.g. the native hrcU promoter) should clarify whether the
expression level of hrcU265–357-c-myc influences its ability
to complement the DhrcU265–357 mutant phenotype.

To investigate the contribution of HrcUC to T3S, strains
85* and 85*DhrcU265–357 were incubated in secretion
medium and total-cell extracts and culture supernatants
were analysed by immunoblotting. The translocon protein
HrpF, the effector protein AvrBs3 (ectopically expressed
from construct pDSF300) and the pilus assembly protein
HrpB2 were detected in the culture supernatant of strain
85* but not of strain 85*DhrcU265–357 (Fig. 4C). Wild-type
levels of secretion were restored by HrcU-c-Myc, whereas
HrcU265–357-c-Myc only partially complemented the secre-
tion deficiency (Fig. 4C). However, as HrcU265–357-c-Myc
restored the in planta phenotype of strain 85*DhrcU265–357,
reduced levels of T3S in strain 85*DhrcU265–357 were pre-
sumably sufficient for plant infection phenotypes (see
Fig. 4A). We conclude from these findings that HrcUC is
crucial for T3S and pathogenicity and functions in trans.

The NPTH motif of HrcU is required for the interaction
with the T3S4 protein HpaC

We have previously shown that the T3S4 protein HpaC
interacts with a GST–HrcU255–357 fusion protein (Lorenz
et al., 2008b). To investigate whether the interaction
depends on the NPTH motif (amino acids 264–268) of
HrcU, we generated additional expression constructs
encoding GST–HrcU265–357, which lacks the conserved
asparagine residue, and GST–HrcU268–357, which is
deprived of the complete NPTH motif. For protein–protein
interaction studies, GST, GST–HrcU255–357, GST–HrcU265–

357 and GST–HrcU268–357 were synthesized in E. coli, immo-
bilized on glutathione sepharose and incubated with an E.
coli lysate containing HpaC-c-Myc. Eluted proteins were
analysed by immunoblotting using a c-Myc epitope-
specific antibody. Figure 5A shows that HpaC-c-Myc was
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detected in the eluate of GST–HrcU255–357 as expected but
not of GST, GST–HrcU265–357 and GST–HrcU268–357. We
also performed interaction studies with GST–HrcU255–357

derivatives carrying single amino acid substitutions of the
conserved asparagine and proline residues (N264A,
P265A and P265G) of the NPTH motif. When GST–
HrcU255–357/N264A, GST–HrcU255–357/P265A and GST–HrcU255–

357/P265G were immobilized on glutathione sepharose and
incubated with HpaC-c-Myc, HpaC-c-Myc was not
detected in the eluates, suggesting that mutations of N264
and P265 abolish the efficient binding of HpaC to HrcUC

(Fig. 5B).
We also analysed the influence of N264A, P265A and

P265G mutations on the HrcUC–HpaC interaction in the

context of the full-length HrcU protein.As described above,
HpaC does not interact with the full-length HrcU protein,
yet, it could not be excluded that the N264A, P265A and
P265G mutations in HrcU lead to an alteration of the
protein conformation that is permissive for binding of
HpaC. However, when GST–HrcU255–357, GST–HrcU,
GST–HrcUN264A, GST–HrcUP265A and GST–HrcUP265G were
immobilized on glutathione sepharose and incubated with
HpaC-c-Myc, we detected HpaC-c-Myc in the eluate of
GST–HrcU255–357 as expected but not of GST–HrcU and
mutant derivatives thereof (Fig. 5C). We have previously
reported that GST–HrcU can be stably synthesized in E.
coli and that sufficient amounts of the protein are present in
the soluble fraction (Lorenz et al., 2008b). We observed
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(hrcUP265G) were incubated in secretion medium and total-cell extracts (TE) and culture supernatants (SN) were analysed by immunoblotting
using antibodies specific for HrpF, HrpB2, AvrBs3 and the c-Myc epitope respectively. AvrBs3, XopJ-c-Myc and XopE2-c-Myc were encoded by
corresponding expression constructs.
C. HrpB2 oversecretion in the hpaC deletion mutant is suppressed by the genomic hrcUP265G mutation. X. campestris pv. vesicatoria strains
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D. HrpF secretion by strain 85*hrcUP265G is restored upon ectopic expression of hrcU-c-myc. X. campestris pv. vesicatoria strains 85* (wt) and
85*hrcUP265G (hrcUP265G) carrying the empty vector (-) or encoding HrcU-c-Myc (HrcU) as indicated were incubated in secretion medium. TE
and SN were analysed by immunoblotting using a HrpF-specific antibody.

Control of type III secretion in Xanthomonas 453

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 79, 447–467



similar findings for GST–HrcU255–357 and GST–HrcU
derivatives carrying point mutations in the NPTH motif
(Fig. S1; data not shown).

The NPTH motif contributes to the interaction between
HrcUC and HrpB2

In addition to HpaC, GST–HrcU255–357 also interacts with a
C-terminally c-Myc epitope-tagged derivative of the early
T3S substrate HrpB2 (Lorenz et al., 2008b). To investi-
gate whether the NPTH motif of HrcU contributes to the
interaction between HrcUC and HrpB2, we performed
additional pull-down assays with GST or GST–HrcU
derivatives as described above. When GST–HrcU fusion
proteins were immobilized on glutathione sepharose and

incubated with HrpB2-c-Myc, we detected HrpB2-c-Myc in
the eluate of GST–HrcU255–357 as expected but not in the
eluates of GST–HrcU265–357 and GST–HrcU268–357 (Fig. 6A;
Lorenz et al., 2008b). The presence of N264A and P265A
point mutations in GST–HrcU255–357, respectively, did not
significantly affect the binding of HrpB2-c-Myc (Fig. 6B).
In contrast, HrpB2-c-Myc was not detected in the eluate of
GST–HrcU255–357/P265G indicating that the P265G exchange
abolishes the stable interaction between GST–HrcU255–357

and HrpB2 (Fig. 6B).
To investigate whether the P265G mutation also pre-

vents binding of additional interaction partners of HrcU,
we performed interaction studies with GST–HrcUP265G and
C-terminally c-Myc epitope-tagged derivatives of the
general T3S chaperone HpaB and the predicted regulator
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(DhrcU265–357), 85* (wt) and 85*DhrcU265–357 (DhrcU265–357) carrying the empty vector (-) or expression constructs encoding HrcU-c-Myc (HrcU)
and HrcU265–357-c-Myc (HrcU265–357), respectively, as indicated were inoculated into leaves of susceptible ECW and resistant ECW-10R pepper
plants. Disease symptoms were photographed 7 dpi. For the better visualization of the HR, leaves were bleached in ethanol 2 or 3 dpi as
indicated. Dashed lines mark the infiltrated areas.
B. Protein studies with HrcU-c-Myc and HrcU265–357-c-Myc. X. campestris pv. vesicatoria strains 85-10DhrcU265–357 and 85*DhrcU265–357 carrying
the empty vector (-) or expression constructs encoding HrcU-c-Myc (HrcU) and HrcU265–357-c-Myc (HrcU265–357), respectively, as indicated were
grown in minimal medium A. Equal amounts of total-cell extracts were analysed by immunoblotting, using a c-Myc epitope-specific antibody.
The full-length HrcU-c-Myc protein is not detectable. The dominant signal corresponds to HrcU265–357-c-Myc; additional signals result from
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vector (-) or expression constructs encoding HrcU-c-Myc (HrcU) and HrcU265–357-c-Myc (HrcU265–357), respectively, as indicated were incubated
in secretion medium. Total-cell extracts (TE) and culture supernatants (SN) were analysed by immunoblotting, using antibodies specific for the
translocon protein HrpF, the effector protein AvrBs3 (ectopically expressed from construct pDSF300) and HrpB2.
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of the ATPase, HrcL. HpaB and HrcL were previously
shown to interact with GST–HrcU but not with GST–
HrcU255–357 (Lorenz and Büttner, 2009). HpaB-c-Myc and
HrcL-c-Myc were detected in the eluates of GST–HrcU
and GST–HrcUP265G but not of GST alone, suggesting that
the P265G exchange in HrcU did not affect the interaction
with both HpaB and HrcL (Fig. 6C). As an additional
control, we incubated immobilized GST–HrcUP265G with
HrpB2-c-Myc. Figure 6D shows that HrpB2-c-Myc was not
detectable in the eluate of GST–HrcUP265G, which confirms
the above finding that the P265G mutation abolishes the
interaction between HrcUC and HrpB2. In this context it is
of interest to note that HrcUP265G did not promote secretion

of HrpB2. It is therefore conceivable that the interaction
between HrcUC and HrpB2 is required for efficient HrpB2
secretion (see above, Fig. 2).

A point mutation (Y318D) in HrcUC suppresses the
hpaC mutant phenotype

It was previously reported that the phenotype of T3S4
mutants from animal pathogenic bacteria can be sup-
pressed upon introduction of point mutations into the
C-terminal domain of FlhB/YscU family members (Kut-
sukake et al., 1994; Williams et al., 1996; Edqvist et al.,
2003; Wood et al., 2008; Zarivach et al., 2008). To test
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A. Amino acids 265–357 of HrcU are not sufficient for the interaction with HpaC. GST, GST–HrcU255–357, GST–HrcU265–357 and GST–HrcU268–357

were immobilized on glutathione sepharose and incubated with an E. coli lysate containing HpaC-c-Myc. The total-cell extract (TE) and eluted
proteins (eluates) were analysed by immunoblotting using c-Myc epitope- and GST-specific antibodies respectively. GST and GST fusion
proteins are marked by asterisks; lower bands correspond to degradation products.
B. Mutations within the NPTH motif abolish the interaction between HrcUC and HpaC. GST, GST–HrcU255–357, GST–HrcU255–357/N264A,
GST–HrcU255–357/P265A and GST–HrcU255–357/P265G were immobilized on glutathione sepharose and incubated with an E. coli lysate containing
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this for X. campestris pv. vesicatoria, we introduced a
point mutation (Y318D) into the chromosomal hrcU genes
of strains 85-10 and 85-10DhpaC, respectively, which led
to an exchange of the tyrosine residue at amino acid
position 318 of HrcU by aspartic acid. Equivalent muta-
tions in the C-terminal domains of YscU (YscUY317D) and

FlhB (FlhBY323D) were shown to suppress the phenotypes
of mutants deleted in the T3S4 genes yscP and fliK
respectively (Kutsukake et al., 1994; Minamino and
MacNab, 2000a; Edqvist et al., 2003; Wood et al., 2008).
When X. campestris pv. vesicatoria hrcU wild-type and
hrcUY318D mutant strains were inoculated into leaves of
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were immobilized on glutathione sepharose and incubated with an E. coli lysate containing HrpB2-c-Myc. The total-cell extract (TE) and eluted
proteins (eluates) were analysed by immunoblotting using c-Myc epitope- and GST-specific antibodies respectively. GST and GST fusion
proteins are marked by asterisks; lower bands correspond to degradation products.
B. The P265G exchange abolishes the interaction between HrcUC and HrpB2. GST, GST–HrcU255–357, GST–HrcU255–357/N264A,
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marked by asterisks; lower bands correspond to degradation products.

456 C. Lorenz and D. Büttner �

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 79, 447–467



susceptible ECW and resistant ECW-10R pepper plants,
respectively, strain 85-10hrcUY318D induced disease symp-
toms and the HR similarly to the wild type whereas strain
85-10DhpaC led to significantly reduced symptoms as
expected (Fig. 7A; Büttner et al., 2006). The double

mutant 85-10hrcUY318DDhpaC induced wild-type disease
symptoms, suggesting that HrcUY318D suppresses the
hpaC mutant phenotype in susceptible plants (Fig. 7A).
Furthermore, HrcUY318D partially restored the HR induction
by strain 85-10hrcUY318DDhpaC in resistant ECW-10R
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Fig. 7. The Y318D mutation in HrcU suppresses the hpaC mutant phenotype and affects HrcU cleavage.
A. Infection studies with hrcU wild-type and hrcUY318D mutant strains. X. campestris pv. vesicatoria strains 85-10 (wt), 85* (wt), 85-10hrcUY318D

(hrcUY318D), 85*hrcUY318D (hrcUY318D), 85-10DhpaC (DhpaC), 85*DhpaC (DhpaC), 85-10hrcUY318DDhpaC (hrcUY318DDhpaC) and 85*hrcUY318DDhpaC
(hrcUY318DDhpaC) were inoculated into leaves of susceptible ECW and resistant ECW-10R pepper plants. Disease symptoms were
photographed 5 and 6 dpi as indicated. For the better visualization of the HR, leaves were bleached in ethanol 2 dpi. Dashed lines mark the
infiltrated areas.
B. In planta growth of hrcUY318D mutants. X. campestris pv. vesicatoria strains 85-10 (wt), 85-10hrcUY318D (hrcUY318D), 85-10DhpaC (DhpaC) and
85-10hrcUY318DDhpaC (hrcUY318DDhpaC) were inoculated into leaves of susceptible ECW pepper plants and bacterial growth was analysed over
a period of 8 days. Values are the mean of three samples from three plants. Error bars represent standard deviations. The asterisk indicates a
significant difference to the wild-type strain with P < 0.005 based on the results of an unpaired Student’s t-test.
C. T3S assays with hrcUY318D mutants. Strains 85* (wt), 85*hrcUY318D (hrcUY318D), 85*DhpaC (DhpaC) and 85*hrcUY318DDhpaC (hrcUY318DDhpaC)
were incubated in secretion medium. Total-cell extracts (TE) and culture supernatants (SN) were analysed by immunoblotting using antibodies
specific for the putative translocon proteins HrpF and XopA, the effector protein AvrBs3, the pilus assembly protein HrpB2 and the c-Myc
epitope. AvrBs3, XopJ-c-Myc and XopE2-c-Myc were encoded by corresponding expression constructs.
D. The Y318D mutation in HrcU affects proteolytic cleavage. Equal amounts of total-cell extracts from X. campestris pv. vesicatoria strain
85*DhrcU (DhrcU) and E. coli carrying the empty vector (-) or encoding HrcU-c-Myc (wt) and HrcUY318D-c-Myc (Y318D), respectively, as
indicated were analysed by immunoblotting using a c-Myc epitope-specific antibody.
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plants. However, a wild-type HR was observed for the
hrpG* derivative 85*hrcUY318DDhpaC (Fig. 7A).

We also analysed in planta bacterial growth of
strains 85-10, 85-10DhpaC, 85-10hrcUY318D and
85-10hrcUY318DDhpaC in susceptible ECW pepper plants.
As described earlier, bacterial counts of strain
85-10DhpaC were significantly reduced 8 days post
inoculation (dpi) when compared with the wild-type strain,
suggesting that HpaC contributes to bacterial multiplica-
tion at later stages of the infection (Fig. 7B; Büttner et al.,
2006). Strain 85-10hrcUY318DDhpaC grew similarly to
strain 85-10, which is in agreement with the observation
that HrcUY318D suppresses the hpaC mutant phenotype
with respect to disease symptoms (Fig. 7B).

HrcUY318D restores secretion of translocon and effector
proteins but does not affect HrpB2 oversecretion in the
hpaC deletion mutant

In addition to infection experiments, we performed T3S
assays with strains 85*, 85*hrcUY318D, 85*DhpaC and
85*hrcUY318DDhpaC. Figure 7C shows that comparable
amounts of the putative translocon proteins HrpF and
XopA and the effector proteins AvrBs3, XopJ-c-Myc and
XopE2-c-Myc (encoded by corresponding expression con-
structs) were secreted by strains 85* and 85*hrcUY318D,
respectively, whereas secretion of these proteins by strain
85*DhpaC was severely reduced as expected (Büttner
et al., 2006). Efficient secretion was restored in strain
85*hrcUY318DDhpaC, suggesting that HrcUY318D activates
secretion of late T3S substrates including translocon and
effector proteins in the absence of HpaC (Fig. 7C).

In addition to translocon and effector proteins, we
analysed secretion of HrpB2, which is secreted in small
amounts (at the detection limit of the HrpB2-specific anti-
body) by the wild-type strain and oversecreted by the
hpaC deletion mutant (Fig. 7C; Rossier et al., 2000;
Lorenz et al., 2008b). Interestingly, oversecretion of
HrpB2 was also observed for strain 85*hrcUY318DDhpaC.
Thus, HrcUY318D suppresses the hpaC mutant phenotype
with respect to disease symptoms and T3S of late sub-
strates but does not affect secretion of HrpB2 (Fig. 7C).
This finding was unexpected and implies that secretion of
early (HrpB2) and late (translocon and effector proteins)
T3S substrates in X. campestris pv. vesicatoria is con-
trolled by different mechanisms that can be uncoupled.

We also investigated whether the Y318D mutation
affects HrcU cleavage. For this, we generated an expres-
sion construct encoding HrcUY318D-c-Myc and analysed
the protein in X. campestris pv. vesicatoria strain
85*DhrcU by immunoblotting. We detected the full-length
HrcUY318D-c-Myc protein and the C-terminal cleavage
product; however, the amounts of the cleavage product
were significantly reduced when compared with the wild-

type HrcU-c-Myc (Fig. 7D). A similar difference in pro-
teolytic cleavage was observed in E. coli (Fig. 7D). As
both c-Myc epitope-tagged HrcU derivatives were only
synthesized at low levels in E. coli, we did not detect
full-length HrcU-c-Myc and the C-terminal cleavage
product of HrcUY318D-c-Myc (Fig. 7D). Taken together, we
conclude from these findings that the Y318D exchange in
HrcU prevents efficient HrcU cleavage but activates
secretion of late substrates in the absence of HpaC.

The Y318D mutation affects binding of both HrpB2 and
HpaC to HrcUC

As HrcUY318D presumably mimics a protein conformation
that is permissive for the secretion of late substrates, we
investigated a possible influence of the Y318D mutation
on the interaction of HrcUC with HrpB2 and HpaC. For this,
GST, GST–HrcU255–357 and GST–HrcU255–357/Y318D were
immobilized on glutathione sepharose and incubated with
HrpB2-c-Myc and HpaC-c-Myc respectively. Figure 8A
shows that HrpB2-c-Myc and HpaC-c-Myc co-eluted with
GST–HrcU255–357 as expected but were not detectable in
the eluate of GST–HrcU255–357/Y318D, suggesting that the
Y318D mutation prevents the stable binding of both
HrpB2 and HpaC to HrcUC. Given the finding that HrpB2 is
oversecreted by strain 85*hrcUY318DDhpaC, it is conceiv-
able that the interaction of HrcUC and HrpB2 is not
required for efficient HrpB2 secretion after the substrate
specificity switch.

To date, HrpB2 is the only known T3S substrate that
was shown to interact with HrcUC (Lorenz et al., 2008b).
To investigate whether a potential binding of T3S sub-
strates to HrcU is restricted to a certain protein conforma-
tion that is mimicked in the presence of HrcUY318D, we
immobilized GST–HrcU255–357 and GST–HrcU255–357/Y318D

on glutathione sepharose and incubated both proteins
with C-terminally c-Myc epitope-tagged derivatives of the
effector proteins HpaA and XopC respectively. Immunob-
lot analyses revealed that HpaA-c-Myc and XopC-c-Myc
were not detectable in the eluates, suggesting that they
did not stably interact with HrcU and HrcUY318D (Fig. 8A).
Similarly, we did not detect a c-Myc epitope-tagged
derivative of the putative translocon protein XopA in the
eluates of GST–HrcU and GST–HrcUY318D (Fig. 8B).

Discussion

In this study, we describe novel mechanisms underlying
the orchestration of T3S substrate specificity switching in
a plant pathogenic bacterium. We investigated the role of
the inner membrane protein HrcU and the T3S4 protein
HpaC from X. campestris pv. vesicatoria during T3S and
provide experimental evidence that HpaC binds to the
conserved NPTH motif of HrcU, which is the predicted
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cleavage site. The analysis of HrcU mutant derivatives
carrying single amino acid exchanges within the NPTH
motif revealed that mutations of T266 and H267, respec-
tively, only slightly affect HrcU cleavage whereas the
N264A exchange abolishes detectable cleavage. For
FlhB/YscU family members from animal pathogenic
bacteria it was previously reported that cleavage is an
autocatalytic process that involves cyclization of the con-
served asparagine residue of the NPTH motif (Ferris
et al., 2005; Deane et al., 2008; Zarivach et al., 2008;
Lountos et al., 2009; Wiesand et al., 2009). In agreement
with this model, mutation of the asparagine residue of the
NPTH motif prevents cleavage not only of HrcU from X.
campestris pv. vesicatoria but also of the homologous
YscU, EscU and FlhB proteins from animal pathogenic
bacteria (Lavander et al., 2002; Fraser et al., 2003; Sorg
et al., 2007; Riordan and Schneewind, 2008; Zarivach
et al., 2008; Björnfot et al., 2009; Smith et al., 2009;
Wiesand et al., 2009). Exchange of the conserved proline
residue P265 of HrcU by alanine led to a significant reduc-
tion of HrcU cleavage whereas the P265G mutation
resulted in a complete loss of detectable cleavage
(Fig. 1). A similar difference in cleavage was described for
P264A and P264G mutant derivatives of the HrcU homo-
logue YscU from Yersinia (Wiesand et al., 2009). Because
autocatalytic cleavage of YscU depends on the position-
ing of the carbonyl group of the asparagine residue at

position 263, the efficiency of the cleavage is presumably
influenced by the amino acid residue at position 264
(Wiesand et al., 2009). Given the finding that YscU homo-
logues share significant structural similarities (Deane
et al., 2008; Zarivach et al., 2008; Lountos et al., 2009;
Wiesand et al., 2009), a similar scenario might explain
the difference in proteolytic cleavage of HrcUP265A and
HrcUP265G.

Complementation studies with HrcU point mutants
from X. campestris pv. vesicatoria revealed that loss of
detectable HrcU cleavage correlates with a loss of bac-
terial pathogenicity (Fig. 2), which was confirmed for
HrcUP265G by the analysis of a genomic hrcUP265G muta-
tion (Fig. 3). This is an important experimental control
because it was previously observed that the effects of
point mutations in YscU from Yersinia might vary
depending on whether YscU derivatives are provided in
cis or in trans (Sorg et al., 2007; Björnfot et al., 2009).
Taken together, we conclude from the analysis of HrcU
point mutant derivatives that cleavage of HrcU is essen-
tial for the interaction of the bacteria with the plant.
Notably, however, we also observed that HrcUC can
function in trans, suggesting that it is not the cleavage
event per se but rather the result of the cleavage which
is required for pathogenicity (Fig. 4). A similar finding
was previously reported for a HrcU homologue from
Helicobacter pylori (Wand et al., 2006).
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A. GST–HrcU255–357/Y318D does not interact with HrpB2, HpaC and T3S substrates. GST, GST–HrcU255–357 and GST–HrcU255–357/Y318D were
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The N264A and P265A mutations in HrcU did not only
lead to a loss of pathogenicity but also to a reduction in
T3S of translocon and effector proteins. This is in contrast
to the finding that the equivalent N263A exchange in the
HrcU homologue YscU from Yersinia spp. abolished
secretion of translocon but not of effector proteins (Sorg
et al., 2007). It was therefore proposed that YscU cleav-
age is required to switch the T3S substrate specificity to
translocon but not to effector proteins. The mechanisms
underlying control of T3S substrate specificity switching
might therefore vary in Yersinia spp. and X. campestris pv.
vesicatoria.

In contrast to translocon and effector proteins, HrpB2
was efficiently secreted by HrcU cleavage mutants carry-
ing alanine substitutions within the NPTH motif (Fig. 2).
For yet unknown reasons, ectopic expression of hrcU
under control of the lac promoter in a hrcU deletion mutant
background led to increased HrpB2 secretion that was
independent of HrcU cleavage. This implies that HrpB2
secretion is controlled by the amounts of HrcU and occurs
prior to HrcU cleavage, which is in agreement with the
notion that HrpB2 is an early substrate of the T3S system
(Fig. 9). We previously reported that HrpB2 interacts with
the C-terminal domain of HrcU (Lorenz et al., 2008b).
Here, we show that HrpB2 does not stably interact with
GST–HrcU deletion derivatives lacking the NPTH motif or
carrying a P265G mutation (shown in the context of both
GST–HrcU255–357 and GST–HrcU; Fig. 6). In contrast,
N264A and P265A mutations in GST–HrcU255–357 did not
significantly affect the interaction between HrcUC and
HrpB2. It is conceivable that binding of HrpB2 depends on
a certain conformation of HrcUC in or around the NPTH
motif that is altered in P265G but not in N264A or P265A
HrcU mutant derivatives. However, the P265G mutation
presumably did not lead to a complete misfolding of HrcU
because the interaction with the putative ATPase regula-
tor HrcL and the general T3S chaperone HpaB was not
affected. Notably, HrcUP265G did not promote secretion of
HrpB2, which is in contrast to the mutant derivatives
HrcUN264A and HrcUP265A (Fig. 2). It is therefore possible
that the interaction between HrpB2 and HrcUC is required
for the efficient secretion of HrpB2 during the early stage
of the T3S process, i.e. prior to HrcU cleavage (Fig. 9).

The results of our protein–protein interaction studies
showed that mutations in the NPTH motif of HrcU did not
only affect the HrcUC–HrpB2 interaction but also the
binding of HpaC to HrcUC (Fig. 5). To our knowledge, this
is the first experimental evidence that T3S4 proteins and
T3S substrates compete for the same binding site in the
C-terminal domains of FlhB/YscU family members. It
remains to be investigated whether HpaC from X.
campestris pv. vesicatoria prevents the efficient secretion
of HrpB2 by blocking its access to HrcUC. Alternatively,
given the finding that HpaC interacts with HrpB2 (Lorenz

et al., 2008b), a direct interaction of both proteins in the
bacterial cytoplasm might interfere with efficient HrpB2
secretion (Fig. 9). The latter hypothesis would explain the
inability of HrcUY318D to restore wild-type levels of HrpB2
secretion in the absence of HpaC (see below; Figs 7 and
9). As the Y318D mutation in HrcU suppressed the hpaC
mutant phenotype with respect to secretion of late sub-
strates and disease symptom formation (Fig. 7), we con-
clude that the elevated levels of secreted HrpB2 in the
hrcUY318DDhpaC double mutant are not detrimental for
bacterial pathogenicity.

HrpB2 shares limited sequence similarity with predicted
inner rod proteins from animal pathogenic bacteria that
presumably assemble at the base of the needle (Sukhan
et al., 2003; Marlovits et al., 2006). It was previously
reported that the inner rod protein YscI from Yersinia spp.
is oversecreted in the absence of the T3S4 protein YscP
(Wood et al., 2008). This is reminiscent of our finding that
HrpB2 is oversecreted in the hpaC deletion mutant.
Notably, however, wild-type secretion levels of YscI in the
yscP mutant can be restored upon introduction of the
point mutation Y317D into YscU (equivalent to mutation
Y318D in HrcU from X. campestris pv. vesicatoria). As
YscUY317D also restores the wild-type phenotype in the
yscP mutant (Edqvist et al., 2003), the control mecha-
nisms underlying secretion of YscI and late T3S sub-
strates from Yersinia spp. are presumably linked. Notably,
this is in contrast to our finding that HrcUY318D activates
secretion of late substrates without affecting HrpB2
secretion. Secretion of HrpB2 and late substrates from
X. campestris pv. vesicatoria is therefore presumably
controlled by independent mechanisms that can be
uncoupled. Given the possibility that HrpB2 secretion is
directly controlled by HpaC, we will localize HpaC binding
sites in HrpB2 and analyse their contribution to the control
of HrpB2 secretion in future studies.

The identification of the Y318D exchange in HrcUC as
an extragenic suppressor mutation of the hpaC mutant
phenotype is reminiscent of the finding that point muta-
tions in the C-terminal domains of FlhB and YscU sup-
press the phenotypes of T3S4 mutants from S.
typhimurium and Y. pseudotuberculosis, respectively (Wil-
liams et al., 1996; Edqvist et al., 2003; Wood et al., 2008),
and confirms the predicted role of the C-terminal domain
of HrcU during the substrate specificity switch. It is tempt-
ing to speculate that HrcUY318D mimics a protein confor-
mation of HrcU that allows the efficient secretion of late
substrates including translocon and effector proteins in
the absence of the T3S4 protein HpaC. Interestingly, the
Y318D mutation in HrcU did not only suppress the hpaC
mutant phenotype but also led to a significant reduction in
proteolytic cleavage of HrcU and abolished stable binding
of both HpaC and HrpB2 to HrcUC. Comparative
sequence and crystal structure analyses of HrcU homo-
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logues from animal pathogenic bacteria revealed that the
tyrosine residues corresponding to Y318 of HrcU are part
of a conserved LARXLY amino acid motif, which is posi-
tioned in the vicinity of the PTH loop (Deane et al., 2008;
Zarivach et al., 2008). Mutations in the LARXLY motif can
therefore alter the orientation of the PTH loop, which
might explain the reduced proteolytic cleavage and
impaired binding of HrcUY318D to HpaC and HrpB2. The
finding that HrcUY318D is less efficiently cleaved but sup-

presses the hpaC mutant phenotype suggests that secre-
tion of late substrates can occur in the absence of efficient
cleavage of HrcU and thus supports the notion that the
T3S substrate specificity switch rather depends on a
certain protein conformation of HrcU than on the cleavage
event itself. Furthermore, we conclude from our data that
the T3S substrate specificity switch that is mimicked in the
presence of HrcUY318D leads to the release of HrcUC-
bound HpaC and HrpB2 (Fig. 9). As the Y318D exchange

Q

OM

U V
S DR T

J

Q
L

N
VcUc

C

 pilus

B2

IM

PM

U V
S DR T

J

Q
L

N
VcUc

C

B2

HpaC

 pilus

U

U

V
S DR T

J

Q
L

N
Vcc

C

B2

HpaC

translocon 

and effector

  proteins

U

U

effector

proteins

 pilus

translocon

V
S DR T

J

Q
L

N
Vcc

C

B2
translocon 

and effector

  proteins

U

U

Y318D

effector

proteins

 pilus

translocon

A B

Bacterium

Plant cell

wild-type ΔhpaChrcUY318D

Fig. 9. Model of the molecular mechanisms underlying the HpaC-HrcUC-mediated substrate specificity switch in X. campestris pv. vesicatoria.
A. HpaC controls secretion of early and late T3S substrates. The T3S system of X. campestris pv. vesicatoria consists of approximately 20
components, eleven of which (abbreviated with single letters) are designated Hrc (Hrp conserved) and presumably constitute the core
components of the membrane-spanning secretion apparatus. Cytoplasmic components of the T3S apparatus are shown in light blue, the
C-terminal domain of HrcU in green. During the initial step of T3S the early T3S substrate HrpB2 (abbreviated B2), which is required for pilus
assembly, interacts with the C-terminal cytoplasmic domain of HrcU and is secreted. The efficient secretion of HrpB2 is inhibited upon binding
of the T3S4 protein HpaC to HrpB2 and/or to HrcUC. The cleavage of HrcU at the conserved NPTH motif and a conformational change in
HrcUC lead to the release of HrcUC-bound HpaC and HrpB2 and activate the secretion of late substrates including translocon and effector
proteins. Dashed lines refer to reduced secretion of HrpB2, the arrow next to HrcUC to the predicted conformational change.
B. The Y318D mutation in HrcUC activates secretion of late substrates in the absence of HpaC. The Y318D mutation presumably leads to a
conformational change in HrcUC, which allows the efficient secretion of late substrates but leads to reduced cleavage of HrcU and also
abolishes the interaction between HrcUC and HrpB2. Secretion of HrpB2 is not affected by the Y318D exchange in HrcU.
IM, inner membrane; OM, outer membrane; PM, plasma membrane of the host cell.

Control of type III secretion in Xanthomonas 461

© 2010 Blackwell Publishing Ltd, Molecular Microbiology, 79, 447–467



did not alter HrpB2 oversecretion in the hpaC deletion
mutant, we assume that the interaction between HrcUC

and HrpB2 is dispensable for efficient HrpB2 secretion
during later stages of the T3S process, i.e. after the T3S
substrate specificity switch (Fig. 9). It remains to be inves-
tigated whether the switch and thus the predicted confor-
mational change in HrcUC expose additional substrate
acceptor sites at the inner membrane that could promote
the entry of HrpB2 into the T3S channel in the absence of
the HrcUC–HrpB2 interaction. In future studies, we there-
fore aim at the identification of T3S substrate docking
sites in conserved components of the T3S system that are
associated with the inner bacterial membrane.

Experimental procedures

Bacterial strains and growth conditions

Bacterial strains and plasmids used in this study are listed
in Table 1. E. coli cells were grown at 37°C in lysogeny
broth (LB) or Super medium (Qiagen, Hilden, Germany). X.
campestris pv. vesicatoria strains were cultivated at 30°C in
nutrient-yeast-glycerol (NYG) medium (Daniels et al., 1984)
or in minimal medium A (Ausubel et al., 1996) supple-
mented with sucrose (10 mM) and casamino acids (0.3%).
Plasmids were introduced into E. coli by electroporation and
into X. campestris pv. vesicatoria by conjugation, using
pRK2013 as a helper plasmid in triparental matings (Figur-
ski and Helinski, 1979). Antibiotics were added to the media
at the following final concentrations: ampicillin, 100 mg ml-1;
kanamycin, 25 mg ml-1; rifampicin, 100 mg ml-1; spectinomy-
cin, 100 mg ml-1; gentamicin, 7.5 mg ml-1.

Plant material and plant inoculations

The near-isogenic pepper cultivars Early Cal Wonder (ECW)
and ECW-10R (Kousik and Ritchie, 1998; Astua-Monge
et al., 2000) were grown and inoculated with X. campestris
pv. vesicatoria as described previously (Bonas et al., 1991).
Briefly, bacteria were inoculated into the intercellular spaces
of leaves with a needle-less syringe at concentrations of
2 ¥ 108 colony-forming units (cfu) ml-1 in 1 mM MgCl2 if not
stated otherwise. The appearance of disease symptoms and
the HR were scored over a period of one to eleven dpi. For
the better visualization of the HR, leaves were bleached in
70% ethanol. Experiments were repeated at least three
times. For in planta growth curves, bacteria were inoculated
at a density of 104 cfu ml-1 into leaves of susceptible ECW
plants. Bacterial counts were determined over a period of
7–10 dpi as described (Bonas et al., 1991).

Generation of X. campestris pv. vesicatoria hrcU
mutants

To create a 1047 bp in-frame deletion of hrcU (deletion of
codons 3–351), we amplified the flanking regions of hrcU
including the first 6 and the last 23 bp of the gene by PCR and
cloned the PCR products into the ApaI/SalI sites of the

suicide plasmid pOK1. The resulting construct pOKDhrcU
was conjugated into X. campestris pv. vesicatoria strains
85-10 and 85*. Double cross-overs resulted in hrcU deletion
mutants that were selected as described previously (Huguet
et al., 1998). Sequences of primers used in this study are
available upon request.

For the generation of a hrcU265–357 deletion mutant (deletion
of codons 265–357), 750 bp of both flanking regions were
amplified by PCR and cloned into the ApaI/SalI sites of pOK1.
The resulting construct pOKDhrcUC was conjugated into
strains 85-10 and 85*. Double cross-overs resulted in strains
85-10DhrcU265–357 and 85*DhrcU265–357 respectively.

For the introduction of the Y318D mutation into genomic
hrcU, we amplified 800 bp fragments flanking codon 318 of
hrcU with a 9 bp overlap that spans codons 317–319 of hrcU.
Both amplicons contained a CTG to CTT exchange (silent
mutation of codon 317) which creates a BclI site and a TAT to
GAT exchange which leads to an exchange of Y318 by D318.
PCR products were digested with XbaI/BclI and BclI/SalI,
respectively, and cloned into the XbaI/SalI sites of plasmid
pOK1. The resulting construct pOKhrcUY318D was conju-
gated into strain 85-10, 85-10DhpaC, 85* and 85*DhpaC.
Double cross-overs resulted in strains 85-10hrcUY318D,
85-10hrcUY318DDhpaC, 85*hrcUY318D and 85*hrcUY318DDhpaC
respectively.

To introduce a point mutation into genomic hrcU leading
to the P265G exchange, we amplified 750 bp fragments
flanking codon 265 of hrcU with a 9 bp overlap that spans
codons 265–267. Both amplicons contained a CCG to GGT
exchange (mutation of codon 265) which creates a KpnI site
and leads to the P265G mutation. PCR products were
digested with XbaI/KpnI and KpnI/BamHI, respectively, and
cloned into the XbaI/SalI sites of plasmid pOK1. The result-
ing construct pOKhrcUP265G was conjugated into strains
85-10, 85* and 85*DhpaC. Double cross-overs resulted in
strains 85-10hrcUP265G, 85*hrcUP265G and 85*hrcUP265GDhpaC
respectively.

Generation of Golden Gate-expression constructs

For the generation of expression constructs encoding c-Myc
epitope-tagged HrcU derivatives, hrcU or hrcU fragments
encoding amino acids 265–357 and 206–357, respectively,
were amplified by PCR and cloned into the Golden Gate-
compatible expression vector pBRM in a one step restriction–
ligation reaction as described (Engler et al., 2008). pBRM
contains a single lac promoter and allows expression of
genes in fusion with a C-terminal c-Myc epitope-encoding
sequence (Szczesny et al., 2010). The Golden Gate system
is based on type IIs restriction enzymes (e.g. BsaI) that cut
DNA outside of the enzyme’s recognition site. For the gen-
eration of hrcUY318D-c-myc and hrcUP265G-c-myc expression
constructs, hrcUY318D and hrcUP265G were amplified by PCR
from strains 85-10hrcUY318D and 85-10hrcUP265G, respectively,
and cloned into pBRM. Furthermore, xopA, xopE2 and xopJ
were amplified from X. campestris pv. vesicatoria strain 85-10
and cloned into pBRM. Expression constructs are listed in
Table 1.

To generate HrcU point mutant derivatives with amino acid
exchanges within the NPTH motif, codons 1–271 and
271–357 of hrcU were amplified by PCR. Both amplicons
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Table 1. Bacterial strains and plasmids used in this study.

Relevant characteristics Reference or source

X. campestris pv. vesicatoria
85-10 Pepper-race 2; wild type; Rifr Canteros (1990); Kousik and Ritchie (1998)
85-10DhrcU 85-10 derivative deleted in codons 3–351 of hrcU This study
85-10DhrcU265–357 85-10 derivative deleted in codons 265–357 of hrcU This study
85-10hrcUY318D hrcUY318D mutant derivative of strain 85-10 This study
85-10hrcUP265G hrcUP265G mutant derivative of strain 85-10 This study
85-10DhpaC hpaC deletion mutant of strain 85-10 Büttner et al. (2006)
85-10hrcUY318DDhpaC hrcUY318D mutant derivative of strain 85-10DhpaC This study
85* 85-10 derivative containing the hrpG* mutation Wengelnik et al. (1999)
85*DhrcU 85* derivative deleted in codons 3–351 of hrcU This study
85*DhrcU265–357 85* derivative deleted in codons 265–357 of hrcU This study
85*hrcUY318D hrcUY318D mutant derivative of strain 85* This study
85*hrcUP265G hrcUP265G mutant derivative of strain 85* This study
85*DhpaC hpaC deletion mutant of strain 85* Büttner et al. (2006)
85*hrcUY318DDhpaC hrcUY318D mutant derivative of strain 85*DhpaC This study
85*hrcUP265GDhpaC hrcUP265G mutant derivative of strain 85*DhpaC This study

E. coli
BL21 (DE3) F- ompT hsdSB (rB

- mB
-) gal dcm (DE3) Stratagene, Heidelberg, Germany

DH5a F- recA hsdR17(rk
-,mk

+) F80dlacZ DM15 Bethesda Research Laboratories, Bethesda, MD
DH5a lpir F- recA hsdR17(rk

-,mk
+) F80dlacZ DM15 [lpir] Ménard et al. (1993)

Plasmids
pBlueskript(II) KS Phagemid, pUC derivative; Apr Stratagene
pBRM Golden Gate-compatible derivative of pBBR1MCS-5 Szczesny et al. (2010)
pBRMhrcU pBRM derivative encoding HrcU-c-Myc This study
pBRMhrcUY318D pBRM derivative encoding HrcUY318D-c-Myc This study
pBRMhrcUN264A pBRM derivative encoding HrcUN264A-c-Myc This study
pBRMhrcUP265A pBRM derivative encoding HrcUP265A-c-Myc This study
pBRMhrcUT266A pBRM derivative encoding HrcUT266A-c-Myc This study
pBRMhrcUH267A pBRM derivative encoding HrcUH267A-c-Myc This study
pBRMhrcUP265G pBRM derivative encoding HrcUP265G-c-Myc This study
pBRMhrcU265–357 pBRM derivative encoding HrcU265–357-c-Myc This study
pBRMhrcU206–357 pBRM derivative encoding HrcU206–357-c-Myc This study
pBRMhrcU206–357/N264A pBRM derivative encoding HrcU206–357/N264A-c-Myc This study
pBRMhrcU206–357/P265A pBRM derivative encoding HrcU206–357/P265A-c-Myc This study
pBRMhrcU206–357/T266A pBRM derivative encoding HrcU206–357/T266A-c-Myc This study
pBRMhrcU206–357/H267A pBRM derivative encoding HrcU206–357/H267A-c-Myc This study
pBRMxopA pBRM derivative encoding XopA-c-Myc This study
pBRMxopE2 pBRM derivative encoding XopE2-c-Myc This study
pBRMxopJ pBRM derivative encoding XopJ-c-Myc This study
pDSK602 Broad-host-range vector; contains triple lacUV5 promoter; Smr Murillo et al. (1994)
pDSK604 Derivative of pDSK602 with modified polylinker Escolar et al. (2001)
pDMhpaA pDSK604 derivative encoding HpaA-c-Myc K. Hahn and U. Bonas (unpublished)
pDMhpaB pDSK604 derivative encoding HpaB-c-Myc Büttner et al. (2004)
pDMhpaC pDSK604 derivative encoding HpaC-c-Myc Büttner et al. (2006)
pDMhrcL pDSK604 derivative encoding HrcL-c-Myc Lorenz and Büttner (2009)
pDMhrpB2 pDSK602 derivative encoding HrpB2-c-Myc Lorenz et al. (2008b)
pDMxopC pDSK602 derivative encoding XopC-c-Myc Büttner et al. (2007)
pDSF300 pDSK602 derivative encoding AvrBs3-FLAG Van den Ackerveken et al. (1996)
pGEX-2TKM GST expression vector; ptac GST lacI q pBR322 ori; Apr, derivative

of pGEX-2TK with polylinker of pDSK604
Stratagene; Escolar et al. (2001)

pGhrcU pGEX-2TKM derivative encoding GST–HrcU Lorenz et al. (2008b)
pGhrcUY318D pGEX-2TKM derivative encoding GST–HrcUY318D This study
pGhrcUN264A pGEX-2TKM derivative encoding GST–HrcUN264A This study
pGhrcUP265A pGEX-2TKM derivative encoding GST–HrcUP265A This study
pGhrcUP265G pGEX-2TKM derivative encoding GST–HrcUP265G This study
pGhrcU255–357 pGEX-2TKM derivative encoding GST–HrcU255–357 Lorenz et al. (2008b)
pGhrcU255–357/Y318D pGEX-2TKM derivative encoding GST–HrcU255–357/Y318D This study
pGhrcU255–357/N264A pGEX-2TKM derivative encoding GST–HrcU255–357/N264A This study
pGhrcU255–357/P265A pGEX-2TKM derivative encoding GST–HrcU255–357/P265A This study
pGhrcU255–357/P265G pGEX-2TKM derivative encoding GST–HrcU255–357/P265G This study
pOK1 Suicide vector; sacB sacQ mobRK2 oriR6K; Smr Huguet et al. (1998)
pOKDhrcU Derivative of pOK carrying the flanking regions of hrcU This study
pOKDhrcUC Derivative of pOK carrying the flanking regions of hrcU265–357 This study
pOKhrcUY318D Derivative of pOK carrying hrcUY318D This study
pOKhrcUP265G Derivative of pOK carrying hrcUP265G This study
pRK2013 ColE1 replicon, TraRK+ Mob+; Kmr Figurski and Helinski (1979)
pUC119 ColE1 replicon; Apr Vieira and Messing (1987)

Ap, ampicillin; Km, kanamycin; Rif, rifampicin; Sm, spectinomycin; Gm, gentamicin; r, resistant.
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contained a 4 bp overlap and were cloned into pBRM in a
single restriction–ligation reaction, generating pBRMhrcU.
Individual mutations of codons 264–268, which replaced the
amino acids N, P, T and H by A, respectively, were introduced
by primer sequences (codon 264: AAC exchanged by GCC,
codon 265: CCG exchanged by GCG, codon 266: ACC
exchanged by GCC and codon 267: CAT exchanged by
GCT). Similarly, for the introduction of point mutations into the
NPTH motif of HrcU206–357-c-Myc, codons 206–271 and 271–
357 of hrcU, respectively, were amplified by PCR and ampli-
cons were cloned into pBRM as described above.

Generation of pGEX constructs

To construct GST–HrcU265–357 and GST–HrcU268–357 fusion
proteins, corresponding hrcU fragments were amplified by
PCR and cloned into the EcoRI/XhoI sites of pGEX, down-
stream and in frame with the GST-encoding sequence. For
the generation of GST–HrcUY318D and GST–HrcU255–357/Y318D

fusion proteins, hrcUY318D and hrcU255–357/Y318D were amplified
by PCR from strain 85-10hrcUY318D and cloned into the EcoRI/
XhoI sites of pGEX. To construct expression constructs
encoding GST–HrcUN264A, GST–HrcUP265A, GST–HrcUP265G,
GST–HrcU255–357(N264A), GST–HrcU255–357(P265A) and GST–
HrcU255–357(P265G), respectively, corresponding hrcU fragments
were amplified from pBRMhrcUN264A, pBRMhrcUP265A and
pBRMhrcUP265G and cloned into pGEX as described above.

T3S assays and immunoblot analyses

Type III secretion assays were performed as described pre-
viously (Rossier et al., 1999). Briefly, bacteria were incu-
bated in minimal medium A at pH 5.3 and equal amounts of
bacterial total-cell extracts and culture supernatants were
analysed by SDS-PAGE and immunoblotting (Rossier et al.,
1999). In this study, we used polyclonal antibodies specific
for HrpF (Büttner et al., 2002), XopA (Noël et al., 2002),
AvrBs3 (Knoop et al., 1991) and HrpB2 (Rossier et al.,
2000), respectively, and monoclonal anti-c-Myc (Roche
Applied Science, Mannheim, Germany) and anti-GST anti-
bodies (GE Healthcare, Munich, Germany). Horseradish
peroxidase-labelled anti-rabbit, anti-mouse and anti-goat
antibodies (GE Healthcare) were used as secondary anti-
bodies. Antibody reactions were visualized by enhanced
chemiluminescence (GE Healthcare). Experiments were
repeated at least two times. Blots were routinely reacted
with an antibody specific for the intracellular protein HrcN
(Rossier et al., 2000) to ensure that no bacterial lysis had
occurred (data not shown).

GST pull-down assays

For GST pull-down assays, GST and GST fusion proteins
were synthesized in E. coli BL21(DE3). Bacterial cells from
50 ml of cultures were resuspended in phosphate-buffered
saline (PBS) and broken with a French press. Insoluble cell
debris was removed by centrifugation and soluble GST and
GST fusion proteins were immobilized on a glutathione
sepharose matrix according to the manufacturer’s instruc-
tions (GE Healthcare). Unbound proteins were removed by

washing twice with PBS and the glutathione sepharose
matrix was incubated with 600 ml of E. coli cell lysates con-
taining c-Myc epitope-tagged derivatives of the putative inter-
action partners for 2 h at 4°C. Unbound proteins were
removed by washing four times with PBS and bound proteins
were eluted with 10 mM reduced glutathione at room tem-
perature for 2 h. Ten microlitres of total protein lysates and
20 ml eluted proteins were analysed by SDS-PAGE and
immunoblotting.
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