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When a monolayer of hard microscale square platelets, produced
lithographically, is osmotically concentrated in a flat plane to raise
the particle area fraction ϕA, an order–order transition occurs
between a hexagonal rotator crystal and a rhombic crystal. Strik-
ingly, phases having fourfold symmetry are not observed at anyϕA.
The rhombic lattice angle α increases continuously with ϕA, as the
system maximizes its total rotational and translational entropy.
A cage model, based on packing rotationally swept squares, or
“squaroids,” reasonably predicts the measured αðϕAÞ, indicating
that rotational entropy and the square particle shape combine
to produce the rhombic unit cell.
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Thermodynamic structures of liquid crystalline mesophases
depend in an important way on the geometrical shapes of

their constituent molecules. This shape dependence is particu-
larly clear for hard-core repulsive interactions, because the state
having minimum free energy is determined by maximizing the
entropy through the available free volume per molecule. For
solutions of long hard rods, Onsager first showed that the onset
of nematic liquid crystalline order depends on molecular geome-
try through the excluded volume (1). Molecules in two dimen-
sions (2D) are particularly interesting because their shapes
and symmetries can determine whether or not a first-order freez-
ing phase transition is replaced by an intervening mesophase,
which exhibits a spatial power-law decay in orientational order
but only short-range translational order. For hard disks, a sixfold
hexatic phase can interpolate between the isotropic liquid and
hexagonal 2D crystalline phases (2–9). For hard squares, Monte
Carlo (MC) simulations (10) predict that a high-density crystal
phase having square symmetry will melt into a tetratic mesophase
having a fourfold orientational order at lower densities: The four-
fold symmetries of the square crystal and the tetratic mesophase
reflect the underlying symmetry of the constituent square parti-
cle. However, no experiments have yet been made on systems of
Brownian squares that test these predictions.

Lithographic methods have facilitated the synthesis of uniform
particulate dispersions containing shape-designed colloids that
can serve as model systems for molecular liquid crystals (11–16).
When properly controlled, these customized dispersions can be
used to study interesting and fundamental problems of statistical
mechanics of dense many-particle systems. Although the 2D
phase behavior and jammed states of a thermal system of hard
pentagons, which cannot fully tile a plane, have been examined
(17), a very different set of phases and phase transitions could be
observed by investigating a system of Brownian squares which can
fully tile a plane.

To investigate this, we have explored the phase behavior of
a model aqueous dispersion of lithographic square platelets
(i.e., “squares”) that diffuse in a plane. We form a monolayer
of microscale squares near the bottom surface of a rectangle
optical cuvette using roughness-controlled depletion attractions
(see Materials and Methods) (18, 19); the squares are osmotically
compressed in 2D by slightly tilting the cuvette about its long axis.
Because the particles have a higher mass density than water, the

osmotic pressure Π at a given location in the monolayer arises
from the effective gravitational mass of particles above it, pro-
jected along the tilted plane. After equilibration, Π increases
toward the lower regions of the monolayer, so the particle area
fraction ϕA also increases, yielding a slowly varying gradient in ϕA
within the monolayer. Everywhere within the monolayer, Brow-
nian fluctuations are present and drive diffusive dynamics. By
examining different locations in the monolayer microscopically,
we observe a disorder–order transition as an isotropic phase
(I) solidifies into a hexagonal rotator crystal phase (RX) in which
the squares can still fully rotate. At larger ϕA, we find a phase-
coexistence region (CE) that contains crystallites of RX and of a
rhombic crystal phase (RB), indicative of a large first-order phase
transition. This CE region is followed by a pure RB phase in
which the full rotation of the squares is inhibited by neighbors.
The RB phase exhibits a continuously changing lattice angle
αðϕAÞ and approaches a square phase (SQ) only as ϕA increases
toward unity. Our observations are strikingly different than MC
predictions: RX and RB phases replace the tetratic and square
phases seen in MC simulations, and neither RX nor RB directly
reflects the square symmetry of the platelets. To understand the
origin of the differences, we present a simple mean-field theory of
structural phase transitions for 2D excluded-volume crystals
based on entropy maximization of a lattice of rotationally swept
“squaroids,” revealing the importance of rotational entropy in the
phase behavior.

Results
In Fig. 1, we show optical micrographs of example configurations
of dense thermal squares [Insets, Fourier transforms (FTs)]. For
ϕA ≤ 0.60, an I phase is found (Fig. 1A, ϕA ¼ 0.52). As ϕA is
increased, a disorder–order transition occurs, and a pure RX
phase forms (Fig. 1B, ϕA ¼ 0.62); hexagonal translational order
is evident from the peaks in the FT. A hexatic phase (3–9) poten-
tially exists between I and RX phases, but the limited spatial
dynamic range of our observation precludes a definitive identifi-
cation. As ϕA increases further (Fig. 1C, ϕA ¼ 0.65), local crystal-
line domains of an RB lattice form and coexist with hexagonal
RX; squares within these rhombic crystallites exhibit strong
orientational correlations. Because of the combination of rhom-
bic and hexagonal features, the FT exhibits six wide peaks sepa-
rated by about 60°, yet two weaker peaks at higher wavenumbers
appear due to the RB crystallites. This combination indicates that
a CE region, characteristic of a first-order transition, exists be-
tween the pure RX and pure RB phases for 0.64 ≤ ϕA ≤ 0.66.
Above CE (Fig. 1D; e.g., ϕA ¼ 0.74), a pure low-defect RB phase
forms in which the average orientation of squares have a well-de-
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fined angle relative to the crystal axes. The very sharp first- and
second-order peaks in the corresponding FT indicate that the
rhombic lattice is nearly perfect.

After performing detailed image analysis to determine the cen-
ter positions and orientations of all squares in a field of view, we
calculate the pair correlation function, gðr∕DÞ, from a single
frame at each ϕA. The number of particles over which g is deter-
mined ranges from about 350 at r∕D ≈ 1 to about 30 at r∕D ≈ 6,
where r is the center-to-center separation between squares and
D ¼ ffiffiffi

2
p

L ≈ 3.4 μm is the square’s diagonal (i.e., an effective
circumscribed diameter) (Fig. 2). As ϕA increases above I, the
system develops hexagonal translational order in RX, and broa-
dened peaks in gðr∕DÞ are seen to large r∕D. The second and
third peaks in gðr∕DÞ for RX, characteristic of an equilateral hex-
agonal crystal, are still distinguishable, yet barely, because of the

random orientations of the squares and greater variability of cen-
ter-to-center spacing in RX. In the pure RB phase, the peaks in
gðr∕DÞ become quite sharp and can be seen out to very large r∕D.
Compared to the delta spikes of the ideal gðr∕DÞ for a perfect RB
lattice, the measured RB peaks match well. To further confirm
our identification of the phases, we have calculated the sixfold
spatial and bond-orientational order parameters, as well as the
fourfold spatial, bond-orientational, and molecular-orientational
order parameters (7–10) (SI Appendix provides further details of
the analysis).

From the images and FTs, we determine a characteristic lattice
angle α and center-to-center spacing r∕L of the crystalline phases
through the RX–RB transition (Fig. 3). In the CE region, we first
isolate and identify crystallites as either RX or RB, and then
obtain average values of α and r∕L for each type of crystallite.
In the hexagonal RX phase, α ≈ 60°, followed by a discontinuous
transition to an angle of about α ≈ 70° in the RB phase near the
boundary with CE at ϕA ≈ 0.66. Likewise, in the CE phase,
squares in RB crystallites are closer together than squares in
RX crystallites, indicating ϕA-density fluctuations and yielding
bivalued r∕L, characteristic of a first-order transition. Above
CE in pure RB, large single crystals are observed, α increases con-
tinuously toward 90°, and r∕L decreases continuously toward one,
up to the highest ϕA observed.

To explain some basic aspects of these observations, we intro-
duce a cage-like (20) mean-field model for a monolayer of N
square rigid rotors. In I and RX phases, these rotors can perform
complete rotations; by contrast, in the RB phase, the rotations
are constrained on average within an interval �Δθ∕2, because
tip (i.e., vertex) crossing is not allowed. In the RX phase, the
swept-out area of each square is a circular disk, which we choose
to have unity radius. The area density ρ ¼ N∕A for a hexagonal

Fig. 1. Transmission optical micrographs of Brownian squares in 2D at par-
ticle area fractions ϕA: (A) 0.52, isotropic (I); (B) 0.62, hexagonal rotator crystal
(RX); (C) 0.65, coexistence (CE); and (D) 0.74, rhombic crystal (RB). Inset, Upper
Left corner of A: SEM image. Insets, Lower Left corners: FT intensities calcu-
lated from monochrome real-space images. Examples of crystallites in C: RB
(box) and RX (circles). In D, a rhombic unit cell is shown (black rhombus). FTs
have been rendered in pseudocolor to emphasize the peak features.

Fig. 2. Pair correlation functions gðr∕DÞ calculated from images in Fig. 1, in
order from bottom to top: ϕA ¼ 0.52 in I, 0.62 in pure RX, and 0.74 in pure RB.
Results for RX and RB are shifted up for clarity. D is the effective tip–tip over-
lap spacing: D ¼ ffiffiffi

2
p

L≈3.4 μm, where L is the square’s edge length. Delta
spikes for perfect hexagonal and rhombic lattices are shown below the cal-
culated g for RX and RB, respectively. Characteristic error bars at certain r∕D
are shown above each of the respective plots for clarity.

Fig. 3. Particle area fraction dependence of the unit cell for observed
crystals of Brownian squares. (A) Comparison between measured lattice
angles αðϕAÞ (RX, triangles; RB, circles) and predicted values based on amodel
of squaroid packing (solid line). In the CE region, two measured values of
α and r∕L are shown, corresponding to characteristics of RX and RB in the
observed crystallites. The predicted value α1 more closely matches the
observed angle at the onset of pure RB, compared to an alternate possible
configuration given by α2 (see text). (Inset) Sketch of a rhombic unit cell of
four squares, defining α, r, and L. (B) Center-to-center spacing between
squares rðϕAÞ from video analysis, normalized by edge length L, compared
to the model’s predicted dependence (solid line). In the CE region, the lattice
angle α and center-to-center spacing r between squares are measured from
the direct images; whereas in the RX and RB regions, they are obtained from
the Fourier transforms.
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configuration of close-packed disks is ρ6 ¼ ð2 ffiffiffi

3
p Þ−1 (in units

of 2∕L2). For constrained rotations, the excluded area of
each square effectively reduces to a cruciform, squaroid shape
(Fig. 4A). Four distinguishable possible orientations of the square
with respect to a given squaroid exist. A close-packed lattice of
squaroids retains hexagonal symmetry for Δθ larger than π∕3
(Fig. 4B), so the maximum area density remains at ρ6. However,
for Δθ smaller than π∕3, the most compact lattice of squaroids
has rhombic symmetry (Fig. 4C). At Δθ ¼ π∕3, there is a discon-
tinuous increase in density of close-packed squaroids, and
the crystallographic angle α (see Fig. 4C) increases from 60° to
α1 ≈ 68°. As shown in Fig. 3, these two angles and their corre-
sponding area densities are consistent with the two coexisting
structures observed in CE.

To describe α at higher area densities, we calculate the 2D
osmotic pressure Π ¼ −ðdF∕dAÞjN , where A is the total area
and F is the entropic free energy. We write F as the sum of a
translational free energy −NkBT lnðρ−1 − ρ−1maxðΔθÞÞ, for the
translational degrees of freedom, plus a rotational free energy,
−NkBT lnð4ΔθÞ. For a given Δθ, the maximum packing density
ρmax equals 1∕ð2HÞ, where H is half of the long diagonal distance
in the rhombic unit cell. The corresponding equation of state is
ΠðρÞ ¼ kBTρ∕½1 − ðρ∕ρmaxðΔθÞÞ�, and the chemical potential,
μ ¼ F∕N þ Π∕ρ, of the colloids at fixed Π is (up to constant
terms)

ΔμðΔθÞ ¼ −kBT ln 4Δθ þ Πρ−1maxðΔθÞ; [1]

where α ¼ 2 arctanð2ρmaxðΔθÞÞ. If, for Δθ less than π∕3, one
approximates ρ−1maxðΔθÞ≅2ð1þ Δθ − 0.448Δθ2 þ :::Þ, then Eq. 1
resembles the Onsager variational free energy for nematics in
terms of Δθ. Eq. 1 has a boundary minimum at Δθ ¼ π∕3 corre-
sponding to the rhombic phase of Fig. 4C. For Π∕kBT ≥ 2.3, a
second “true” minimum appears at Δθ ≈ 0.4 rad, corresponding
to a crystallographic angle α2 ≈ 75°. For higher Π, α increases
from α2 toward 90°. The predicted ϕA-dependences of α and
r∕L (lines in Fig. 3 A and B) are consistent with the experimental
observations, despite the simplicity of the model, which comple-
tely neglects collective fluctuations.

Discussion
Our observations of Brownian squares reveal RX and RB phases
for small dimensionless corner-rounding-to-length ratio ζ; this is
at striking variance from the tetratic and square phases predicted
by MC simulations for squares with perfectly sharp corners (i.e.,
ζ ¼ 0) (10). Indeed, after concentrating larger square-shaped
particles, for which ζ ¼ 0.07� 0.01 is even smaller (SI Appendix
provides further details of the analysis), we still observe a rhombic
structure at ϕA ¼ 0.70 with α ¼ 79°; at the largest applied Π, cor-

responding to ϕA ¼ 0.85, we find α ¼ 88°. With increasing den-
sity, α approaches the crystallographic angle of the square phase,
but it never fully reaches 90° at finite Π, consistent with the squar-
oid-mean-field theory (see Fig. 3A). Using the method of Fig. 4, it
can be shown that any degree of corner-rounding of squares
would lead to a stable RB phase, rather than a perfectly square
crystal, even at the highest packing density. For even larger ζ
approaching 0.5, the rounded squares become nearly circular,
and the RB phase is progressively engulfed by the hexagonal
RX phase. By contrast to the RB phase, in the RX phase, the
squares can rotationally diffuse in an unbounded manner, as
can be seen in calculations of the mean square displacements,
both rotational and translational, in several different phases
(SI Appendix provides further details of the analysis).

For certain shapes, feature rounding is known to have a very
important effect on collective phase behavior. For instance, in
density-functional studies, a tetratic phase appears for rectangles
that have sharp corners but not for disco-rectangles that have
rounded end-caps (21). In simulations of disco-rectangles having
aspect ratios ranging from discs to needles, no tetratic phase was
found (22). By contrast, tetratic liquid and solid phases have been
seen in simulations of slightly rounded 2∶1 rectangles based on
superellipses (23). Because a rectangular shape introduces an-
other dimensionless spatial parameter of aspect ratio, in addition
to ζ, it is difficult to make an exact comparison between the
phases seen in simulations of rounded rectangles and our experi-
ments on slightly rounded squares. In these simulations, corner-
rounding does not introduce the oblique crystallographic angles
we observed. MC simulations typically impose square boundary
conditions, which may suppress structures with oblique crystallo-
graphic directions, and it is possible that our experimental system
is, in fact, a close enough approximation of ideal Brownian
squares that the RX and RB phases would be seen even if the
corners could be made perfectly sharp. Indeed, our results imply
that the tetratic phase, seen for rectangles, could transition into
an ordered RX or RB phase as the length-to-width ratio of the
rectangles approaches unity and they become square-shaped.
Also, the simulations might not check for vertex crossing events
between one state and the next, possibly simulating squares that
effectively have “phantom” vertices; in the experiments, vertices
are strictly hard and any rare passage of a vertex of a given square
by a vertex of a closely neighboring square at high ϕA beyond the
RX phase appears to be coupled to substantial collective fluctua-
tions. It is very unlikely that the slowly varying gradient in ϕA in
our observations (e.g., approximately 1% in ϕA over about 90 par-
ticles along the tilting direction in the pure RB phase) would be
the source of differences in the results between the experiments
and simulations, because we observe that both RX and RB phases
persist over a substantial range of ϕA, corresponding to a much
larger area than a single field of view.

Conclusion
In conclusion, a Brownian monolayer of hard square colloids
has been used to study a fundamental problem in statistical
mechanics: a 2D order–order transition at high densities. We
have observed a first-order transition from a hexagonal rotator
crystal to a rhombic crystal through a coexistence region; the sys-
tem self-adjusts into a rhombic configuration to maximize the
combination of translational and rotational entropy, even as the
range of rotation of individual squares becomes limited. The
observed transition is consistent with a simple theoretical model
based on efficiently packing squaroids whose shapes effectively
incorporate rotational entropy over a limited range of accessible
angles in the absence of tip crossing. Strikingly, neither observed
crystal phase has the simple fourfold symmetry of the constituent
square particles. It would be interesting for future simulations
and experiments to consider how corner-rounding, tip crossing,
and boundary conditions can affect the phase behavior of dense

Fig. 4. Squaroid packing model for predicting structure and phase behavior
of Brownian squares. (A) Rotating a square about its center by �Δθ∕2 pro-
duces a squaroid (green). (B) Squaroids in a hexagonal RX array at a density
just below the transition from RX to RB. Red circles indicate full 2π rotations
of the squares in RX. (C) Squaroids in an oblique rhombic lattice at higher
densities. As shown, α is the rhombic lattice angle. Different colors are used
to better distinguish squaroids in the rhombic unit cell.
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systems of Brownian hard squares. Moreover, studying the
coupling between entropically driven collective translational and
rotational fluctuations of the lattice, both theoretically and ex-
perimentally, would provide greater insight into the spatiotem-
poral dynamics beyond the simple cage model.

Materials and Methods
Preparation of Samples. Aqueous dispersions containing many millions of uni-
form square platelets of SU-8 polymer, having average edge length L ¼ 2.4�
0.1 μm and thickness h ¼ 2.0� 0.1 μm (Fig. 1A, Inset), are made using high-
fidelity stepper photolithography (15). Due to the stepper’s limited feature
size (≈300 nm), the corners of the squares are slightly rounded and have
an average radius of curvature rc ¼ 0.30� 0.05 μm, yielding a small ζ ¼ rc∕
L ¼ 0.13� 0.02. A rectangular optical cuvette (0.2 mm × 4.0 mm × 20 mm) is
filled with a mixture of a dilute dispersion of squares and a dispersion of a
depletion agent (polystyrene spheres, diameter ≈0.02 μm, concentration
≈0.5% wt∕vol, sulfate stabilized). After the squares sediment onto one flat
surface of the cuvette, roughness-controlled depletion attractions (18, 19)
force the squares to lie flat, parallel to the glass wall; yet, due to a lubricating
layer of water, they remain unpinned and diffuse in amonolayer. Because the

edges of the squares are rougher than their faces, the effective attraction
between two edges is less than thermal energy kBT ; thus, hard, short-range
repulsions dominate in-plane particle interactions (see Supplemental Mate-
rial in ref. 17). Squares are concentrated in 2D by tilting the cuvette about its
long axis at angles ≈1° and waiting a minimum of 2 mo for equilibration,
creating a slowly varying spatial gradient in ϕA. Specific ϕA are viewed micro-
scopically along the length of the cuvette, and about 400 particles at high
ϕA are observed in a single field of view (64 μm × 64 μm).

Image Analysis. We have adapted the particle tracking programs of Crocker
and Grier (24), written in Interactive Data Language, to determine not only
the positions but also the orientations of a large number of squares in a field
of view. After finding the center of a given square, we determine the location
of a vertex by looking for the longest distance from the center to the bound-
ary points (SI Appendix). From these two coordinates, we determine the line
from the center to this vertex as the orientation of the square.
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