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Abstract: Adequate control of serum glucose in 

critically ill patients is a complex problem requiring 

continuous monitoring and intervention, which have 

a direct effect on clinical outcomes. Understanding 

temporal relationships can help to improve our 

knowledge of complex disease processes and their 

response to treatment. We discuss a Dynamic 

Bayesian Network (DBN) model that we created 

using the open-source Projeny toolkit to represent 

various clinical variables and the temporal and 

atemporal relationships underlying insulin and 

glucose homeostasis. We evaluated this model by 

comparing the DBN model’s insulin dose predictions 

against those of a rule-based protocol (eProtocol-

insulin) currently used in the ICU. The results 

suggest that the DBN model’s predictions are as 

effective as or better than those of the rule-based 

protocol. The limitations of our methods are 

discussed, with a brief note on their generalizability. 

1. INTRODUCTION 

Several studies have shown that critically ill patients 

often become hyperglycemic even if they are not 

diabetic, due to various stress response mechanisms 

and the administered drugs
1
. Increased glucose levels 

further worsen the patient’s condition and outcomes, 

whereas active control of the patients’ blood glucose 

levels may improve the outcomes
1
 and reduce 

mortality by up to 15%
2
. Rule-based protocols used 

to control serum glucose include the ones from Yale 

University and Intermountain Healthcare 
3, 4

.  

Temporal reasoning deals with the understanding of 

relationships between different variables over time. It 

can contribute to models that explain the past and 

predict the future based on available data. The ability 

to explain the past can provide an understanding of a 

patient’s disease processes and response to treatment. 

Predicting future events is a natural continuation of 

the temporal reasoning process, and can help in 

estimating prognosis, planning treatment, and 

avoiding complications. Various techniques have 

been explored in temporal reasoning such as auto-

regressive moving average, support vector machines, 

neural networks, and first-order logic-based methods
5, 

6
. Probabilistic methods have various advantages over 

these methods, with the flexibility to infer any 

variable in the model instead of fixed input and 

output variables, and an ability to explain the 

inferences using causal relationships
7
. 

We present a novel approach to predict the future 

serum glucose levels of patients in the ICU and to 

recommend appropriate insulin drip rates to maintain 

the patients’ serum glucose within the normal range. 

We used Dynamic Bayesian Networks, a temporal 

probabilistic method, and we built, trained and tested 

the model using the Projeny toolkit that we developed 

for this research
8
.  

2. BACKGROUND AND CHALLENGES 

Several computerized models to represent clinical or 

pathophysiological processes have been described by 

other authors. These include systems that calculate 

insulin dosage in diabetic patients using lab results, 

physiological parameters, or clinical observations that 

are mostly numerical and often fully available
9, 10

.   

2.1. Dynamic Bayesian Networks (DBN) 

A Dynamic Bayesian Network (DBN), also known as 

a Temporal Bayesian Network, allows complex 

causal relationships within and across time instances 

to be represented as a directed acyclic graph (DAG) 

with Bayesian probabilities. A DBN may be 

considered as a Hidden Markov Model (HMM) in 

which the probabilistic relationships are represented 

using complex interactions and dependencies between 

many variables as a Bayesian Network
11

. 

2.2 Clinical Problem Description 

Several clinical studies have shown that insulin 

resistance and hyperglycemia are common in 

critically ill patients, including those without a history 

of diabetes mellitus. The older treatment in such cases 

is to administer insulin when the serum glucose is 

greater than 215 mg/dl. A relatively newer intensive 

insulin therapy aims to maintain the patients’ serum 

glucose between 80 and 110 mg/dl by actively 

adjusting the intravenous glucose drip and 

intravenous insulin dosage with periodic monitoring 

and adjustment once every two hours or less. In 

clinical trials involving critically ill patients, those 

who had intensive insulin therapy demonstrated 

reduced mortality and morbidity compared with 

patients who had conventional insulin therapy
1, 12-14

. 
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However, a few studies have suggested that patients 

undergoing intensive insulin therapy may have 

slightly increased mortality. Large scale clinical trials 

are underway to study this area further. The general 

consensus in the medical community at present is that 

intensive insulin therapy is likely to reduce the 

mortality and morbidity among critically ill patients. 

3. MATERIALS AND METHODS 

3.1. Data Selection 

Anonymized data of adult patients who were treated 

in the Shock Trauma Respiratory ICU at LDS 

Hospital in Salt Lake City, Utah between January 

2004 and December 2005 was used for this research. 

The final dataset included the data of 796 patients 

whose serum glucose was actively controlled using a 

computerized, rule-based protocol developed at LDS 

Hospital (eProtocol-insulin)
4
, which provided a gold 

standard for comparison. The data was measured 

once every two hours on average in our dataset, 

which became our models’ timeslice width. 

3.2. Model Structure 

Several models were tested, but only the final model 

is described in this paper. Temporal structure learning 

tools do not support hidden nodes since known data is 

required to learn relationships between various nodes, 

and hence were not usable for our models. The 

hidden and observed variables (nodes), and the 

relationships (edges) were described manually by the 

first author through a review of clinical literature. The 

model was then refined through a review by the last 

author and three other physicians at the University of 

Utah. 

The model had endogenous insulin secretion and 

insulin resistance as hidden nodes, since they cannot 

be measured directly. The observable nodes included 

the diabetes status of the patient (type I, type II or 

neither), serum glucose (mg/dL), intravenous (IV) 

insulin dose (both bolus and drip, U/hr), IV dextrose 

dose, and the time elapsed between consecutive 

measurements. The relationships between these 

variables were modeled as a two time-slice DBN 

(2TBN) as shown in fig. 1. All the variables in the 

model were discrete due to a limitation of our 

algorithms. Various manual and automated 

discretization techniques were tested to discretize the 

continuous variables, and will be described in a 

separate paper. The experiment described in this 

paper used a k-means clustering algorithm for 

discretization
15

, which produced more accurate 

predictions than manual discretization. 

 

 

Figure 1. DBN model for serum glucose control and insulin dosing in the ICU. Two timeslices are shown here – the model is 

automatically expanded (unrolled) by Projeny for as many timeslices present in each patient’s data. Observed nodes are shaded, 

hidden nodes are clear. Numbers within circles denote equivalence classes obtained through parameter tying (see section 3.5). 
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3.3. Challenges in using DBN models in medicine 

and our solutions 

Scenarios involving entirely numerical values that are 

fully available are very limited in the clinical setting, 

and techniques to deal with descriptive and missing 

data are highly desirable.  Clinical decision making is 

often performed with incomplete data under 

uncertainty. We used an expectation-maximization 

algorithm to impute the missing data.  This approach 

tends to be robust under less-than-ideal 

circumstances. 

Clinical data also has several peculiarities that require 

special techniques. Different clinical variables have 

different orders – some are first-order Markov 

processes, whereas others may be of higher order
11

. 

Our current toolkits only support first-order DBNs
16

. 

Hence, we modeled all temporal relationships as first-

order. Another issue with modeling clinical processes 

using DBNs involves defining the hidden variables 

and their states. The hidden variables and their states 

are not always directly obtainable from medical 

literature. Hidden variables and their states were 

defined through a review of medical literature by the 

first author, and were refined through review by the 

last author and three other physicians at the 

University of Utah. 

3.4. Toolkits 

The tools used include the open-source Projeny 

toolkit running as the front-end and interfaced using 

JMatLink to the backend comprising of Bayes Net 

Toolbox (BNT) running inside Matlab. Projeny has 

been developed by the first author and is based on 

Bayesian Network tools in Java (BNJ)
8
. 

Projeny allows the user to create first order DBNs as 

two time-slice models using a graphical front end, 

and to define nodes, their states, and their status as 

observed or hidden. Projeny also allows graphical 

authoring of intra- and inter-slice edges. During 

training and testing, Projeny automatically unrolls 

(expands) the model for as many timeslices as is 

present in each patient’s data
8
.  

Projeny connects to a database to allow queries of 

training or testing data.  It then sends the model and 

the data to BNT for parameter learning (training) or 

for inference (testing) as desired. It saves the results 

in a relational database and makes them available for 

analysis
8
. 

3.5. Parameter Tying and Equivalence Classes 

An important feature of Projeny is the automatic 

detection of equivalence classes. Equivalence classes 

are groups of variables that have the same set of 

ancestors and have the same parameters (conditional 

probability tables or CPTs), i.e. their parameters are 

‘tied’
11

. Parameter tying is a benefit derived from the 

Markov property. This reduces the computational 

complexity of the model by a factor of t, the number 

of time slices. For example, let us unroll the model 

above to fit the data of a patient who is treated in the 

ICU for five days with measurements being made 

once every two hours (60 measurements in total). The 

number of variables per time slice (slice size) n is 10, 

and the number of time slices t is 60. Without 

parameter tying, nt = 600 parameters (CPTs) will be 

required to describe this model. With parameter 

tying, we will only need a maximum of 2n = 20 

parameters (CPTs) to describe this model. In our 

model described above, we only need 11 parameters 

since it has only 11 equivalence classes, which are 

denoted by the numbers within the circles.  

3.6. Training (Parameter Learning) 

The training dataset had 508 patients and the test 

dataset had 287 patients, assigned randomly. Training 

was done through an Expectation Maximization (EM) 

variant of the junction tree algorithm to accommodate 

missing data. The EM algorithm converged after 19 

iterations, and took about 5 hours on a computer with 

a quad-core Intel Xeon 3GHz processor and 8GB of 

memory. 

3.7. Testing (Inference) 

Testing was done later using a junction-tree-based 

exact inference algorithm. The evaluation method 

was based on a technique described by Anthony 

Wong et al
17

., and the test dataset was created 

accordingly. We artificially divided the data of 

patients in the test dataset into samples of four 

continuous timeslices each using a sliding window of 

four timeslices, since most patients had a much larger 

number of timeslices. We created 7,543 testcases 

from the data of 287 patients. 

 

Figure 2. Comparison method for insulin doses 

recommended by DBN versus eProtocol-insulin. (Nodes of 

interest shown here. Model’s full structure is as in fig 1.)  

In each 4-timeslice testcase, we preserved the values 

of serum glucose in the first three timeslices (G1, G2, 

G3), and set the value of serum glucose in the fourth 

timeslice (G4) to 95 mg/dL, the midpoint of our 

desired normal glucose range of 80 to 110 mg/dL. 
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We preserved the insulin drip rates in the first two 

timeslices (I1 and I2), but removed it from the last 

two timeslices (I3 and I4).  

We then performed the inference where the DBN 

model was made to predict the value of insulin drip 

rate I3 in the third timeslice to achieve a target serum 

glucose G4 of 95 mg/dL in the fourth timeslice. This 

simulates the clinical scenario where at time T3, the 

physician or the eProtocol predicts I3 based on the 

past few measurements to achieve a normal value for 

glucose (G4 of 95mg/dL) at a future time T4. 

4. EVALUATION 

The DBN model was evaluated by comparing its I3 

(DBN-I3) recommendations against those of 

eProtocol (eProt-I3) for the same patients at the same 

timeslices, in context of the actual values of G4 

(eProt-G4) in the medical record. The real-world 

glucose level (eProt-G4) measured at time T4 while 

the patient was treated using eProtocol helped to 

determine the better protocol for a given test case. 

If the patient encountered hypoglycemia (G4 < 80 

mg/dL) at time T4, the protocol that recommended a 

lower insulin dose I3 is the better (and safer) 

protocol. If the patient encountered hyperglycemia 

(G4 > 110 mg/dL) at time T4, then the protocol that 

recommended a higher insulin dose I3 is the better 

(and effective) protocol in this case. Both eProtocol 

and DBN model had a target G4 of 95 mg/dL. Hence, 

95mg/dL was used as the target to compare DBN-I3 

and eProt-I3 to determine the winning protocol. 

The results were tabulated and stratified by the serum 

glucose value G4 into several hypoglycemic, 

normoglycemic and hyperglycemic ranges.  The 

number of cases where DBN-I3’s suggested dose 

exceeded eProt-I3’s and vice-versa are shown 

graphically in figure 3. In the extremely 

hypoglycemic ranges (G4 < 70 mg/dL), we can see 

that DBN recommended less insulin (DBN-I3) than 

eProtocol (eProt-I3) in a large number or cases, and is 

hence the safer protocol. However, eProtocol 

recommended a lower insulin dose than DBN in the 

mildly hypoglycemic cases (G4 between 70 and 90 

mg/dL) and was better in these ranges. In 

normoglycemic cases, DBN recommended a higher 

insulin dose most of the time, and in the mildly to 

moderately hyperglycemic cases, where G4 was 

between 110 and 200 mg/dL DBN also recommended 

more insulin. If the three categories (<40, 400 – 500 

and >500) with a total of less than 10 testcases are 

excluded, it can be seen from figure 1 that DBN 

recommended a preferable insulin dose in 6 

categories (4,176 cases), and eProtocol recommended 

a better insulin dose in 4 categories (3,365 cases), 

showing that the DBN provided good insulin drip rate 

predictions compared to the gold standard. 

 

Figure 3. Number of test-cases where the insulin dose suggested by DBN-I3 exceeded that of eProt-I3 and vice-versa. 
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5. DISCUSSION 

We also performed statistical analyses on the results: 

we calculated the Pearson and Spearman correlation 

co-efficients which showed very high correlation 

between the serum glucose and insulin drip rates 

calculated by the DBN model, which will be 

described separately. It must be noted that the 

patients’ feeding (enteral and parenteral) data was not 

available at the time of this experiment to be included 

in the DBN model, whereas this data was available to 

the eProtocol. The probabilistic DBN model shows 

comparable accuracy to that of a rule-based model. 

We hypothesize that the accuracy of the DBN model 

can be improved with availability of the patients’ 

feeding data which influences the patients’ serum 

glucose. The addition of severity of illness data 

(APACHE II and Multiple Organ Failure scores), 

which indirectly affect serum glucose levels by 

affecting the insulin resistance, may also be useful.  

This experiment has several limitations. The temporal 

relationships were modeled as first-order Markov due 

to the limitations of our toolkits. Furthermore, the 

evaluation technique could only determine if the 

DBN could have produced less hypoglycemia or 

hyperglycemia compared to gold standard. It could 

not determine if the patient’s glucose would have 

overshot the normal range with the DBN. For 

example, in cases where G4 was above normal 

(hyperglycemia) and DBN-I3 was greater than eProt-

I3, DBN could have produced hypoglycemia (G4 < 

80, an adverse event due to overdose) instead of 

normoglycemia. Our evaluation technique could not 

identify such cases.  

6.  CONCLUSION 

This study is among the first to use DBN for glucose 

control with real clinical data, and it uses a much 

larger sample size composed of a more diverse 

patient group than previous studies
9
. This experiment 

shows good temporal prediction of biomedical 

variables of interest in spite of various limitations. 

Further testing with a more extensive dataset is 

required before this technique can be applied in the 

real world. The methods were also used in early 

detection of sepsis in the emergency department with 

very high accuracy. This suggests a degree of 

generalizability for these methods, and will be 

described separately. 
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