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Abstract

Due to the large amount of new papers regularly en-
tering the MEDLINE database, there is an ongoing ef-
fort to design tools that help indexing this new mate-
rial. Here we investigate the hypothesis that past in-
dexing information coming from referencing and au-
thoring links can be used for this purpose. Using a
JAMA-based subset of MEDLINE, we designed rank-
ing scores which rely on this information; given a new
article, the aim of these scores is to build an ordered
list of MeSH terms that should be used to index this ar-
ticle. Evaluation measures on an independent, 1000-
document data set are given. Comparison with equiv-
alent works shows benefits in recall, F-measure and
mean average precision. Moreover, cited articles and
authors’ past articles contribute to seven of the top ten
ranking features, supporting our hypothesis. Further
improvements and extensions to this work are exposed
in the conclusion.

Introduction

MEDLINE indexing involves assigning new articles
a set of MeSH descriptors (MeSH terms), possibly
along with qualifiers (sub-headings)1. This task is
currently manually performed by librarians of the US
National Library of Medicine (NLM indexers). Due
to the high growth rate of MEDLINE, automatic or
semi-automatic tools aiming at assisting indexers are
helpful. The NLM indexing initiative’s Medical Text
Indexer2 (hereafter MTI) is an indexing tool currently
in place at the NLM. It makes Heading and Subhead-
ing assignment suggestions using information coming
from MetaMap3 tagging of the abstract and title and
from the Related Citations2. Other approaches use
statistics- and machine-learning-based techniques, yet
others use learning-free techniques4.

There are two broad families of techniques. The first
family uses only features of the indexed document,
whereas the second family uses some kind of struc-
tural properties of the database such as neighborhood
relationships between documents. The latter approach
gives rise to the notion of an Information Hyperspace5.
Approaches such as MTI belong to both families.
More recent works clearly emphasize the gain of tak-
ing into account the relational structure of literature

databases that is brought in by co-authoring links, to
infer features of documents (nodes of the network) and
to suggest new links as well6. Besides, there is a long-
standing literature on citation analysis, whose recent
developments emphasize the combination of content,
author and citation analysis7.

Here we want to take advantage of information pre-
existing inside MEDLINE, that comes from the estab-
lished indexing of the previous publications of the au-
thors and of the referenced citations. To do so we have
used a Machine Learning technique to create ranking
functions which when applied to a new entry propose
an ordered list of candidate Main Headings. We eval-
uate its results using several standard measures.

Material and Methods

Material
Our work is based on the statistical analysis of a set
of articles indexed in MEDLINE and for which access
to the full text was possible. We have drawn our sam-
ple from the Journal of the American Medical Associ-
ation (JAMA, http://jama.ama-assn.org/),
downloading all available on-line material from 1998
to 2008 where a REFERENCES section was available.
This choice was motivated by the facts that the for-
mat of the articles was HTML (thus sparing us the of-
ten tricky work of decoding formats such as PDF), and
that the structure of the articles was homogeneous and
could be easily processed automatically. Each article
is identified by its PubMed ID (PMID).

Methods
We model the indexing task as a supervised learning
problem. Its goal is to determine whether the associ-
ation of a MeSH term to an article is suitable or not.
We characterize such an association by a vector of fea-
tures which takes into account both the contents of the
article and the network of co-authorship and citations.

Representation. Figure 1 illustrates the local network
around a source article in MEDLINE, which we now
describe in detail. We applied the following processes
to each article in the initial sample from JAMA:

1. Gather the Main Headings;

2. Tag the abstract text with MetaMap; we only kept
the MeSH terms;

AMIA 2010 Symposium Proceedings Page - 147



Figure 1: Different paths for associating MeSH terms to a MEDLINE article. PM=PMID; MH=Main Heading;
Au=Author; Ab=Abstract of article; Bo=Body of article

3. Parse the REFERENCES section to gather the
cited articles; for those indexed by MEDLINE,
obtain their PMIDs thanks to straightforward reg-
ular expressions (e.g., “link_type=MED” and
“access_num=(\d+)”). Then for each cited
PMID:

(a) get its MeSH indexing terms with the Entrez
Programming Utilities8;

(b) for each of these terms compute statistics re-
lated to its usage frequency as a descriptor
of the references and to which section of the
main article (Abstract, Introduction, Meth-
ods, Results, Discussion) the references in-
dexed by the current term were used in.

4. Parse the list of authors’ names. Then for each
author name:

(a) using Entrez gather the set of MEDLINE in-
dexed articles that were (co-)signed by au-
thors with this name, prior to the date of the
source article (only past data must be used in
this modeling process);

(b) then gather the Main Headings of each of
these articles;

(c) compute a series of summary statistics for
each of these MeSH terms, essentially re-
lated to the past global usage frequencies
of the terms by the set of authors (and
homonyms) of the main article.

In some cases names are ambiguous in the sense that
different authors can share the same name. This typi-
cally occurs for example for short last names originat-
ing from Asia. We were not able to disambiguate the
names here, and we had to stay at the level of homony-
mous name sets. We believe this limitation has a small
negative impact on the efficiency of the new attributes.

In summary for each article of the sample we collected
a set of MeSH terms coming from 4 distinct sources

(see Figure 1): (1) the MEDLINE Main Headings of
the article, (2) the MeSH terms found in the abstract by
MetaMap, (3) the MEDLINE Main Headings assigned
to previous works by the authors or their homonyms,
and (4) the MEDLINE Main Headings of the refer-
ences cited in the article. Each of these terms was en-
dowed by a set of features including:

1. the sources where the term was found: Index,
MetaMap, Author names, Cited articles. A term
is most often found in more than one source,
so this information is supported by a set of 4
Boolean variables;

2. the hierarchical type of the term’s concept from
the UMLS Semantic Network (STY)9 and the
SNOMED CT axis it belongs to;

3. some usage frequencies of the term by the au-
thors, and what we call an Inverse Usage Index
(IUI) defined as −log

(
N
D

)
where N is the total

number of occurrences of the term in the authors’
work and D is the total number of occurrences
of all the terms computed over the whole experi-
mental sample;

4. using the information gathered in (3.b) above, the
frequencies of usage of the term for indexing any
referenced article, and the frequencies of the sec-
tions of the main article where the referenced ar-
ticles indexed by this term were cited.

This process produces an experimental data set, each
line of which consists of a couple (PMID, MeSH
Term), associated with 50 distinct features. We split
this data set into two disjoint sets of PMIDs: one was
used in the modeling process to create a ranking func-
tion, the other for evaluation to obtain unbiased perfor-
mance measures.

Ranking function. The ranking function was built
through supervised classification. The positive exam-
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Table 1: Distribution of MeSH terms per source. Q1 = first quartile, Q3 = third quartile
Source Min. Q1 Median Mean Q3 Max.

MEDLINE Indexing Terms of Source Article 1 10 14 13.28 16 31
C : Unique Indexing Terms (U.I.T.) of Cited Articles 2 47 80 86.82 114 450

A : U.I.T. in the Authors’ previous publications 2 209 460 808.0 990 11720
M : MetaMap on abstract 0 27 36 32.42 42 76

C ∪A ∪M 3 215 450 773.1 940 11740

Table 2: Distribution of ‘raw’ recall and precision (with all MeSH terms, unranked), per source
Precision (%) Recall (%)

Source Q1 Median Mean Q3 Q1 Median Mean Q3
C : Unique Indexing Terms (U.I.T.) of Cited Articles 9.18 13.33 15.90 19.40 66.67 80.00 75.95 90.00

A : U.I.T. in the Authors’ previous publications 1.12 2.31 3.90 4.66 71.43 88.24 71.35 100.00
M : MetaMap on abstract 8.33 12.00 12.50 16.13 17.65 30.00 29.16 41.18

C ∪A ∪M 1.27 2.63 6.13 5.33 87.50 95.24 90.44 100.00

ples were the (PMID, MeSH Term) couples for which
the MeSH term was indexing the article in MEDLINE.
We chose to use a Gradient Boosting algorithm10, as
it is a robust, non-parametric (so assumption free) re-
gression method. It iteratively grows a community
of simple learners over adaptively re-sampled training
sets, the resulting model being an aggregating formula
of all simpler models. The original gbm R package11

was used for that.

Results

Our experimental corpus consisted of 3,213 docu-
ments. After data preparation we obtained a data set of
2,487,683 (PMID, MeSH Terms) couples (1.71% pos-
itive cases). Table 1 shows the distribution of MeSH
terms, per source, for articles in our data set. For ex-
ample the median number of MEDLINE Main Head-
ings of a source article in our corpus is 14. Table 2 dis-
plays the results that would be obtained by a classifier
returning all collected MeSH terms, evaluating preci-
sion and recall on this full list. It is very informative
about the contribution of each source. It shows that
using only the abstract to choose the indexing terms,
whatever the quality of the classifier and the size of
the built list, we cannot expect a recall greater than
30% for half the citations. Taking into account also the
MeSH Main Headings of the authors’ previous publi-
cations and those of the cited articles this median re-
call could be increased up to 95.24% (even to 100%
for more than 25% of the articles), but for a more dif-
ficult task as the precision would then drop to less than
2.63% in half the cases.

The experimental data set was split into a training
data set (2,213 PMID’s) and a validating data set
(1,000 PMID’s). Training a Gradient Boosting Ma-
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Figure 2: Feature Importance as Predictor

chine (1500 decision trees of depth 2; simulated dis-
tribution: Bernoulli) over the learning data set with
all features as input allowed us to evaluate the impor-
tance of each feature in predicting the targeted concept
(which is whether or not a MeSH term should be used
to index an article, since the ground truth is the exis-
tence of the MeSH term as an indexing term for the
selected article in MEDLINE. In this process, the ac-
tual main headings of the main papers are used only as
supervising targets, not as input predictive features.)
This is measured as the degradation of the predictive
performance when randomly permuting the values of
the variable for which importance is computed. Fig-
ure 2 advocates using only the ten most influential fea-
tures (Table 3) out of the 50 initial ones.

We reran the learning algorithm using only these ten
features. Comparing the efficiency of the new rank-
ing functions against the ones built with the full fea-
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Table 3: Ten most influential features, ordered by de-
scending importance

MetaMap_Score: the MetaMap score if the term is found
in the abstract, 0 otherwise;

FreqDistConcept: the occurrences count of the term di-
vided by the total number of distinct MeSH terms in
the cited articles (or 0 when the term does not index
any cited article);

RefFreq: the proportion of cited articles where the term is
used as a Main Heading (or 0 when the term does not
index any cited article);

RefFreq_Specificity: RefFreq×Specificity;

STY: the UMLS Semantic Type of the MeSH term;

RefFreq_MeanFreq: RefFreq×MeanFreq;

MeanFreq: the past usage frequency of the term by each
co-author, averaged over the co-authors set;

MetaMap_NbOcc: the number of times the term has been
found by MetaMap in the abstract;

Specificity: a measure of the specificity of the term for the
set of co-authors, that we define as the product of the
term’s IUI and the averaged past usage frequency of the
term by each co-author; this can be seen as a parallel to
the well known tf-idf used in information retrieval12;

FreqOccConcepts: the occurrences count of the term di-
vided by the total number of MeSH terms (not neces-
sarily unique) indexing the cited articles (or 0 when
the term does not index any cited article).

ture set showed no performance degradation. The per-
formances of the new ranking functions, expressed as
precisions and recalls obtained at increasing ranks of
the list of candidate terms built by the ranker for each
article, are shown in Tables 4 and 5 (up to rank 25).
As these values vary from one document to the other,
we give dispersion metrics emphasizing this variability
(the quartiles) along with the more classical mean.

We also provide the 11-point average precision com-
puted on the test data set (Table 6). It appears that
the value of the top precision (precision at recall=0) is
0.962. Besides, we also evaluated the Mean Average
Precision (MAP) to 0.254.

Discussion

Tables 4 and 5 are to be interpreted as if the ranking
functions were to be used in a recommendation tool
during manual indexing. In particular they give hints
about the efficiency of the produced lists given their

Table 4: Ranking Precisions up to rank 25
Rank Min. Q1 Median Mean Q3 Max.

1 0.0 100.0 100.0 92.4 100.0 100.0
2 0.0 100.0 100.0 87.9 100.0 100.0
3 0.0 66.7 100.0 83.3 100.0 100.0
4 0.0 75.0 100.0 79.5 100.0 100.0
5 0.0 60.0 80.0 76.4 100.0 100.0
10 0.0 50.0 70.0 62.0 80.0 100.0
15 0.0 40.0 53.3 50.8 66.7 93.3
20 0.0 30.0 45.0 42.9 55.0 85.0
25 4.0 28.0 40.0 36.9 48.0 80.0

Table 5: Ranking Recalls up to rank 25
Rank Min. Q1 Median Mean Q3 Max.

1 0.0 5.6 7.1 7.6 8.3 50.0
2 0.0 11.1 13.3 14.5 16.7 50.0
3 0.0 15.0 18.8 20.4 23.1 75.0
4 0.0 20.0 25.0 25.6 30.8 80.0
5 0.0 23.5 28.6 30.4 35.7 100.0
10 0.0 38.5 46.7 48.0 57.1 100.0
15 0.0 50.0 57.1 58.2 69.2 100.0
20 0.0 55.6 66.7 65.2 75.3 100.0
25 20.0 60.0 70.6 70.0 81.2 100.0

sizes. For example, for lists of 10 items the recall
would be greater than 46.7% in half of the cases, and
greater than 57.1% in a quarter of the cases. At the
same time, the precision would be greater than 70% in
half of the cases, and greater than 80% in a quarter of
the cases.

Our work follows the same spirit as MTI, but using
different information sources (Title, Abstract and Re-
lated Citations for MTI, Abstract and past indexing in-
formation in our case), and both works target recom-
mendation systems (MTI being nowadays a fully op-
erational tool). So it makes sense to try to compare
both approaches as a way to estimate the worthiness
of our specific predictive data set. MTI provides both
Main Heading and Subheading assignment recommen-
dations whereas we considered the Main Heading as-
signment task only. Nevertheless, a past evaluation of
MTI13 provides measures where only Main Heading
assignment is taken into account. At rank 25, the re-
call value was 0.81 and the precision value was 0.11.
In our case, the mean recall at rank 25 is 0.70, but
the mean precision is higher at 0.37 (Tables 4 and 5)
showing that we favor precision over recall. The cor-
responding F-measures computed by us for both cases
are Fβ=2 = 0.356 for MTI and Fβ=2 = 0.594 for
the present work. Nevertheless, let us stress that these
numbers must be read with caution, as both experi-
ments may not be fully comparable: the corpora are
different (homogeneous in our case), and the men-
tioned study13 is based on a specifically designed hu-
man judgment experiment whereas our experiment fol-
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Table 6: 11-point average precision & MAP
Recall(%) 0 10 20 30 40 50
Prec.(%) 96.2 95.1 90.2 83.0 76.4 68.2

Recall(%) 60 70 80 90 100
Prec.(%) 58.4 47.7 36.2 23.8 13.7
MAP = 25.4 %

lows a machine learning methodology.

In an interesting and quite different approach4 the
Main Heading assignment problem is tackled without
using any learning technique nor any external informa-
tion source, so as to avoid the issue of obtaining train-
ing data. As it can be viewed as a point of view oppo-
site to ours, a comparison with this work makes sense
too. The reported best top precision was 0.914, and the
best averaged precision was 0.182, whereas our best
top precision is 0.962 and our mean averaged preci-
sion is 0.254 (Table 6). Here again these better figures
are to be taken cautiously.

Finally, Table 3 shows that each source contributes to
the selected features: Authors’ previous work in Ref-
Freq_Specificy, RefFreq_MeanFreq, MeanFreq and
Specificity; Cited Articles in FreqDistConcept, Ref-
Freq, RefFreq_Specificy, RefFreq_MeanFreq and Fre-
qOccConcepts; and Abstract in MetaMap_Score and
MetaMap_NbOcc. Combined with the above results,
this supports the hypothesis which underlies our ap-
proach, namely, that MeSH terms which index cited
work and past work by the authors in MEDLINE help
to index the present article. Still to be investigated,
UMLS Semantic Type contribution may be linked to
the fact that score boosting may be beneficial to some
specific terms such as those identified as chemical13.

Conclusion

The MEDLINE indexing problem is sometimes
viewed as a multilabel assignment one, which makes
it hard due to the large number of MeSH terms. Here
we adopted a much simpler point of view, where the
ranking functions are applied on a term-by-term basis,
each term being scored independently of the others.

The aim of this study was purely to estimate the value
of new data sources (namely past indexing informa-
tion) in a MEDLINE indexing process. As it, it did
not target the evaluation of different Machine Learn-
ing algorithms, and the comparison with previous ap-
proaches aimed only at measuring the worthiness of
these new predictive features. So far the results seem
encouraging, and we are planning some next steps.
Among them we want to use a larger and more diverse
data set (PubMed Central is an obvious target). We

also want to use article titles and information coming
from related citations, along with our specific informa-
tion sources, to obtain a more precise idea of the gain
of our specific source of information if added to MTI.
Ambiguity in author names is a point we will have to
cope with, probably thanks to a prior analysis of the
co-authoring network. Eventually, once the worthiness
of these new attributes is strongly assessed, we will be
able to evaluate different machine Learning algorithms
on them.
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