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Evaluating the impact of different social networks on the spread
of respiratory diseases has been limited by a lack of detailed data
on transmission outside the household setting as well as appro-
priate statistical methods. Here, from data collected during a H1N1
pandemic (pdm) influenza outbreak that started in an elementary
school and spread in a semirural community in Pennsylvania, we
quantify how transmission of influenza is affected by social net-
works. We set up a transmission model for which parameters are
estimated from the data via Markov chain Monte Carlo sampling.
Sitting next to a case or being the playmate of a case did not
significantly increase the risk of infection; but the structuring of
the school into classes and grades strongly affected spread. There
was evidence that boys were more likely to transmit influenza to
other boys than to girls (and vice versa), which mimicked the ob-
served assortative mixing among playmates. We also investigated
the presence of abnormally high transmission occurring on specific
days of the outbreak. Late closure of the school (i.e., when 27% of
students already had symptoms) had no significant impact on
spread. School-aged individuals (6–18 y) facilitated the introduc-
tion and spread of influenza in households, but only about one in
five cases aged >18 y was infected by a school-aged household
member. This analysis shows the extent to which clearly defined
social networks affect influenza transmission, revealing strong
between-place interactions with back-and-forth waves of trans-
mission between the school, the community, and the household.
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There is a large body of theoretical literature on how social
networks and population structures may affect the spread of

communicable diseases and hence influence the design of optimal
control strategies (1–8). Such work often makes use of detailed
data on populations (e.g., demographics in households, schools,
and workplaces; mobility and land-use data; contact surveys; or
time-use data) but then makes assumptions about how trans-
mission rates change with the type of interaction (e.g., as a func-
tion of the setting and the spatial or social distance between
individuals, etc.). Validating these assumptions can be challenging
due to the scarcity of appropriate epidemiological data. Consider
influenza, for example: Good data on household transmission (9–
14) and to a certain extent on transmission at the population level
are available, but only very limited data exist to characterize
transmission in other places (such as schools) (15, 16). Mean-
while, the impact of social networks and risk factors on trans-
mission has never been properly quantified. These uncertainties
obviously affect our ability to assess the efficacy of interventions
such as closure of school classes, grades, or entire schools.
Here, we analyze data from an H1N1 pandemic (H1N1pdm)

influenza outbreak that started in an elementary school in April
and May 2009 and spread in a semirural community in Penn-

sylvania to investigate how social networks and population struc-
tures affect influenza transmission.

Results and Discussion
Outbreak Investigation. Fig. 1 presents the data that were col-
lected during the outbreak investigation. Demographic and
clinical information on 370 (81%) students from 295 (81%)
households and their 899 household contacts was collected
during two rounds of phone interviews (May 16–21 and May 26–
June 2). One hundred twenty-nine (35%) students and 141
(16%) household contacts were reported to have had acute re-
spiratory illness (ARI, defined as at least two symptoms among
fever, cough, sore throat, and runny nose) from late April to
their last interview (Fig. 1A). Because fourth graders appeared to
be the most affected group at the time the school was in-
vestigated (54% reported ARI over the study period), a survey
was dedicated to this subset of individuals: Information on
seating charts (Fig. 1B), activities (Tables S1 and S2), and social
networking (“Who are your playmates?”; Fig. 1D) was collected.
Here, we set up a transmission model for which parameters are
estimated from the data via Markov chain Monte Carlo sampling
and data augmentation techniques (Materials and Methods and
SI Materials and Methods).

Transmission Characteristics in Different Settings. Fig. 2A shows that
the structuring of the school in classes and grades had a strong
impact on transmission rates. Child-to-child transmission proba-
bilities were estimated to be 3.5% [95% credibility interval (CI):
1.8%, 5.6%] within a class. Transmission probabilities between
students of the same grade but different class were about five times
smaller than between classmates (Fig. 2A). Similarly, transmission
probabilities between students from different grades were about
five times smaller than those between students from the same
grade. Fig. 2B shows that, in the household setting, the child-to-
adult transmission probability decreased with household size, from
9.6% (95%CI: 3.2%, 24.0%) in households of size 2 to 2.6% (95%
CI: 1.5%, 4.2%) in households of size 6 (9, 10; see also Fig. S1).
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Relative susceptibility of adults to infection was estimated to be
about half that of children (41%; 95% CI, 21%, 78%; Fig. 2C) but
adults were as infectious as children when infected (infectiousness
of adults relative to children: 92%; 95%CI, 38%, 204%), in agree-
ment with another study on H1N1pdm (10). The mean household
generation time of 2.3 d (95%CI: 1.4, 3.6) for individuals>10 y old
was also consistent with that of other studies (Fig. 2D) (10, 15, 17).
With a mean of 3.7 d (95% CI: 2.3, 5.0), there was substantial
evidence that children aged ≤10 had a longer household genera-
tion time than older individuals [Bayes factor (BF): 10.8; see SI
Materials and Methods for information on Bayes factors]. Our
analysis also suggests that the generation time in the school and the
community, with an estimatedmean of 1.1 d (95%CI: 1.0, 1.7), was
substantially shorter than the household generation time (Fig. 2D;
BF = 64 for the comparison with adult household generation
time). This can be explained, for example, if sick (and infectious)
children are likely to stay home shortly after symptom onset,
meaning that exposure to sick individuals in the school context is
likely to be truncated at an earlier time than would occur in
the household.

Detecting Events of Abnormally High Transmission. In an attempt to
detect abnormal transmission events, we consider the model in
which transmission rates do not change with time. For this model,
we plot in Fig. 3A the predictive distribution of the number of in-
fections (subsequently referred to as the “reconstructed” number
of infections) per day for different groups of individuals along

with the “next-step ahead” predictions giving for each day d the
number of infections predicted by the model given what has hap-
pened up to day d− 1. In general, there is good agreement between
the two distributions. However, the next-step ahead predictions
tend to largely underestimate the reconstructed number of cases
among students from fourth grade class A in the time period May
6 and 7 (respectively, day 10 and day 11 of the outbreak). This is
the only group of individuals and the only 2 d for which trans-
mission is found to be abnormally high; i.e., there is <10% pos-
terior probability P that the next-step ahead prediction is strictly
larger than the reconstructed number of infections (Fig. 3B). In an
exploratory analysis described in SI Materials and Methods, dif-
ferent mechanisms that could have been responsible of this phe-
nomenon are explored. This model comparison also suggests that
abnormally high transmission took place on those days (BF: 28)
(Table S3), although it is not conclusive concerning the mecha-
nisms that may have been involved. Overall, this analysis suggests
that abnormally high transmission may have taken place on May
6 and 7 although we cannot rule out the possibility that discrep-
ancies between reconstructed numbers of infections and next-step
ahead predictions were due to chance.

Sex-Related Mixing Patterns. Fig. 1D shows that sex is an important
determinant of social mixing between children of the same grade:
Children were four times more likely to play with children of the
same sex than with children of the opposite sex. We investigated
whether this aspect of social networking affected transmission
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Fig. 1. Epidemiological data collected in the school. (A) Number of acute respiratory illness (ARI) cases by date of symptom onset for different types of
individuals. (B–D) Survey of fourth graders with (B) seating charts and diagnosis for ARI in classroom C, (C) number of ARI cases by date of symptom onset and
sex among fourth graders, and (D) social networking among fourth graders based on the question “Who are your playmates?” [color of the nodes, red,
female; blue, male; color of the lines, red, girl–girl interaction; cyan, boy–boy interaction; green, boy–girl interaction (one symbol shape per class)]. The
algorithm used to draw the network aims at (i) distributing nodes evenly, (ii) making edge length uniform, (iii) minimizing edge crossings, and (iv) keeping
nodes from coming too close to edges (32, 33) (software: Netdraw). It does not use data on sex to position the nodes.
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dynamics in the school. We considered the model where the
transmission rate with the opposite sex was ρsex multiplied by the
rate with children of the same sex. There was substantial evidence
that the model ρsex < 1 accounting for the effect of sex-related
mixing patterns on spread had a better fit than the model ρsex = 1
that did not account for such an effect (BF: 9.7). We estimated
ρsex = 32% (95% CI: 5%, 82%) (Fig. 2E). This effect of sex

on spread can be noted in the epidemic curve of fourth graders
(Fig. 1C) where spread among boys (average time of onset: May
6, 8 PM) significantly preceded spread among girls (average time
of onset: May 9, 12 AM) (P = 0.023).

Late Closure of the School. The school closed May 14–20 (days 18
and 24 of the outbreak, respectively) because of the outbreak.
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Fig. 3. Detection of abnormal transmission events in the different groups of individuals. (A) “Reconstructed” numbers of infections per day for different
groups of individuals (blue line) along with the “next-step ahead” predictions giving for each day t the number of infections predicted by the model given
what has happened up to day t − 1 (red line). Dashed lines give the 95% CI. The different groups of individuals are students from grades K, 1, 2, and 3 and
fourth graders from classroom A and from other classrooms (classrooms B, C, and D) and adult and child household contacts. (B) For each day and each group,
the posterior probability that the reconstructed number of infections is smaller or equal to the “next-step ahead” predictions. The blue line gives the 10%
limit below which adequacy is rejected. See Materials and Methods and SI Materials and Methods for details.
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Fig. 2. Estimated transmission risk factors and gener-
ation times in places. (A) Transmission probability from
an infected student to a classmate, to a student from
the same grade but a different class, and to a student
from a different grade during his/her infectious period.
(B) Transmission probability in the household from an
infected child to an adult of the household during his/
her infectious period, as a function of household size.
(C) Susceptibility of adults relative to children (≤10 y
old), ρadult. (D) Generation time in the school/commu-
nity, in the household for adults and children. (E)
Transmission to children from the other sex relative to
that to children from the same sex, ρsex. (F) Trans-
mission between students during school closure rela-
tive to that during the rest of the outbreak, ρSC.
Boxplots give percentiles 2.5%, 25%, 50%, 75%, and
97.5% of the posterior distribution. The mathematical
definition of parameters is given in SI Materials and
Methods.
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Fig. 3 and Fig. S2 show no signal of reduced transmission among
students during the closure. When we formally estimated the
change in transmission rates between students during the closure
relative to the rest of the outbreak, we did not detect a significant
difference, although the point estimate suggested a 30% re-
duction (transmission rate after closure relative to that before:
ρclosure = 70%; 95% CI, 38%, 122%) (Fig. 2F). This result was
confirmed by the analysis of the school reproduction number,
which was found to be similar on the week when the school
closed (0.3; 95% CI, 0.1, 0.7) and on the following week (0.3;
95% CI, 0.0, 0.7) (Fig. 4C).
The lack of a statistically significant effect of school closure

may be because the closure was implemented relatively late in
the outbreak (27% of students already had had symptoms at the
time the closure started). This result meant that few cases would
have been expected to have occurred from the date of closure,
limiting the maximum possible effect of closure on overall case
numbers and reducing the statistical power to detect a differ-
ence. Our findings are consistent with modeling and epidemio-
logical studies that show that for reactive closure to have
a significant impact on spread, it is important that closure takes
place early in the school outbreak (2, 3, 18, 19).

Transmission Trees and Place of Transmission. To assess the con-
tribution of the students to the general outbreak, we probabi-
listically reconstructed the full transmission tree (Fig. 4), drawing
from the predictive distribution of 2,500 trees consistent with the
data. Fig. 4A shows the proportion of students who got infected
by people from different places. In this large school outbreak, we
estimate that 74% (95% CI: 65%, 82%) of sick students were
infected by other students (Fig. 4A). The fivefold reductions in
person-to-person transmission rates between class/grade and
grade/school (Fig. 2A) are balanced by similar increases in
population size so that proportions of students infected in each
of those settings are approximately equal (Fig. 4A).
Households that were interviewed do not constitute a repre-

sentative sample of households in the community, because those
that did not have a school-aged child in the school were not
represented. Nonetheless, those households constitute an in-
formative “sentinel group,” as they are arguably among house-

holds that were the most affected by the school outbreak. Impact
of the school outbreak on this subset may therefore be expected
to give an upper bound of impact on the general outbreak.
The relative risk that a case aged 0–5, 6–10, or 11–18 y old was

the introducer of influenza in the household (i.e., the first case of
the household) was 1.02 (95% CI: 0.85, 1.24), 1.84 (95% CI: 1.60,
2.12), and 1.20 (95%CI: 1.01,1.43), respectively (reference group:
>18-y-old cases), indicating that school-aged individuals (6–18 y
old) facilitated the introduction of influenza in households.
Children aged 6–10 y old had the highest infection rate (38%;

95% CI, 37%, 40%), followed by individuals 0–5 y old (24%;
95% CI, 23%, 26%), 11–18 y old (23%; 95% CI, 22%, 25%), and
>18 y old (13%; 95% CI, 12%, 14%) (Fig. 4B). Conditional on
infection, the probability of getting infected in the household was
41% (95% CI: 26%, 54%), 13% (95% CI: 8%, 17%), 21% (95%
CI: 10%, 35%), and 32% (95% CI: 53%, 84%) for individuals 0–
5, 6–10, 11–18, and >18 y old, respectively (Fig. 4B and Fig. S3).
In the household context, school-aged individuals (6–18 y old)
were the main source of transmission as they were responsible
for 65% (95% CI: 55%, 75%) of household transmissions (Fig.
4B and Fig. S3). Overall, school-aged individuals were therefore
important introducers and spreaders of influenza in the house-
hold; but transmission from outside the household was the pre-
dominant source of infection for all age groups and only about
one in five cases aged >18 y old was infected by a school-aged
household member. A substantial proportion of transmissions
from outside the household may come from school-aged indi-
viduals that lived in other households; but it is not possible to
reliably quantify it due to the way households were sampled.

Seating Charts and Playmate Networks. Focusing on fourth graders
for whom data on seating charts and playmate networks are
available, the transmission trees are used to compare the pro-
portion of between-classmate transmission that occurred between
classroom neighbors (pY = 8%; 95% CI, 0%, 19%) with the pro-
portion that would have been expected if sitting next to a case was
not a risk factor of transmission (pX=7%; 95%CI, 0%, 19%). The
procedure, which is presented in SI Materials and Methods, con-
trols for the effects of classroom, sex, and the depletion of sus-
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ceptible individuals (Table S4). Sitting next to a case is therefore
not found to significantly increase the risk of transmission.
Similarly, we find no significant difference between the pro-

portion of between- fourth grader transmission that occurred
between playmates (pY′ = 17%; 95% CI, 6%, 29%) and the
proportion that would have been expected if being a playmate
with a case was not a risk factor of transmission (pX′ = 19%; 95%
CI, 6%, 34%). The mean number of playmates for cases (13.8)
was not significantly different from the one for noncases (12.1)
(P = 0.37).

Reproduction Number in Places. Under the assumption that the
outbreak in the school was a closed outbreak (i.e., students can
be infected only by other students), transmission in the school
would appear to be sustained, with a reproduction number
among students on the first 2 wk of the outbreak that was sig-
nificantly larger than (although close to) 1 (1.4, 95% CI, 1.2, 1.5
for an estimated school generation time of 1.5; 95% CI, 1.1, 2.1
d). However, analysis of the more detailed data accounting for
household and community transmission reveals a more complex
picture. The global reproduction number of students was 1.7
(95% CI: 1.4, 2.0) on the first 2 wk but decomposed as follows in
the different places: 0.9 (95% CI: 0.7, 1.1) in schools, 0.5 (95%
CI: 0.3, 0.7) in the community, and 0.2 (95% CI: 0.1, 0.4) in the
household. With a reproduction number in the school ∼1 early
on, the school outbreak needed repeated introductions from
outside and/or abnormally high transmission events to be sus-
tained. This result is confirmed in Fig. 4D, which shows a trans-
mission tree drawn from the predictive distribution and where
back-and-forth waves of transmission between the school, the
community, and the households are visible. The global re-
production number for a “typical” case (i.e., averaged over cases
of the dataset) was 1.3 (95% CI: 1.2, 1.4) in the first 2 wk and
moved below 1 on the fourth week of the outbreak.

Sensitivity Analysis. In a sensitivity analysis (SI Materials and
Methods, and Tables S5–S9), we explored the robustness of our
results to a set of modeling assumptions and prior specifications.
Estimates appeared to be robust to most of them. The household
generation time was sensitive to prior specification with a mean
in the range 2.3–2.8 d for adults and 3.7–4.6 d for children;
however, the difference between child and adult generation
times (1.4–1.8 d) was relatively robust to the prior specification.

Limitations and Conclusion. The study was subject to the following
limitations. We used a syndromic definition to identify possible
influenza cases and most cases were not laboratory confirmed.
It is therefore likely that some cases were not infected by
H1N1pdm (see sensitivity analysis in SI Materials and Methods,
Fig. S4, and Table S9.). However, among the 36 cases with in-
fluenza-like illness (fever and cough or sore throat or both) that
were tested, the proportion who were infected by H1N1pdm was
high (72%) (20). Conversely, some individuals that did not meet
the clinical definition were likely to have been infected (21). The
survey data were self-reported and the main caregiver provided
information for all of the household members. Interview with the
school nurse, reviews of nurse logs, and absentee records in-
dicated that the first clinical cases among students occurred
around late April/early May. The surveys therefore focused on
symptoms occurring from that period onward. Students with
symptoms before this period would have been detected from the
data gathered in the school; but it is possible that some very early
cases among household contacts were missed. The sample of
interviewed households was not a representative sample of the
community (see above).
It is likely that a substantial proportion of transmission among

students of the school took place in the school. However, in the
eventuality where students also met and transmitted the virus to

each other outside the school, we would not be able to estimate
the proportion of student-to-student transmission taking place
outside the school. We are indeed able to estimate only the
global probability of transmission between students (i.e., either
in or out of the school) (SI Materials and Methods). To estimate
the proportion of student-to-student transmission taking place
inside the school, one would, for example, need to have a good
proxy for the proportion of effective contacts occurring between
students in and out of the school.
Nonetheless, the data analyzed here provide relatively unique

insights into how influenza is transmitted among students in a
school, into the complex nature of influenza spread in structured
populations (household/school/community), and, to a lesser ex-
tent, into the role of informal networks (e.g., boys mixing more
with other boys than with girls). The relatively low estimates of
the reproduction number (with estimates within each population
structure that are smaller than or ∼1) mean that for an outbreak
to be sustained in a place, multiple introductions and/or abnor-
mally high-transmission events are to be expected. This outcome
gives the picture of strong between-place interactions with back-
and-forth waves of transmission between the school, the com-
munity, and the households. Structuring of the school into clas-
ses and grades had a strong impact on spread. School-aged
individuals facilitated the introduction and spread of influenza in
households, but most cases were not infected by school-aged
household members. Such detailed outbreak investigations are
critically needed to improve our understanding of disease spread
in human populations. It is also important that the agent-based
simulation models that are now commonly used to inform policy
(1, 3) are properly calibrated on the basis of the type of analysis
presented here.

Materials and Methods
Data Collection. The outbreak investigationwas performedby the teams from
the Centers for Disease Control and Prevention (CDC) and the Pennsylvania
Department of Health. During May 16–21, the team attempted to conduct
a telephone interview with a parent or guardian in each student household.
During May 26–June 2, all student households were contacted by phone ex-
cept those that refused further participation in the investigation when they
were contacted for the rapid questionnaire. For fourth graders, documents
such as seating charts, school activity schedules, school calendars, bus sched-
ules, nurse logs, and absentee records were collected and reviewed. During
June 2 and 3, investigation team members administered questionnaires to
fourth graders who had obtained permission to participate in the study.

The school has a population of 456 students from 364 households. Three
hundred thirteen households (86.0%) completed at least one of the two
surveys. Of those, 18 (5.8%) were excluded from the analysis because the age
of at least 1 household contact was unknown. The analysis was therefore
performed on data collected from 295 (81%) households with 370 students
(81% of the students of the school) and 899 household contacts (i.e., any
person residing in the respondent’s household since May 1). A more detailed
summary of the data that were collected and the way they were processed
can be found in SI Materials and Methods. Children were defined as indi-
viduals aged ≤10 y.

Statistical Inference. Assuming that individuals with ARI were infected with
the influenza virus, we built a statistical model to estimate from the data how
social networks (i.e., structuring of the school in classes and grades, struc-
turing of the population in households, and sex-related mixing patterns)
affected transmission dynamics.
Transmission model. We build a transmission model for the force of infection
exerted on individual i at time t,

λiðtÞ ¼ ∑
N

j:tj < t
λ j→iðt j xj; xiÞ;

where λ j→iðtj xj ; xiÞ is the instantaneous hazard of transmission from in-
dividual j to individual i at time t:
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λ j→iðt j x j; xiÞ ¼ βðx j; xiÞ f ðt− t j j x j; xiÞδðt j xj; xi
�
: [1]

The first term of Eq. 1 characterizes the transmission rate between individ-
uals j and i. The transmission rate is estimated for five types of pairs of
individuals,

βðxj; xiÞ ¼

8>>>><
>>>>:

βH:ρageðxiÞ=ðn=4Þγ for household interaction
βC:ρsexðx j; xiÞ for class interaction
βG:ρsexðx j; xiÞ for grade interaction

βS for school interaction
βCom for community interaction;

where n is the size of the household, ρage(xi) characterizes age-related sus-
ceptibility (children are the reference group), and ρsex(xj, xi) characterizes
sex-related mixing patterns (reference group: transmission with children of
the same sex).

The second term of Eq. 1 characterizes infectivity of the case over time.
The model allows for different infectivity profiles in households (for adults
and for children) and in the school/community and Weibull distributions are
used to model infectivity profiles. The last term of Eq. 1 is used to investigate
potential changes in transmission on specific days, such as days with ab-
normally high transmission and the impact of school closure. Details about
the transmission model are given in SI Materials and Methods.
Estimation. If the diagnosis, date of infection, and date of symptomonset were
fully observed for each individual of the dataset, it would be relatively
straightforward to perform likelihood-based inference (SI Materials and
Methods). However, missing data make estimation of transmission param-
eters challenging: (i) Individuals who were not interviewed at the end of the
outbreak (40%) may have been sick between their last interview and the
end of the outbreak without being reported (truncated data); (ii) dates of
infection were unobserved; and (iii) the clinical diagnosis was missing for 18
individuals (1.4%) and 7 cases had no documented date of symptom onset.

Here, we use a Bayesian data augmentation framework to tackle the
missing data problem (9, 22–24). In the past, this approach has been suc-
cessfully used to deal with similar problems (9, 25–29). The dataset is
“augmented” with missing dates of infection, the few missing diagnoses,

and the few missing/censored dates of symptom onset (i.e., the statistical
model allows for the possibility that individuals may have been infected
after their last interview and that those with missing diagnoses may have
been infected too). If we schematically denote y the observed data, z the
augmented data, and θ the parameter vector, the joint posterior distribution
of augmented data and model parameters is proportional to

Pðz; θ j yÞ∝ Pð y j zÞPðz j θÞPðθÞ: [2]

Eq. 2 shows the hierarchical structure of our Bayesian model. On the right-
hand side of the equation, the first term, which is referred to as the “obser-
vation model,” ensures that the augmented data are consistent with ob-
served data. In agreement with a range of studies on seasonal and H1N1pdm
influenza (1, 15, 17, 30, 31), the observation model relies on the assumption
that the incubation period of influenza has a mean of 1.5 d and a variance of
0.3 d2. The second term of Eq. 2 corresponds to the “transmission model,”
which describes the latent transmission process and is characterized by Eq. 1.
The last term of Eq. 2 gives the prior distribution of the parameters, which are
detailed in SI Materials and Methods.

The joint posterior distribution of augmented data and parameters is ex-
plored via a reversible-jump (RJ) Markov chain Monte Carlo sampling (9, 22–
24). We report the posterior median and equal-tailed 95% CI of the param-
eters. The statistical framework is detailed in SI Materials and Methods.
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