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Abstract:  Current research on high throughput 
identification of patients with a specific phenotype is 
in its infancy.  There is an urgent need to develop a 
general automatic approach for patient identification.  
Objective:  We took advantage of Mayo Clinic elec-
tronic clinical notes and proposed a novel method of 
combining NLP, machine learning, and ontology for 
automatic patient identification. We also investigated 
the benefits of involving existing SNOMED semantic 
knowledge in a patient identification task. Methods: 
the SVM algorithm was applied on SNOMED concept 
units extracted from T2DM case/control clinical 
notes.  Precision, recall, and F-score were calculated 
to evaluate the performance.  Results: This approach 
achieved an F-score of above 0.950 for both groups 
when using all identified concept units as features. 
Concept units from semantic type—Disease or Syn-
drome contain the most important information for 
patient identification. Our results also implied that 
the coarse level concepts contain enough information 
to classify T2DM cases/controls.  

Introduction and Background: 

The combination of DNA biorepositories with pheno-
type information for large-scale, high throughput 
genetic research will enable further exploration of 
how genetic variation contributes to personal health, 
disease, and treatment1, 2.  To conduct a successful 
genome-wide association (GWA) study, a significant 
number of subjects (cases and controls) are often 
required.  Without adequate subjects, a GWA study 
may not carry sufficient statistical power and re-
searchers may not be able to derive conclusive results.   

Current research on high throughput identification of 
patients with a specific phenotype is in its infancy.  
The manual chart review process of patients' medical 
records is extremely labor and resource intensive, 
which is hardly affordable for a large volume patient 
identification task.  Although computer systems are 
routinely used for clinical data storage and analysis, 
tremendous human efforts are required for gathering, 
abstracting, and reviewing a large volume of patients’ 

charts. A manual chart review process also takes a 
long time to complete.  Domain-expert proposed al-
gorithms may leverage structured electronic medical 
data, such as diagnose codes and lab test results, 
which can obviate human abstraction and improve 
the efficiency of identification.  Previous studies have 
demonstrated that using diagnosis codes alone is not 
able to provide quality case-finding results3-5.  It is 
necessary to find other reliable resources for a gener-
al patient selection.  Both manual chart review and 
domain-expert proposed algorithms are created for a 
specific use case.  In addition, they must be opti-
mized by patient-care domain experts for terminolo-
gy coding and clinical documentation6.  Domain ex-
perts play major roles in both methods.  Thus there 
remains the possibility of error in either modality. 

There is an urgent call for developing a general au-
tomatic approach for patient case-finding and charac-
terization.  In this study, we took advantage of histor-
ical Mayo Clinic electronic clinical notes and pro-
posed a novel general automatic approach for disease 
phenotyping patients.  The approach combines Natu-
ral Language Processing (NLP), machine learning 
based classification algorithms, and semantic tech-
niques.  We were also interested in discovering if any 
existing semantic knowledge is helpful for pre-
selecting the most important features to a specific 
phenotype, and mitigating the computational burden 
due to significant amount of clinical data, thereby 
improving the performance of the case identification.   

Clinical notes, ranging in length from a few sentences 
to several pages, contain a significant amount of 
complex and detailed clinical phenotype information. 
This information constitutes the primary target for 
case identification6.  Clinical notes are rich data 
sources for general patient identification.  A main 
obstacle restricting the usage of clinical notes is their 
unstructured format, which makes it complicated to 
search, aggregate, and analyze.  NLP provides a pos-
sibility to bridge the gap between clinical free text 
and structured data, allowing humans to deal with a 
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familiar natural language while enabling machines to 
effectively process data7, 8.  Although current NLP 
techniques may not fully express the knowledge and 
relationships within a context, they are successful at 
automated recognition of biomedical named entities 
(NEs): diseases/disorders, signs/symptoms, anatomi-
cal sites, drugs, and procedures.  A Mayo Clinic NLP 
package, called clinical Text Analysis and Know-
ledge Extraction System (cTAKES)9, offers the pub-
lic an application programming interface (API) to 
identify NEs from clinical notes.   The identified NEs 
can be mapped to unique concept identifiers in an 
appropriate terminology. This package has been suc-
cessfully used in a population-based cohort study of 
congestive heart failure10, 11.   

Machine learning based classification algorithms are 
good at automatically learning to recognize complex 
patterns and making intelligent decisions based on 
data. Many algorithms have been widely used and 
proven successful in many practical problems12.  We 
used the support vector machine (SVM) algorithm in 
this study because SVM is efficient with large 
amounts of data13.  Feature selection, which is com-
monly used in machine learning, is the technique of 
selecting a subset of candidate features for building 
robust learning models.  It can significantly improve 
the performance of learning models by alleviating the 
curse of dimensionality, enhancing generalization 
capability, speeding up learning process, and improv-
ing model interpretability13, 14.  However, when a 
large number of features are available, it is impractic-
al to find an optimal subset of features because it 
requires an exhaustive search of all possible subsets 
of the chosen cardinality.   

Ontology enable the appropriate and advantageous 
formalization of knowledge, and thus may potentially 
be helpful for finding the most related information of 
a target phenotype, and improving the performance 
of patient identification.  Specifically, we chose 
SNOMED CT in this study because it is considered 
the most comprehensive clinically oriented healthcare 
terminology available.  One of the major benefits of 
using SNOMED CT is its high content coverage15-17.  
In the past 40 years, SNOMED CT has been widely 
used for clinically related applications and research18.   

The feasibility of our proposed approach was eva-
luated by using clinical notes of Type 2 Diabetes 
Mellitus (T2DM) cases/controls.  

Methods:   

Data Collection:  We chose Mayo Clinic’s medical 
data from the 2007 calendar year and focused upon 

patients’ clinical notes.  We also restricted this study 
to Mayo patients from Minnesota’s Olmsted County 
to provide a population-based context. This increases 
the likelihood that the subjects were receiving prima-
ry care at Mayo Clinic.  All patients without Minne-
sota Research Authorization consent were excluded.  
With protocols approved by the Mayo Clinic IRB, the 
qualified patients were screened first by applying the 
Northwestern University (NW) T2DM algorithm19.  
The NW algorithm uses diagnostic codes, lab tests, 
and medication data to build up the inclusion and the 
exclusion criteria. It has been validated across insti-
tutes including the Mayo Clinic and Vanderbilt Uni-
versity Medical Center.  We also checked the cases 
based on previous experience and expertise with ma-
nual review of patients' detailed medical records.   

A total of 1,600 T2DM patients were identified from 
the clinical data from 2007. A total of 1,600 controls, 
matched with cases by age and gender, were random-
ly chosen from the remaining population.  The aver-
age age of selected subjects was 63.5±13.5 
(mean±STD).  The gender ratio was 1.2 
male(s)/female.  For the T2DM case group, a pa-
tient’s average number of clinical notes in 2007 was 
21.0±22.6 (mean±STD); for the control group, the 
number was 15.1±20.0.  Statistical analysis indicated 
there was a significant difference between the num-
bers of notes available between the two groups 
(P<0.01).  This may because T2DM increases pa-
tients’ risk for many serious health problems.  Many 
patients with T2DM are with other complications, 
such as eyes, foot, and skin. Thus, their average 
number of clinical notes is higher than others. 

All of the subjects’ clinical notes were processed 
using cTAKEs to extract distinct SNOMED CT con-
cept units.  A concept unit is defined as a concept 
with a negation value (positive or negative). For ex-
ample, concept “diabetes mellitus” with positive cer-
tainty was considered as a different concept unit from 
“diabetes mellitus” with negative certainty.  

Normalization of concept unit frequency: Because 
there was a significant difference of the average 
number of clinical notes between the case and the 
control group, we normalized the frequency of each 
concept unit before feeding them into a machine 
learning algorithm.  For a patient’s concept unit, the 
normalized frequency was calculated as: 
ݕܿ݊݁ݑݍ݁ݎ݂ ݀݁ݖ݈݅ܽ݉ݎ݋݊ ൌ ∑ ௙௥௘௤௨௘௡௖௬೙

೔సభ  ௜௡ ௖௟௜௡௜௖௟ ௡௢௧௘ ௜
௡

, 
where n is his/her total number of clinical notes in 
2007.  For example, a patient may have a total of 
eight clinical notes in 2007.  In these eight notes, a 
concept unit, diabetes mellitus (SNOMED CT Con-
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cept ID: 73211009) with positive certainty, has been 
identified 100 times. The normalized frequency of 
this concept unit is then 12.5.  

Machine Learning Algorithm and Evaluation: The 
concept units and their normalized frequencies were 
input as features and values into the SVM algorithm 
to build a classification model using Weka14.  For 
both the case and the control groups, precision, recall, 
and F-score were calculated to evaluate the ap-
proach’s performance.  Precision is defined as the 
fraction of identified subjects that are true positive, 
whereas recall measures the fraction of target sub-
jects that are identified. An F-score balances the ef-
fects of precision and recall by calculating their har-
monic mean, which is defined as ௦௖௢௥௘ܨ  ൌ 2 ൈ
௣௥௘௦௜௦௜௢௡ൈ௥௘௖௔௟௟
௣௥௘௖௜௦௢௡ା௥௘௖௔௟௟

.  In order to obtain accurate estimates, 
we used the tenfold cross-validation method and re-
peated the process ten times for each test.  The aver-
age and the standard deviation of each test’s results 
are reported.  

Investigation of Semantic Benefits: we designed 
two experiments, semantic type group and node col-
lapse, to discover if the SNOMED CT semantic 
knowledge helps select features and alleviates the 
computational burden.   

The idea of semantic types is used by Unified Medi-
cal Language System (UMLS). It aims to provide 
consistent categorizations of all concepts represented 
in all biomedical terminologies.  There are currently 
135 semantic type groups of UMLS.  In this experi-
ment, the identified concept units were classified into 
different semantic type groups, e.g. Disease or Syn-
drome, Finding, and Sign or Symptom.  For each of 
these groups, the precision, recall, and F-score were 
calculated. 

The node collapse experiment was designed to de-
termine the effect of various SNOMED CT semantic 
granularities on the performance of patient identifica-
tion.  Semantic granularity is the degree of specific or 
particular detail in the definition of a group of con-
cepts.  SNOMED CT adopts a hierarchical structure, 
which is ordered from bottom to top and from a finest 
level of granularity to a coarsest level of a granularity. 
For example, viral pneumonia IS-A Infectious pneu-
monia IS-A Pneumonia IS-A Lung disease. All 
SNOMED CT concepts eventually are organized into 
nineteen top hierarchy concepts. The nineteen hie-
rarchy concepts were called the first levels in this 
study. The identified branch node concepts were col-
lapsed into various upper levels.  For each level, the 
precision, recall, and F-score were calculated. 

Results: 

A total number of 29,569 distinct SNOMED CT con-
cept units were identified from the 3,200 patients’ 
clinical notes (a total number of 57,707).  The per-
formance of using all identified concept units as fea-
tures are shown in table 1.  Our approach achieved an 
F-score of 0.956 and 0.957 for the case and the con-
trol group respectively. For the case identification 
purpose, this approach produced a precision of 0.968. 

 Precision Recall F-Score 

Case 0.968±0.001 0.943±0.001 0.956±0.001

Control 0.945±0.001 0.969±0.001 0.957±0.001 

Table 1: Performance by using all concept units as features. 

The numbers of the identified concept units of differ-
ent semantic type groups are shown in table 2. Ap-
proximately 1/5 of the identified concept units (6,457) 
belonged to Disease or Syndrome group.  The other 
major groups were Finding; Body Part, Organ, or 
Organ Component; Therapeutic or Preventive Pro-
cedure; and Sign or Symptom, which contained 4,191, 
3,644, 3,190, and 2,191 identified concept units re-
spectively.  Using only concept units of Disease or 
Syndrome group as features achieved a high perfor-
mance (F-Score above 0.950) for both the case and 
the control groups. This indicated that this semantic 
type group contains the most important information 
for the T2DM patient identification. Using only Find-
ing concept units gave a high precision (0.918) for 
the case group. However, the recall was relatively 
low (0.637). Using concept units from Sign or Symp-
tom did not perform well.  This may because differ-
ent diabetes patients may show different signs or 
symptoms. This may also because the signs or symp-
toms of diabetes, e.g. thirst, blurred vision, dry skin, 
or fatigue, are not distinct from that of other diseases.  

The results of the node collapse to different levels are 
shown in table 3. When the concept nodes collapsed 
to the 4th level, the number of concept units reduced 
to approximately one-fifth of the number of total 
identified concept units. The F-scores were 0.945 and 
0.946 for the case and the control group respectively. 
Using concepts of finer levels increased the number 
of features; however, it did not help significantly 
improve the identification performance.  Our results 
imply that the coarse level concepts, e.g. the 4th level 
or 5th level concepts, contain enough information for 
this T2DM patient identification.  

 

AMIA 2010 Symposium Proceedings Page - 859



Semantic Type number of 
concept units 

Case Control 
Precision Recall F-Score Precision Recall F-Score 

Disease or Syndrome 6457 0.969±0.002 0.935±0.001 0.952±0.001 0.937±0.001 0.970±0.002 0.953±0.001 
Finding 4191 0.918±0.001 0.637±0.002 0.752±0.001 0.722±0.001 0.944±0.001 0.818±0.001 

Body Part, Organ, or Organ Component 3644 0.730±0.003 0.580±0.003 0.646±0.002 0.652±0.002 0.786±0.003 0.712±0.002 
Therapeutic or Preventive Procedure 3190 0.845±0.002 0.466±0.002 0.601±0.002 0.632±0.001 0.915±0.002 0.747±0.001 

Sign or Symptom 2191 0.682±0.007 0.376±0.004 0.484±0.004 0.569±0.002 0.825±0.006 0.674±0.003 
Neoplastic Process 1452 0.598±0.004 0.366±0.014 0.454±0.012 0.543±0.003 0.754±0.007 0.631±0.002 

Pathologic Function 1185 0.703±0.006 0.487±0.008 0.575±0.004 0.607±0.002 0.795±0.009 0.688±0.003 
Diagnostic Procedure 1114 0.584±0.002 0.813±0.008 0.680±0.003 0.693±0.006 0.422±0.008 0.524±0.005 
Injury or Poisoning 1036 0.719±0.011 0.257±0.016 0.379±0.017 0.548±0.003 0.899±0.011 0.681±0.003 

Body Location or Region 838 0.682±0.001 0.706±0.002 0.694±0.001 0.696±0.001 0.671±0.002 0.683±0.001 
Mental or Behavioral Dysfunction 731 0.562±0.000 0.595±0.001 0.578±0.001 0.570±0.001 0.537±0.001 0.553±0.001 

others 4061 0.861±0.003 0.601±0.002 0.708±0.002 0.693±0.001 0.903±0.002 0.784±0.001 
Table 2: The performance of using various semantic type concept units. 
 

Level number of 
concept units 

Case Control 
Precision Recall F-Score Precision Recall F-Score 

1 30 0.665±0.000 0.708±0.002 0.686±0.001 0.688±0.001 0.643±0.001 0.665±0.001 
2 218 0.688±0.001 0.665±0.001 0.676±0.001 0.675±0.001 0.699±0.002 0.687±0.001 
3 1467 0.843±0.001 0.820±0.001 0.831±0.001 0.825±0.002 0.847±0.001 0.836±0.001 
4 6582 0.955±0.001 0.936±0.001 0.945±0.001 0.937±0.001 0.956±0.001 0.946±0.001 
5 13116 0.958±0.001 0.938±0.001 0.948±0.001 0.939±0.001 0.959±0.001 0.949±0.001 
6 21180 0.968±0.001 0.940±0.001 0.954±0.001 0.942±0.000 0.969±0.001 0.955±0.001 
7 27461 0.966±0.002 0.945±0.001 0.956±0.001 0.946±0.000 0.967±0.001 0.957±0.001 
8 31307 0.967±0.001 0.945±0.001 0.956±0.001 0.946±0.001 0.968±0.001 0.957±0.000 
9 32785 0.967±0.001 0.944±0.001 0.956±0.001 0.946±0.001 0.967±0.004 0.956±0.002 
10 33084 0.970±0.001 0.939±0.000 0.954±0.000 0.941±0.000 0.971±0.001 0.956±0.000 
11 32662 0.969±0.000 0.944±0.001 0.956±0.001 0.945±0.001 0.969±0.000 0.957±0.001 
12 31953 0.969±0.001 0.943±0.001 0.956±0.001 0.945±0.001 0.970±0.001 0.957±0.001 

Table 3: Results of node collapse to various levels. 
 

Level number of 
concept units 

Case Control 
Precision Recall F-Score Precision Recall F-Score 

1 30 0.665±0.000 0.708±0.002 0.686±0.001 0.688±0.001 0.643±0.001 0.665±0.001 
2 218 0.688±0.001 0.665±0.002 0.676±0.001 0.675±0.001 0.699±0.002 0.687±0.001 
3 1467 0.775±0.002 0.666±0.001 0.716±0.001 0.707±0.001 0.806±0.002 0.753±0.002 
4 6563 0.807±0.002 0.724±0.002 0.763±0.001 0.750±0.001 0.827±0.002 0.787±0.001 
5 13086 0.838±0.002 0.757±0.002 0.795±0.002 0.778±0.002 0.853±0.002 0.814±0.002 
6 21130 0.854±0.002 0.773±0.002 0.811±0.002 0.793±0.002 0.867±0.002 0.828±0.002 
7 27401 0.901±0.002 0.767±0.002 0.828±0.002 0.797±0.002 0.916±0.002 0.852±0.001 
8 31244 0.924±0.002 0.772±0.003 0.841±0.002 0.804±0.002 0.936±0.002 0.865±0.002 
9 32724 0.925±0.003 0.772±0.002 0.842±0.002 0.805±0.002 0.938±0.003 0.866±0.002 
10 33021 0.927±0.002 0.772±0.003 0.842±0.002 0.804±0.002 0.940±0.002 0.867±0.002 
11 32601 0.928±0.003 0.769±0.002 0.841±0.001 0.803±0.001 0.941±0.003 0.866±0.001 
12 31895 0.928±0.003 0.769±0.002 0.841±0.001 0.802±0.001 0.940±0.002 0.866±0.001 

Table 4: Results of node collapse to various levels after removing all concepts, the fully specified names of which 
contain the string “diabetes”. 
 
Disorder related concepts like “Type II diabetes mel-
litus (SNOMED CT Concept ID: 190384004)” are 
often coarse level concepts.  In order to investigate if 
the identification process is a trivial task of looking 
for these disorder-related concepts, we removed all 
concept units from the input features if their fully 
specified names contain the string “diabetes” and 
repeated the node collapse experiment.  The results 
are shown in table 4.  The performance kept stable 
until the concepts collapsed into the 7th level. It is not 

surprising that the F-score dropped an approximate 
10 percent from that of previous node collapse expe-
riments. However, the F-scores for both the case and 
control groups were still at an overall acceptable lev-
el—0.850.  This result suggests that the removed 
“diabetes” disorder-related concepts are important in 
this identification task while other concepts also con-
tain enough information to classify T2DM cases and 
controls. 

Discussion:  
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Our work was driven by the shortage of a general 
automatic approach for identifying patients with a 
specific phenotype. The approach we proposed takes 
advantage of an already existing large sample of 
Mayo Clinic electronic clinical notes. The approach 
also combines NLP, ontology, and machine learning 
techniques.  This unique combination makes the ap-
proach novel and innovative.  In addition, once the 
patient identifier is created, a patient identification 
process will be fully automatic. This would potential-
ly save time and valuable resources.  

The excellent performance of this approach on 
T2DM clinical notes shows its potential to be used 
for other patient identification tasks.  The proposed 
approach may substantially benefit the patient re-
cruitment process of clinical research, evidence-
based healthcare, and genotype and phenotype asso-
ciation studies.  Our results also indicated that it is 
promising to take advantage of SNOMED CT seman-
tic knowledge for a pre-feature selection. This may 
improve the efficiency of patient identification.  Con-
cept units from the Disease or Syndrome semantic 
type group play important roles in this identification 
task. The coarse level concepts of SNOMED CT con-
tain enough information for T2DM patient identifica-
tion.  

This preliminary evaluation is limited by an arbitrary 
and very narrow patient domain area (T2DM). We 
have planned to repeat this approach on other diseas-
es and evaluate its performance. 
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