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Hydrogen peroxide is thought to regulate cellular processes by
direct oxidation of numerous cellular proteins, whereas antioxi-
dants, most notably thiol peroxidases, are thought to reduce
peroxides and inhibit H2O2 response. However, thiol peroxidases
have also been implicated in activation of transcription factors
and signaling. It remains unclear if these enzymes stimulate or
inhibit redox regulation and whether this regulation is widespread
or limited to a few cellular components. Herein, we found that
Saccharomyces cerevisiae cells lacking all eight thiol peroxidases
were viable and withstood redox stresses. They transcriptionally
responded to various redox treatments, but were unable to acti-
vate and repress gene expression in response to H2O2. Further
studies involving redox transcription factors suggested that thiol
peroxidases are major regulators of global gene expression in
response to H2O2. The data suggest that thiol peroxidases sense
and transfer oxidative signals to the signaling proteins and regu-
late transcription, whereas a direct interaction between H2O2 and
other cellular proteins plays a secondary role.

Numerous cellular processes, including transcription and sig-
naling, are redox regulated, but the molecular basis for

this regulation is not clear. Hydrogen peroxide (H2O2) is a key
molecule that is involved in redox regulation (1–3). It is both a
toxic compound that can cause oxidative stress (4) and a second
messenger that is required for cell proliferation (5). Its signaling
function is thought to result from direct oxidation of various
cell signaling and regulatory components, and its toxicity from
stochastic oxidative damage to proteins, lipids, and nucleic acids
(6, 7).

Several classes of enzymes, such as catalases and peroxidases,
have evolved that specifically act on H2O2 or other hydroperox-
ides as substrates. Prominent among them are thiol-dependent
peroxidases, which belong to peroxiredoxin (Prx) and glutathione
peroxidase (Gpx) protein families. Thiol peroxidase genes are
present in all previously characterized organisms, suggesting that
these enzymes serve important functions conserved throughout
evolution. Prx and Gpx have been implicated in cell signaling
due to their ability to reduce intracellular levels of hydroperoxides
and to serve as floodgates of H2O2 signaling (8–10). However, stu-
dies have also revealed that Saccharomyces cerevisiae Gpx3/Hyr1/
Orp1 can serve as an H2O2 sensor and activate the transcription
factor Yap1 by forming a disulfide in this protein (11), and a Schi-
zosaccharomyces pombe thiol peroxidase Tsa1 was found to stimu-
late signaling through a MAP kinase pathway (12, 13). S. pombe
thiol peroxidase Tpx1 similarly regulates transcription factor Pap1
(14). In addition, the ability to transfer oxidizing equivalents was
demonstrated for a mammalian GPx4 using a GFP-based redox
sensor (15). It would be important to address the contribution
of thiol peroxidases to stimulation and repression of redox regula-
tion, particularly at a global, genome-wide scale.

In this work, we prepared a S. cerevisiae mutant lacking all
eight thiol peroxidases. Surprisingly, this mutant was viable

and could withstand significant oxidative stress. It responded to
several redox stimuli by robust transcriptional reprogramming.
However, it was unable to transcriptionally respond to hydrogen
peroxide. The data suggested that thiol peroxidases transfer
oxidative signals from peroxides to target proteins, thus activating
various transcriptional programs. This study revealed a previously
undescribed function of these proteins, in addition to their roles
in removal of low levels of peroxides.

Results and Discussion
Yeast Cells Lacking All Thiol Peroxidases Are Viable and Can Withstand
Redox Stresses. S. cerevisiae has five peroxiredoxins (Tsa1, Tsa2,
Ahp1, nPrx, and mPrx) (16) and three glutathione peroxidases
(Gpx1, Gpx2, and Gpx3) (17). We generated a series of mutants
lacking multiple thiol peroxidases in different combinations
(Fig. S1 and Table S1). These included several mutants that lacked
seven (7Δ; three mutants with remaining Gpx2, Gpx3, or Tsa1) or
all eight (8Δ) thiol peroxidase genes. The genome of the 8Δ strain
was sequenced to 26.5× coverage on an Illumina platform, and
the disruption of all eight thiol peroxidase genes was confirmed
by DNA sequence analysis. All mutants lacking multiple thiol
peroxidases, including 8∆, were viable, although their growth was
affected compared to WTcells (Fig. 1A and Fig. S2). The mutant
cells could withstand treatments with significant amounts of
H2O2, diamide, DTT, and menadione, although some mutants
were more sensitive than parental (WT) cells to these redox
stresses (Fig. 1A and Fig. S2). Individual thiol peroxidases differ-
entially contributed to this protection, with cells lacking multiple
thiol peroxidases generally being more sensitive to stress. Re-
moval of all eight thiol peroxidases also decreased cell growth
in the absence of stressors (Fig. S2).We further compared viability
of WT and multiple thiol peroxidase mutant cells following
treatment with 1 or 2 mM H2O2, 3 mM diamide, or 25 mM
DTT for 0.5–2 h and found smaller differences between WTand
mutant strains (Fig. 1B). This observation suggests that the growth
of 8Δ cells was inhibited by acute oxidative stress (Fig. 1A and
Fig. S2), but cells were viable and could resume growth once
stressors were removed (Fig. 1B). The unexpected oxidative stress
resistance of 8∆ cells could be explained by the protective activ-
ities of catalase and cytochrome c peroxidase, which can remove
hydrogen peroxide in thiol peroxidase mutant cells. Progressive
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removal of thiol peroxidases also resulted in lower life span
(Fig. 1C). Taken together, these data suggested that the loss of
thiol peroxidases decreased cell fitness and affected redox home-
ostasis. However, these enzymes were not essential, even when
cells were treated with peroxide or other stressors.

Thiol Peroxidase Null Cells Are Unable to Activate and Repress Gene
Expression in Response to H2O2. In S. cerevisiae, a large number
of genes respond to H2O2 (18). Using cDNA microarrays with
6,692 gene features, we found that expression of 1,144 genes
was induced and 574 genes repressed more than 2-fold upon
incubation of WTcells with 0.5 mM H2O2 for 30 min (Fig. 2A).
On average, gene expression was changed in WT cells 1.5-fold
under these conditions (Fig. 2A and Fig. S3).

The main known function of thiol peroxidases is to scavenge
hydroperoxides. Accordingly, these proteins may be expected to
decrease the transcriptional response to H2O2 by lowering the
cellular peroxide levels. Therefore, deletion of the peroxidase
genes would be expected to stimulate gene expression in response
to H2O2. However, in contrast to this prediction, the response to
H2O2 was inhibited in cells lacking multiple thiol peroxidases.
This effect was especially pronounced in the mutants that lacked
six or more thiol peroxidase genes (Fig. 2A and Fig. S3) and was

observed at both 0.1 and 0.5 mM H2O2 (Fig. S4). Moreover, cells
lacking seven (i.e., all except Gpx2, all except Gpx3, and all except
Tsa1) or all eight thiol peroxidases essentially lost the ability to
regulate gene expression in response to H2O2. For example, 8Δ
cells had a 37-fold reduced response to H2O2 treatment com-
pared to WT cells. Importantly, both activation and repression
of gene expression were inhibited (Fig. 2A and Fig. S3).

Thiol Peroxidase Null Cells Transcriptionally Respond to Stresses Other
Than H2O2. To determine if the observed transcriptional effect
was specific to H2O2 or if the mutant cells also lost the ability
to respond to other stresses, we examined the response ofWTand
7Δ (all thiol peroxidases except Gpx2) cells to several other redox
stressors, including DTT, diamide, and menadione (Fig. 2B).
DTT is a strong reductant that causes reductive stress and induces

Fig. 1. Phenotypes and sensitivity of thiol peroxidase mutant strains to
redox stresses. (A) Sensitivity of S. cerevisiae WT and different thiol peroxi-
dase mutant cells to indicated concentrations of hydrogen peroxide, dia-
mide, DTT, and menadione. Cells in series of 10× dilutions for each strain
were grown on plates with indicated stress inducers for 48 h. (B) Viability
of WT cells and 8Δ cells during 2-h treatment with indicated stressors. (C) Re-
plicative life span of WT and thiol peroxidase mutant strains.

Fig. 2. Disruption of H2O2-dependent regulation of gene expression in yeast
cells lacking multiple thiol peroxidase genes. (A) Regulation of gene expres-
sion by H2O2. Changes in gene expression of WT and indicated mutant thiol
peroxidase strains in response to 0.5 mM H2O2 treatment (30 min) are shown
for all genes that are either induced or repressed in at least one strain (WTor
mutant) used in the study. Numbers below the columns show average values
of changes in gene expression (the sum of activation and repression values
dividedby the total numberof yeast genes as described inMaterials andMeth-
ods) for each dataset. WTa and 8Δa refer to the corresponding H2O2-treated
anduntreated cells grownunder anaerobic conditions. Repression is indicated
by green and induction by red colors, and their intensities are graded as log2
of the fold increase/decrease in gene expression. (B) Time course of average
changes in gene expression in WT and 7Δ cells in response to 0.5 mM H2O2,
2.5 mM DTT, 2.5 mM diamide, and 1 mM menadione treatments.
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unfolded protein response (18), whereas menadione is a super-
oxide generator, and diamide is an oxidant that generates non-
specific disulfide bonds. WT cells responded to all treatments.
We also found that 7Δ cells responded to DTT and diamide
similarly to WT cells; however, they did not respond to H2O2

treatment. Thus, deletion of multiple thiol peroxidase genes spe-
cifically disrupted the H2O2-induced transcriptional reprogram-
ming without affecting the ability of cells to respond to other
redox stresses. The response of mutant cells to menadione was
twofold lower than that in WTcells (Fig. 2B), but this effect could
be explained by the fact that this compound generates super-
oxide, which is further converted to H2O2 (to which these cells
do not respond).

Thiol Peroxidase Null Cells Do Not Respond to Varying H2O2 Concen-
trations and Treatment Times. To examine the possibility that the
response to H2O2 in the thiol peroxidase mutants was delayed
or accelerated rather than the regulation was abolished, we
analyzed gene expression in WT and 7Δ cells at 10, 30, 60, and
120 min after addition of H2O2 (Fig. 2B). In WT cells, gene
expression (both activation and repression) changed by 30 min,
peaked at 60 min, and diminished at 120 min. However, 7Δ cells
did not respond to H2O2 at any time points. Likewise, we exam-
ined the regulation of gene expression in WTand 8Δ cells at dif-
ferent concentrations of H2O2 (0.05, 0.5, 1, 2, and 5 mM; 30-min
treatment) (Fig. S5). In WTcells, activation and repression were
most pronounced at 0.5 mM H2O2, but at concentrations above
1 mM the response diminished (Fig. 1B). However, the response
of 8Δ cells was low at any H2O2 concentration. To test if other
redox proteins functionally linked to thiol peroxidases were in-
volved in the H2O2 response, we examined yeast cells deficient
in cytochrome c peroxidase (Ccp1) or sulfiredoxin (Srx1). Both
mutants responded to H2O2 similarly to WT cells (Fig. S6).

The data presented so far are consistent with a model wherein
thiol peroxidases were required for the transfer of the H2O2 signal
to other cellular components for transcriptional reprogramming.
Moreover, this requirement was not limited to certain gene groups.
Thus, thiol peroxidases appeared to function as global mediators
(rather than inhibitors) of gene expression in response to H2O2.

Thiol Peroxidase-Dependent Repression of Ribosomal Protein Gene
Expression. As a representative example, we analyzed expression
of cytosolic ribosomal protein genes in WTand thiol peroxidase
mutant cells. Ribosomal protein genes (i) were not down-regu-
lated by H2O2 in mutant cells (Fig. 3A), (ii) exhibited normal
expression levels in untreated mutant cells compared to WTcells
(Fig. 3B), (iii) were down-regulated by H2O2, diamide, and DTT
in WT cells, and (iv) were down-regulated by DTT and diamide
(but not by H2O2) in mutant cells (Fig. 3C). These data argue for
the specific thiol peroxidase-dependent regulation of ribosomal
protein gene expression.

Expression of ribosomal protein genes is regulated by tran-
scription factor Sfp1 (19). We tested the response of Sfp1 mutant
cells to H2O2 (Fig. 3D) and found no repression of ribosomal
protein genes, suggesting that Sfp1 is a H2O2- and thiol peroxi-
dase-regulated transcription factor. An additional related cluster
of genes that failed to respond to H2O2 treatment in 8∆ cells
includes genes involved in rRNA modification and translation
(Figs. S7 and S8). Similar to cytosolic ribosomal protein genes,
rRNA modification and translation genes were not activated
or repressed in response to H2O2. However, their responses
to DTT and diamide treatments in mutant cells were similar
to those in WT cells. Interestingly, although cytosolic transla-
tional machinery was transcriptionally repressed by H2O2 in a
thiol peroxidase-dependent manner (Fig. 3 and Figs. S7 and S8),
mitochondrial ribosomal protein genes were induced (Fig. S9). A
similar effect was observed for genes coding for ubiquitin-
dependent protein degradation components (Fig. S10). Further

examination of responses in individual thiol peroxidase mutants
suggested that thiol peroxidases could compensate for each other
in mediating the repression of cytosolic ribosomal and transla-
tion-related proteins. Nevertheless, the contributions of indivi-
dual thiol peroxidases to the peroxide-dependent regulation
varied (Fig. 3A and Fig. S8).

Thiol Peroxidase Null Cells Do Not Show Elevated Levels of Reactive
Oxygen Species (ROS). Thiol peroxidases have been suggested to
serve as key enzymes in antioxidant defense. If so, a possibility
had to be considered that the deletion of these enzymes led to
oxidative stress (and therefore resulted in the H2O2 response
even in the absence of stress) and that treatment with H2O2

did not further change or exacerbate the expression profile or
response. Because the definition of oxidative stress is complex,
we examined this possibility in a number of ways, as described
in several sections below. First, we analyzed ROS levels in WT
and mutant cells by monitoring 2′,7′-dichlorofluorescein (DCF)
fluorescence (Fig. 4A). Little difference was found between WT
and 8Δ cells in the absence of stress; however, ROS levels were
2-fold higher in multiple thiol peroxidase mutant cells following
1–5 mM H2O2 treatment (Fig. 4A). These data suggest that 8Δ

Fig. 3. Thiol peroxidase-dependent transcriptional regulation of ribosomal
proteins by H2O2. (A) Changes in gene expression of cytosolic ribosomal
proteins upon treatment of WT and thiol peroxidase mutant cells with
0.5 mM H2O2 for 30 min. (B) Changes in gene expression of cytosolic riboso-
mal proteins between untreated WT and mutant cells. (C) Time course of
gene expression changes of cytosolic ribosomal proteins upon treatment
of WT and 7Δ cells with 0.5 mM H2O2, 2.5 mM diamide. or 2.5 mM DTT
for indicated time periods. (D) Changes in gene expression for cytosolic ribo-
somal proteins upon treatment of WTand Sfp1 mutant cells with H2O2. Right
column compares gene expression in WT and Sfp1Δ cells.
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cells were not in a state of severe peroxide stress that could pre-
clude their response to H2O2 treatment. The increase in ROS
levels in 8Δ cells after the addition of H2O2 could not explain
the loss of the transcriptional response because 8Δ cells could
transcriptionally respond to other stresses (Fig. 2B). In addition,
in the presence of 0.1 mM H2O2, ROS were not increased in 8Δ
cells, yet transcriptional response was inhibited (Fig. S4).

Thioredoxin and Thioredoxin Reductase Null Cells Respond to H2O2

Treatment. The reduced state of most or all thiol peroxidases
in the yeast cytosol and nucleus is maintained by thioredoxins
Trx1 and Trx2, which in turn are reduced by NADPH-dependent
thioredoxin reductase Trr1. We tested if deletion of both Trxs or
of Trr1 also disrupts regulation of gene expression by H2O2, but
instead found that these mutants had an increased response to
H2O2 (Fig. 4B). Stimulation of activation and repression of gene
expression in response to H2O2 was also previously seen in the
Trr1 mutant cells treated with lower concentrations of H2O2 (20).
Thus, we observed an important difference between thiol perox-

idases on the one side and their reductants on the other. The data
suggest that deletion of Trxs or Trr1 leads to accumulation of
oxidized forms of thiol peroxidases and therefore results in an
increased response to H2O2.

Thioredoxin and Thiol Peroxidase Mutants Show Similar Levels of
Cysteine Oxidation.Because Trxs, Trr1, and thiol peroxidases func-
tion in the same pathway to transfer electrons from NADPH to
H2O2, further comparison of these mutant strains offered us an
opportunity to better understand the unique role of thiol perox-
idases in the peroxide-dependent transcriptional regulation. We
examined levels of oxidized cysteine residues in protein extracts
from unstressed 7Δ and Trx1,2Δ cells. Although both strains
had somewhat elevated cysteine oxidation compared to WTcells,
we found no significant differences between these mutant cells
(Fig. 4 C and D). These data further support the idea that redox
stress cannot explain the specific block in the H2O2 response by
thiol peroxidase null cells.

During the course of these studies, we made another interest-
ing observation: Trx1,2Δ cells were more resistant to H2O2 treat-
ment in the cell viability assay than even WTcells (Fig. 4E). It is
possible that Trx1,2Δ cells had an increased capacity for H2O2

regulation due to elevation in oxidized thiol peroxidases. This
finding is not contradictory with the current literature (20, 21).
Indeed, the double thioredoxin mutant grows slowly in the pre-
sence of H2O2; however, its viability, determined as the number
of colonies formed following the treatment and transfer of cells to
a new medium, was not affected. Overall, our data support the
idea that Trr1 and Trxs inhibit the transcriptional response to
H2O2 (by reducing thiol peroxidases), whereas thiol peroxidases
stimulate peroxide-dependent regulation of gene expression (by
oxidizing target proteins).

Antioxidant Compounds and Anaerobic Growth Do Not Restore the
Ability of 8Δ Cells to Respond to Peroxide. As an additional test,
we examined the H2O2-dependent changes in gene expression
of WTand 8Δ cells under anaerobic conditions (Fig. 2A), as well
as aerobically in the presence of antioxidant compounds, 5 mM
L-proline and 5 mM N-acetylcysteine (NAC) (Fig. S11). The dif-
ference in gene expression between WT and 8Δ cells (Fig. S11,
Right) was significantly decreased by anaerobiosis and proline/
NAC treatment; however, these conditions and treatments did
not restore the ability of thiol peroxidase mutant cells to respond
to H2O2. These data once again argue that peroxide stress is not a
reason for the inability of the mutant strains to respond to H2O2.

Antioxidants Inhibit Rather Than Stimulate Growth of 8Δ Cells. We
tested if expression of a bacterial thiol peroxidase, Escherichia coli
2-Cys peroxiredoxin BCP (Fig. S12), or treatment of the thiol per-
oxidase mutant strain with 5 mM NAC (Fig. S13) could decrease
the elevated cysteine oxidation in multiple thiol peroxidase
mutants and found that they could not. In addition, we examined
if antioxidants (5 mMNAC and 2 mMDTT) could normalize the
growth of thiol peroxidase mutant cells. Surprisingly, the growth
of 8Δ cells was inhibited by both compounds (Fig. S14). For
example, whereas the growth of WT cells was not affected by
NAC, the NAC-treated 8Δ cells showed no growth until 20 h.
Moreover, 8Δ cells did not grow in the presence of 2 mM DTT
(Fig. S14), even though this compound did not affect viability
of these cells (during brief exposure) to much higher concentra-
tions (Fig. 1B and Fig. S2). Although 5 mM NAC did not change
the overall levels of disulfides in WTand mutant cells (Fig. S13),
our observations support the idea that DTT- and NAC-dependent
inhibition of growth of 8∆ cells was due to the reduction of
disulfides in regulatory proteins. It is possible that the increased
levels of nonspecific cysteine oxidation in multiple thiol peroxi-
dase mutant cells is a molecular response that protects cells from
stress caused by deletion of thiol peroxidase genes.

Fig. 4. ROS in thiol peroxidase mutant cells and the peroxide response in
thioredoxin mutant strains. (A) ROS in WT and 8Δ cells were assayed by
DCF fluorescence. Cells were treated with indicated concentrations of perox-
ide for 30 min. (B) Changes in gene expression in WT, Trx1,2Δ. and Trr1Δ cells
in response to H2O2 treatment. Yeast strains in SY2626 background were
used in this experiment. (C) Analysis of oxidized cysteine residues in yeast
proteins in WT and indicated mutant strains. Reduced cysteine residues in
yeast proteins were blocked with iodoacetamide, and the oxidized residues
were reduced with DTT, alkylated with a biotinylated iodoacetamide, and
visualized with streptavidin-conjugated antibodies. (D) Protein loading con-
trol for the data shown in C. (E) Viability of WT, 8Δ, Yap1Δ, and Trx1,2Δ cells
following treatment with 1 mM H2O2 for indicated periods of time.
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Roles of Yap1, Skn7, Msn2, and Msn4 in the Global Response to H2O2.
In S. cerevisiae, four transcription factors, Yap1, Skn7, Msn2, and
Msn4, are known to regulate gene expression in response to
H2O2, but they can also be activated by other stresses. We deleted
these genes individually or in combination and tested the tran-
scriptional response of the resulting cells to H2O2. These mutant
cells, including the mutant that lacked all four transcription fac-
tors (4Δ), were viable and responded to H2O2 similarly to WT
cells (Fig. 5A and Fig. S15); however, sensitivity to H2O2 was
higher in Yap1Δ and 4Δ cells compared toWTcells. For example,
expression of ribosomal protein genes was inhibited by H2O2 in
these cells (Fig. S16). Comparison of expression profiles between
WT and cells lacking the four transcription factors showed little
difference (Fig. 5B). Reversible cysteine oxidation in the mutant
cells was also similar to that in WT cells under equivalent treat-
ment conditions (i.e., with and without H2O2) (Fig. S17). These
results suggest that the global response to H2O2 is not mediated
exclusively by these four redox transcription factors. Our data
also allowed us to better define the sets of genes dependent
on these transcription factors (Fig. 5 C and D). In particular,
we identified genes uniquely dependent on Yap1 as well as genes
dependent on both Yap1 and Skn7 (Fig. 5C).

Expression of several, but not all, Yap1- and Yap1/Skn7-depen-
dent genes was elevated in the untreated 8Δ cells compared
to WTcontrols (Fig. 5D). It is known that Yap1 can be activated
by general stresses, including treatment with diamide, and this
regulation may be independent of thiol peroxidases (22). We
examined changes in the expression of Yap1- and Yap1/Skn7-
dependent genes inWTand 7Δ cells upon treatment with diamide,
menadione, or DTTat different time points (Fig. S18). The ana-
lysis of the response to menadione and diamide suggested that
Yap1/Skn7 dependent genes could still be fully regulated in 7Δ
cells. On the other hand, the DTT response showed an opposite
effect for WTand 7Δ cells. This observation suggested that disul-
fide bonds in Yap1/Skn7 transcription factors may have formed
nonspecifically in the oxidative environment of 7Δ cells and that
such disulfide bonds could not be reoxidized under experimental
conditions, because formation of physiological disulfide bonds
was not possible in the 7Δ mutant.

Hydrogen Peroxide-Sensing Cysteines Are Intact in 8Δ Cells.We tested
the response of WTand 8Δ cells to the combined H2O2 and dia-
mide treatment. H2O2 did not modify the response of WT and
8Δ cells to diamide (Fig. S19). Moreover, transcriptional re-
sponses to H2O2 and diamide significantly overlapped inWTcells
and the response to H2O2 in WT cells also overlapped with the
diamide response in 8Δ cells (Figs. S19, S20, and S21). Diamide
can form disulfide bonds in proteins nonspecifically, and this
observation explains the overlap between H2O2 and diamide re-
sponses and suggests that both compounds have a similar set of
targets. These data support the hypothesis that 8Δ cells do not
respond to H2O2 because they lack thiol peroxidases, which form
regulatory disulfides in signaling proteins. Diamide can directly
form such disulfides, and therefore the response to diamide in
8Δ cells is similar to those of H2O2 and diamide in WT cells.

A Model of Thiol Peroxidase-Dependent Regulation of Transcription.
We showed that thiol peroxidase null cells are unable to sense
H2O2 and carry out peroxide-dependent transcriptional repro-
gramming. The peroxide response was not observed at any time
points following peroxide treatments nor at any peroxide concen-
trations. Neither anaerobic conditions nor antioxidants could
restore it. Yet, thiol peroxidase mutant cells showed robust tran-
scriptional responses to other redox treatments. We propose that
these findings can be explained by disruption of the signaling net-
work from peroxide to transcription factors. Thiol peroxidases
emerge as global regulators of gene expression. Overall, the data
suggest that thiol peroxidases exhibit two functions associated

with H2O2 reduction: (i) They transmit oxidative signals to up-
stream (with respect to electron flow) effectors, such as transcrip-
tion factors and signaling and regulatory molecules, and (ii) they
provide antioxidant defense by reducing hydroperoxides. Pre-
viously, it has been difficult to distinguish these functions experi-
mentally because by reducing peroxides, thiol peroxidases fulfill
two roles: oxidation of target proteins and antioxidant defense.

Our model of gene regulation by H2O2 (Fig. 6) is illustrated
using the example of the NADPH-dependent Trx system. In the
absence of stress, thiol peroxidases are kept in the reduced state
by Trxs and other thiol-disulfide oxidoreductases. Upon addition

Fig. 5. Role of oxidative stress transcription factors in the H2O2 response.
(A) Regulation of gene expression by H2O2 in cells lacking single and
multiple transcription factors Yap1, Skn7, Msn2, and Msn4. (B) Comparison
of gene expression between untreated WT and indicated mutant cells.
The values of average changes in gene expression are shown under each
column. (C) Changes in gene expression in response to H2O2 treatment of
Yap1- and Yap1/Skn7-dependent genes in WT and transcription factor mu-
tant cells. This set was generated by filtering the entire set of genes respon-
sive to H2O2 treatment as described inMaterials andMethods. (D) Changes in
gene expression, in response to H2O2 treatment of Yap1- and Yap1/Skn7-
dependent genes, in WTand thiol peroxidase mutant cells. D shows a filtered
version of data from Fig. 2A. (E) Same experiment performed with Trr1Δ and
Trx1,2Δ cells and isogenic WT cells. E shows a filtered version of data from
Fig. 4B. (F) Changes in gene expression of Yap1- and Yap1/Skn7-dependent
genes between WT and indicated mutant cells. Yap1- and Yap1/Skn7-depen-
dent genes are shown on the right.
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(or intracellular generation) of low concentrations of H2O2, this
compound specifically oxidizes thiol peroxidases, whereas oxida-
tion of other cellular proteins by H2O2 is minimal. High specificity
of these enzymes toward H2O2 (23) makes them excellent candi-
dates for sensingH2O2 and other hydroperoxides and allows them
to effectively compete for H2O2 with other proteins containing
reactive cysteines. Thiol peroxidases then oxidize regulatory and
signaling proteins, resulting in the transcriptional response and
signaling programs. The examples of Gpx3-dependent activation
of Yap1 in response to H2O2 (11, 24) and of Tsa1-dependent
activation of a stress-activatedMAP kinase (12, 13) are supportive
of our model and illustrate a molecular mechanism, by which
thiol peroxidases may transfer oxidative signals to regulate gene
expression.

Although regulation due to a direct target oxidation by H2O2

also likely exists, the key difference between our model (Fig. 6)
and previously suggested models of redox regulation is that H2O2

does not need to interact with other cellular proteins to a signifi-
cant extent in order to regulate gene expression or other perox-
ide-dependent programs. The model also explains specificity of
H2O2 transcriptional regulation and points to basic mechanisms
of redox signaling and redox regulation of cellular processes.
Finally, we found that thiol peroxidases regulate the H2O2 tran-
scriptional response in S. cerevisiae. We suggest that thiol perox-
idases, via thiol-based redox coupling with cellular proteins, may
also control different signaling and regulatory programs in other
organisms, including mammals.

Materials and Methods
A detailed SI Materials and Methods is located in SI Appendix.

Yeast Strains. The yeast strains used in this study are shown in Table S1.
Single and multiple thiol peroxidase mutants were prepared by mating
the strain lacking five peroxiredoxin genes (GY14) with the strain lacking
three glutathione peroxidase genes (GY25, GY30) in BY4741 background.
The transcription factor mutant strains were prepared by a one-step gene
disruption method.

Spot Assays. Overnight cultures were adjusted to OD600 ¼ 1, and 10 μL of
serial dilutions (10-fold each) were spotted on SD solid medium that con-
tained stressors at indicated concentrations. Cells were grown for 2 d.

Yeast Aging Assays. After growing for 2 d on fresh plates, 35 undivided
daughter cells were collected and arranged on yeast YPD plates using a
dissecting microscope. New buds from these original daughter cells were
separated and discarded as they formed. This process continued until cells
stopped dividing.

cDNA Microarray Analyses. Cells were grown to 0.3–0.5 OD600 in 200 mL of
YPD medium, treated for indicated times with indicated compounds, har-

vested by centrifugation, and kept at −80 °C. Total RNA was isolated, and
mRNA was prepared by amplification and used to prepare cDNA probes
by reverse transcription with incorporation of Cy3-dCTP or Cy5-dCTP. DNA
microarray data were K-mean clustered with CLUSTER and visualized using
TreeView. Average levels of gene activation and repression were estimated as
described in SI Materials and Methods.

Detection of Reversibly Oxidized Cysteine Residues in WT and Mutant Yeast
Strains. Each strain was grown in YPD to OD600 ¼ 1. Reduced cysteines were
modified with iodoacetamide under denaturing conditions. Then, remaining
oxidized cysteines were reduced with DTT and modified with biotinylated
iodoacetamide. The levels of oxidized cysteines (in the initial samples) were
detected by Western blotting using streptavidin-conjugated antibodies.

Viability Assays. Each strain was grown in YPD to OD600 ¼ 0.5 and treated
with indicated stress agents for various time periods. Cells were washed with
YPD medium and serial dilutions were plated on YPD agar plates. Colony
numbers were counted after 3 d.

ROS Analyses. Yeast cells were grown to OD600 ¼ 0.5, washed twice with PBS,
resuspended in PBS to 108 cells∕mL, and loaded with 5 μM 2′-7′-dichlorodi-
hydrofluorescein diacetate. Cells were treated with 1 mM or 5 mM H2O2 for
30 min. DCF fluorescence was analyzed by flow cytometry.

Genome Sequence of 8Δ Cells. Genomic DNA was isolated from 8Δ cells and
sequenced on an Illumina platform. Reads were assembled into the genome
with MAQ genome assembler.
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Fig. 6. A model of redox regulation of gene expression. Shown is the flow
of reducing equivalents (red arrows) in the thioredoxin system from NADPH
to hydrogen peroxide and the role of thiol peroxidases in this process. Thiol
peroxidases are initially oxidized by H2O2 and then oxidize transcription
factors, kinases, and other target proteins in yeast cells. Oxidation of these
targets elicits transcriptional response, redox regulation, signaling pathways,
and other programs (shown by a vertical gray arrow). Direct oxidation of
signaling and regulatory proteins by H2O2 is minimal (red dotted arrow).
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