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in a series of discoveries over the pre-
ceding decade, a number of laborato-

ries have unequivocally established that 
apoptotic proteins and pathways are 
well conserved cell fate determinants, 
which act independent of a cell death 
response. within this context, the role 
for apoptotic proteins in the induction 
of cell differentiation has been widely 
documented. despite these discoveries, 
little information has been forthcom-
ing regarding a conserved mechanism 
by which apoptotic proteins achieve this 
non-death outcome. in the following 
discussion, we will explore the premise 
that the penultimate step in apopto-
sis, genome wide dna damage/strand 
breaks act as a conserved genomic repro-
gramming event necessary for cell dif-
ferentiation.5 moreover, we hypothesis 
that directed dna damage, as mediated 
by known apoptotic proteins, may par-
ticipate in numerous forms of regulated 
gene expression.

Introduction

DNA damage is largely assumed to be a 
detrimental event and is frequently associ-
ated with impaired cell survival. In addi-
tion, DNA damage is a common molecular 
trigger for the development of oncogenic 
mutations. For example DNA damage/
strand breaks precede a recombination 
of two distinct genetic loci to produce a 
hybrid gene with growth altering proper-
ties. Given the dire outcomes associated 
with DNA damage, the cell has evolved 
a number of DNA repair pathways which 
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recognize and redact genome damage that 
occurs from a variety of external insults.

Despite the propensity to consider 
DNA damage as a solely negative phe-
nomenon, a growing body of evidence 
suggests that focal DNA damage is in 
fact required for normal cell function. 
Specifically, controlled or non-random 
DNA damage appears to be a conserved 
mechanism which propagates alterations 
in gene expression. The best studied exam-
ple in this regard is the regulated DNA 
breakage that propels adaptive immu-
nity. Here, the Rag1/2 nuclease complex 
induces controlled DNA breaks at specific 
loci that are paired with variable recombi-
nation events to create the unique genes 
that underwrite the diversity of antibody 
production.1 Another well documented 
example of tolerable or beneficial DNA 
breakage occurs during the exchange of 
genetic material between homologous 
chromosomes in meiotic crossover. In 
this instance, DNA breaks are induced by 
the topoisomerase II-like protein Spo11, 
which propels an exchange between large 
intergenic regions.2

Additional studies suggest that 
directed DNA strand breaks may promote 
gene expression independent of follow-on 
recombination events. For example, work 
from the Rosenfeld Laboratory has shown 
that glucocorticoid induced gene expres-
sion is dependent on a topoisomerase IIbeta 
mediated DNA strand break. The strand 
breaks are directed to the promoter region 
of the glucocorticoid responsive gene, an 
alteration that prompts histone modifica-
tions which are favourable to initiating 
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appear to be critical, these same catalytic 
events do not explain the ability of caspase 
3 to induce the global genome reprogram-
ming that typifies cell differentiation.

Recently, we have reported that caspase 
3 activates CAD in healthy muscle cells 
and that this step is essential for comple-
tion of myogenic differentiation.5 During 
early stages of differentiation, myoblast 
nuclei are subject to CAD dependent DNA 
strand breaks and inhibition of CAD 
activity (by limiting caspase 3 activation, 
repressing CAD expression or overexpress-
ing a non cleavable version of the CAD 
inhibitor ICAD) leads to a near complete 
blockade in differentiation with a concur-
rent loss in the formation of strand breaks. 
The CAD mediated strand breaks are in 
part permissive, as the induction of the 
critical regulatory factor p21 is dependent 
on a caspase 3/CAD directed strand break 
within the p21 promoter.

Nevertheless, like many interesting dis-
coveries, our recent work opens the door to 
many more questions than was answered 
in the initial study. Paramount among 
the unresolved mechanisms, once CAD 
is activated how is the DNase restrained 
sufficiently to induce strand breaks yet 
not destroy the genome? We hypoth-
esize that two independent mechanisms 
may contribute to the restrained activa-
tion of CAD. First, we anticipate that it 
is the DNA associated pool of CAD that 
is activated during differentiation. CAD 
has been shown to be complexed with 
ICAD in a nuclear position, a localization 
that would permit ready activation once 
caspase 3 was activated.13,14 In contrast, 
the excessive activation of caspase 3 dur-
ing apoptosis would allow for targeting 
of both the DNA bound and unbound 
CAD/ICAD complexes, the later being 
free to inflict indiscriminate breaks 
throughout the genome. Consistent with 
this hypothesis we have noted that the p21 
promoter is subject to consistently local-
ized strand breaks during differentiation, 
while apoptotic muscle cells display wide-
spread formation of strand breaks that are 
variable from experiment to experiment 
(see Fig. 4 in ref. 5). A confirmation of our 
hypothesis will require a definitive visu-
alization of distinct ICAD/CAD pools 
and/or a mapping of the CAD targeted 
genome that is specific to each cell fate 

protein is synthesized, here ICAD-L acts 
as a specific chaperone along with Hsp70 
and Hsp40 to properly fold CAD.11,12 
Following translation the ICAD-L/CAD 
complex localizes to the nucleus, where 
it remains highly mobile; however, stable 
interactions with DNA have been noted 
suggesting that CAD can be activated not 
only in the free nuclear space but also in a 
DNA associated complex.13-15

To activate CAD, caspase 3 tar-
gets ICAD for proteolytic cleavage at 
2 aspartic acids, D117 and D224. This 
caspase directed cleavage destabilizes 
the ICAD/CAD interaction and allows 
CAD dimerization. The CAD dimer 
aptly resembles an open scissor like struc-
ture, with the catalytic site of the dimer 
located in a crevice structure large enough 
to accommodate double stranded DNA.16 
The substrate DNA fully enters this struc-
ture and a double stranded DNA break is 
catalyzed. This protein conformation is 
believed to exclude nucleosome associated 
DNA, localizing the DNA break between 
nucleosomes. Under apoptotic conditions 
the extent of CAD activation is such that 
periodic DNA laddering is observed.8

Caspase 3/CAD Mediated DNA 
Strand Breaks: A Vital Genome 

Reprogramming Event

In addition to a well characterized role 
in apoptosis, caspase 3 activation is also 
a highly conserved step in the induction 
of cell differentiation. Transient caspase 3 
activity has been shown to be essential for 
differentiation of most somatic cell types 
studied and for the maturation of both ES 
and germs cells.17 The extent of caspase 3 
activation appears to control the balance 
between differentiation and apoptosis, 
with lower versus higher levels of activ-
ity controlling each cell fate respectively.18 
Defining the caspase 3 substrates that con-
vey the differentiation signal has been of 
considerable interest, yet limited informa-
tion has been forthcoming. Studies have 
suggested that caspase cleavage activation 
of select kinases propels the differentiation 
program whereas other studies have shown 
that cleavage inactivation of transcription 
factors establishes a permissive environ-
ment for the process.19-23 Although these 
specific caspase substrate interactions 

gene transcription.3,4 Undoubtedly, there 
is an inherent risk associated with such 
DNA damage yet these observations 
establish that limited DNA strand breaks 
can yield a notable beneficial outcome for 
a cell.4

Recently, work from our laboratory 
has transformed the paradigm described 
above and shown that genome wide DNA 
strand breaks act as a key regulatory step 
to promote muscle cell differentiation.5 
The DNA strand breaks are formed by a 
transient activation of caspase activated 
DNase or CAD, an observation that sug-
gests apoptotic proteins and pathways act 
as conserved genomic reprogramming 
factors.

Caspase 3/CAD Signaling:  
The Executioners

The caspase family of cysteine proteases 
signal through proteolytic cleavage, alter-
ing the activity of an extensive repertoire 
of substrates. Caspase 3 is an integration 
point for a variety of canonical cell death 
pathways, acting to target cytosolic and 
nuclear factors which in turn accelerate 
cellular demise.6 One key feature of this 
potent signal is the ability to activate the 
primary nuclease involved in disseminat-
ing extensive DNA strand breaks, termed 
caspase activated DNase or CAD.7 DNA 
damage in the form of genomic fragmen-
tation is a well characterized component 
of cell death or apoptosis. Although early 
stage DNA fragmentation is not an abso-
lute requirement for all early stage forms of 
apoptotic cell death, these nuclear events 
are assumed to improve the efficiency of 
the process.8 Indeed, the release of nucle-
otides and presentation of nucleosomes 
at the cell surface promote the removal 
of degenerate cells through attraction of 
phagocytic cells.9,10

The principle regulation of CAD 
comes by formation of a restrictive com-
plex with its inhibitor, ICAD, an inter-
action that physically restrains inactive 
CAD monomers from dimerizing into 
the active form. Two isoforms of ICAD 
are observed, ICAD-long (L) and ICAD- 
short (S), with the ICAD-L isoform 
having the most defined role in regulat-
ing CAD. Association by N-terminal 
CIDE domains begins when the CAD 
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of repressed genes in proliferating myo-
blasts.35 For example, expression of the 
cell cycle inhibitor p21 (which we have 
identified as a bona fide CAD target) is 
impeded by Msx1 prior to myoblast dif-
ferentiation.36 Based on our observations 
a reasonable conjecture is that CAD may 
be directed to relieve this repressed state 
and engage p21 expression by interacting 
with histone H1.5 and thereby displacing 
Msx1. How operative this mechanism is 
and how extensive across the genome it 
may be will require further investigation.

Curbing the Caspase3/CAD Signal

The transient activity of caspase and 
CAD in differentiating cells suggests the 
deployment of a mechanism(s) to mod-
erate or terminate this signal prior to 
inducing extensive DNA damage. Several 
studies have examined the signal cascades 
that activate and modulate caspase 3 dur-
ing non-death responses, yet a definitive 
control mechanism has not been eluci-
dated.37-39 Such inactivation could indi-
rectly end CAD activity by discontinuing 
proteolysis of ICAD. Intact ICAD (both 
long and short isoforms) can disassemble 
the CAD dimer, moreover our observa-
tion that ICAD-L is only partial cleaved 
(with a large pool of intact ICAD-L 
remaining) suggests that this mechanism 
maybe operative to prevent extensive 
DNA fragmentation.16

Intriguingly, alternate methods that 
block the nuclease activity of CAD have 
been noted. Admittedly, these cellular 
responses have been implicated primarily 
in response to caspase activity in apop-
totic settings or to restrain CAD activ-
ity when this nuclease is activated as a by 
product of another molecular mechanism. 
Nevertheless, it is reasonable to suggest 
that these same factors moderate CAD 
activity during cell differentiation. Poly-
ribosylation of CAD by PARP-1 can fur-
ther restrict CAD nuclease activity, and 
a transient increase in PARP-1 activity is 
reported in skeletal muscle differentia-
tion concurrent with the observed DNA 
strand break formation reported in Larsen 
et al.5,40,41 We have not examined a role for 
PARP-1 in CAD mediated DNA strand 
breaks and repair, yet PARP-1 has been 
demonstrated to play a role in regulating 

both mammalian and Drosophila systems 
(reviewed in Zeng and Hong 2008).27 
Our experiment was noteworthy in that 
an activated MST1 kinase (caspase 3 
cleavage activated kinase domain) pro-
vided a partial rescue of differentiation in 
caspase 3 null myoblasts, yet prolonged 
expression of MST1 led to formation of 
picnotic nuclei and apoptosis.22 Together, 
these observations suggest that MST1 
may stimulate differentiation by modulat-
ing or by activating chromatin remodel-
ling protein(s) to enhance CAD activity.

Caspase 3 can also target DNA bind-
ing proteins to modulate gene expression 
and several of these targets have the poten-
tial to modify CAD access to sensitive 
genomic elements. The matrix attachment 
protein, Special AT-rich binding protein 
1 (SATB1), is a global organizer of chro-
matin that facilitates the interaction of 
DNA elements termed matrix attachment 
regions (MARs) to the nuclear matrix. 
SATB1 is a demonstrated cleavage target 
of caspase 3/6 under both apoptotic and 
non-apoptotic conditions.28-30 Cleavage of 
SATB1 releases MARs from the nuclear 
matrix, leading to chromatin disrup-
tion.31 A specific role for caspase cleavage 
of SATB1 during differentiation has not 
been demonstrated, yet it is reasonable to 
suggest that removal of SATB1 may in 
some instances expose genomic elements 
that are targeted by CAD to coordinate 
gene expression.

CAD activity during cell differentia-
tion may also be moderated by additional 
chromatin modifications independent of 
caspase function. CAD/ICAD association 
to DNA can be potentiated by association 
with the C-terminal of histone H1, and 
this interaction can further stimulate the 
nuclease activity of CAD.32 Specifically, 
CAD has been reported to dynamically 
associate with the histone H1 variants, 
namely H1.5 and H1.0 in both healthy 
and apoptotic cells.33 Moreover, H1 vari-
ants can affect specific gene expression by 
cooperating with additional regulatory 
factors.34 This preferential association 
to histone variants could partly influ-
ence where in the genome CAD inflicts 
DNA strand breaks. Of interest, coor-
dination between the H1.5 variant and 
the transcription factor Msx1 has been 
demonstrated to occur at the promoters 

outcome. Second, we hypothesize that 
caspase targeting of ICAD during differ-
entiation is directed at the D117 cleavage 
site, whereas the greatly elevated caspase 
activity associated with apoptosis would 
result in cleavage at both D117 and D224. 
In this model of CAD activation, caspase 
cleavage at the D117 site would lead to 
a partial release of CAD while caspase 
targeting of both sites would remove any 
ICAD mediated inhibition with a higher 
resulting level of CAD activity. We have 
noted an ICAD cleavage event during dif-
ferentiation that is consistent with a D117 
only deletion, and a mutation in this site 
that renders ICAD caspase resistant leads 
to a reduction in myoblast differentiation 
(see Fig. 2 in ref. 5).

Our observations demonstrate that cas-
pase 3 activation of CAD (through ICAD 
cleavage and release of active CAD) is the 
primary step in promoting DNA damage/
strand breaks during myoblast differen-
tiation. Nevertheless, caspase 3 is known 
to target a wide variety of substrates dur-
ing apoptosis and cell differentiation.18 
Therefore, we hypothesize that caspase 
3 targets multiple proteins to ensure 
efficient activity of the CAD nuclease. 
Apoptotic signalling pathways modify 
chromatin ultra-structure prior to DNA 
damage and nuclear dissolution. In this 
regard, post-translational modifications 
of histones assume prominent regulatory 
roles. As such it is reasonable to assume 
that similar events pre-empt or assist CAD 
to promote DNA damage during cell dif-
ferentiation. Specifically, we assert that the 
ste20-like kinase MST1 participates in 
the formation of caspase mediated nicks/
strand breaks in differentiating myoblasts 
by phosphorylating and modifying the 
activity of chromatin regulatory proteins. 
This supposition is based on the following 
observations. First, MST1 was initially 
characterized as a pro-apoptotic, caspase 
3 sensitive kinase and more recently has 
been demonstrated to directly phosphory-
late histone H2B (at serine 14) leading to 
chromatin compaction and apoptosis.24-26 
Secondly, our laboratory was the first to 
describe a non-apoptotic function for 
MST1, i.e., MST1 as a pro-differentia-
tion kinase.22 Subsequent to our observa-
tions, numerous groups reported a role for 
MST1 in limiting cell cycle progression in 
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Determining the genomic targets of 
caspase 3 activated CAD will assist in 
developing appreciation for the role these 
DNA strand breaks play in regulating 
gene expression (fig. 1). Mapping these 
sites using rapidly developing next genera-
tion sequencing technology and determin-
ing protein interactions that direct CAD 
will begin to establish this understand-
ing. Further examination of epigenetic 
changes that occur at these sites will pro-
vide insight into how the strand break is 
utilized to regulate gene expression not 
only in differentiation but potentially in 
other genomic reprogramming events.
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