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ABSTRACT 

 

Mild Cognitive Impairment (MCI) is thought to be a 

precursor to the development of early Alzheimer’s 

disease (AD). For early diagnosis of AD, the 

development of a model that is able to predict the 

conversion of amnestic MCI to AD is challenging. 

Using automatic whole-brain MRI analysis 

techniques and pattern classification methods, we 

developed a model to differentiate AD from healthy 

controls (HC), and then applied it to the prediction of 

MCI conversion to AD. Classification was performed 

using support vector machines (SVMs) together with 

a SVM-based feature selection method, which 

selected a set of most discriminating predictors for 

optimizing prediction accuracy. We obtained 90.5% 

cross-validation accuracy for classifying AD and HC, 

and 72.3% accuracy for predicting MCI conversion 

to AD. These analyses suggest that a classifier trained 

to separate HC vs. AD has substantial potential for 

predicting MCI conversion to AD. 

Abbreviations: MCI=mild cognitive impairment; 

AD=Alzheimer’s disease; HC=healthy control; 

ADNI=Alzheimer’s Disease Neuroimaging Initiative; 

MRI=magnetic resonance imaging; VBM=voxel-

based morphometry; SPM=statistical parametric 

mapping; ROI=region of interest; MP-

RAGE=magnetization prepared rapid acquisition 

gradient echo; APOE=apolipoprotein E; 

SVM=support vector machine; GM=gray matter; 

SVM-RFE=support vector machine-recursive feature 

elimination; MNI=Montreal Neurological Institute 

INTRODUCTION 

Alzheimer’s disease (AD) is the most common cause 

of dementia. Living longer is putting more people at 

risk for AD. Deaths from AD have increased 

significantly, in contrast to deaths from other diseases 

such as many types of cancers which have dropped
1
. 

Despite incidence rates doubling every 5 years after 

the age of 65, no treatment currently is available to 

slow or stop the deterioration of brain cells in AD
1
. 

Early diagnosis could facilitate disease-modifying 

treatments for AD to help delay progression. 

Therefore, it would be of great potential value to 

develop better diagnostic tools that can recognize AD 

at early symptomatic and especially pre-symptomatic 

stages. To this end, amnestic mild cognitive 

impairment (MCI) has been defined as a prodromal 

stage intermediate between healthy controls (HC) 

who are cognitively normal and individuals with a 

clinical diagnosis of probable AD
2-3

. MCI is 

generally thought to be a precursor to the 

development of early AD, because patients with MCI 

have an increased probability of developing AD
 
with 

a conversion rate of approximately 15% per year
2-3

. 

As a result, MCI has received a lot of attention in a 

wide variety of clinical and research studies. For 

early diagnosis of AD, it is a challenging problem to 

predict those who are mostly likely to convert from 

MCI to probable AD. As MCI does not fulfill current 

criteria for AD, standard clinical and psychometric 

assessments currently used for diagnostic criteria for 

AD are insufficient for this specific goal. Structural 

magnetic resonance imaging (MRI) has increasingly 

been used in research contexts to support the clinical 

identification of AD, or progression to AD, at an 

earlier stage than standard neurological diagnosis. 

Regional brain atrophy often begins long before AD 

is clinically detectable. Moreover, automatic or semi-

automatic techniques for analyzing high-resolution 

structural MRI data have now been developed, such 

as voxel-based morphometry (VBM) 

(http://www.fil.ion.ucl.ac.uk/spm/) and brain 

segmentation and parcellation approaches such as 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). 

There have been a number of reports of classification 

approaches attempting to separate AD and HC or to 

discriminate MCI from HC using whole-brain MRI 

AMIA 2010 Symposium Proceedings Page - 542

http://www.fil.ion.ucl.ac.uk/spm/
http://surfer.nmr.mgh.harvard.edu/


  

analyses or a pre-defined subset of brain regions such 

as the hippocampus
4-11

. Most prior studies have been 

limited by small samples or they did not predict 

which subjects with MCI would progress to a 

diagnosis of AD
4-9

. In addition, some prior studies
10-

11
 investigated prediction of MCI conversion to AD 

by learning the classifier directly from two MCI 

subgroups: MCI-Stable (MCI-S) and MCI-Converter 

(MCI-C). The MCI-C group includes individuals who 

were diagnosed with MCI at baseline and converted 

from MCI to probable AD after baseline. The 

reported highest accuracy is 94.5% for classifying 

AD vs HC
6
 and 81.5% for MCI-C vs MCI-S

11
. 

The goal of the present study is to predict MCI 

conversion to probable AD. Unlike many of prior 

studies, we train a classifier using data from AD and 

HC, and then apply it to predicting MCI conversion 

to AD in an independent set of MCI individuals from 

the same study assessed using the same methods. The 

classification accuracy rate was calculated at three 

different longitudinal time points. Furthermore, we 

combined imaging features extracted from two 

different whole-brain analysis techniques (VBM and 

FreeSurfer) and performed feature selection to 

identify variables with predictive power, resulting in 

an improved accuracy for classification. We analyzed 

data from a large cohort of extensively characterized 

and imaged subjects from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).  

MATERIALS AND METHODS 

Subjects 

All subjects used in this study are participants of 

Alzheimer’s Disease Neuroimaging Initiative 

(ADNI)
 
(http://www.adni-info.org). The ADNI was 

launched in 2003 to help researchers and clinicians 

develop new treatments for MCI and early AD, 

monitor their effectiveness, and lessen the time and 

cost of clinical trials. Neuroimaging and biological 

markers were used to achieve the goal of the ADNI 

study. This 5-year multi-site longitudinal study was 

started by the National Institute on Aging (NIA), the 

National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical 

companies, and non-profit organizations. The ADNI 

participants consist of AD, MCI, and elderly HC. 

They were aged 55-90 years and recruited from 59 

sites across the U.S. and Canada. We divided the 

ADNI cohort into four groups by baseline diagnosis 

and the MCI to probable AD conversion status using 

follow-up diagnosis up to 3 years: HC, MCI stable 

(MCI-S), MCI converter (MCI-C), and AD
12

. Written 

informed consent was obtained from all participants 

and the study was conducted with prior approval 

from Institutional Review Boards at all sites. For the 

clinical diagnosis of AD, National Institute of 

Neurological and Communicative Disorders and 

Stroke and the Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) criteria, 

Mini Mental State Examination (MMSE) scores, 

Clinical Dementia Rating (CDR), and other cognitive 

assessments were used. Demographic information, 

APOE genotype, neuropsychological test scores, and 

diagnosis were downloaded from the ADNI clinical 

data repository (http://www.loni.ucla.edu/ADNI/).  

Image processing and feature extraction 

3D T1-weighted brain MRI scans were acquired using 

a sagittal 3D MP-RAGE sequence following the 

ADNI MRI protocol. Brain-wide target imaging 

features from all MRI scans of ADNI participants 

were processed and extracted using two fully 

automatic methods as detailed in previous studies
12-13

. 

SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) was used 

for VBM analysis to create an unmodulated and 

normalized gray matter (GM) density map in the 

Montreal Neurological Institute (MNI) space and 

then to extract a single mean GM density value for 86 

regions of interest (ROIs) in MNI space. In addition, 

FreeSurfer V4, an automatic brain segmentation and 

cortical parcellation tool, was used to label cortical 

and subcortical tissue classes using an atlas-based 

Bayesian segmentation procedure and to extract 

volumetric and cortical thickness values for 56 ROIs 

in addition to total intracranial volume (ICV). 

Pattern classification methods 

The support vector machine (SVM) is a classification 

method for supervised learning. As a powerful and 

popular multivariate classification algorithm, SVM 

has been widely used in a variety of classification 

tasks and produced superior empirical results
14

.  

SVM seeks a linear decision surface (optimal 

separating hyperplane), which separates two classes 

of training samples and maximizes the distance 

(margin) between the decision boundary and the 

closest samples (support vectors) in each class. 

If an effective linear decision surface cannot be 

identified, the data can be nonlinearly mapped into a 

higher dimensional space (feature space) in order to 

gain additional discriminative power. By choosing an 

appropriate mapping, the data may become linearly 

separable or mostly linearly separable in the high-

dimensional feature space. To this end, various kernel 

functions can be used to transform the data. 

We used radial basis function kernels (RBF). These 

kernels have two parameters: a cost parameter (C) 

and a parameter (γ). To determine the optimal values 

C and γ of the SVM, we used a grid-search. Using a 
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FreeSurfer 

+ VBM 

90.5 85.0 94.8 
 

Table 1 Number of subjects used in this 

study for each diagnosis group 

 

 HC MCI AD 

  MCI-C MCI-S  

Baseline 226 389 182 

1 year  62 278  

2 year  110 157  
 

current  150 205  

 

10-fold cross-validation procedure, we performed 

classification with each set of parameters (γ, C) 

varying along a grid ranging from C=2
0
 … 2

10
 and 

γ=2
-10

 … 2
0
 to estimate the prediction accuracy. The 

optimal γ and C were then used to create the SVM 

model
14

. 

Continuous numeric predictor variables were 

normalized to have zero mean and unit variance by 

subtracting the sample mean and dividing by the 

sample standard deviation. This normalization helped 

ensure these variables received equal consideration 

by the modeling and feature selection processes since 

prediction with large numeric range generally 

dominate those with smaller range. Note that the 

mean and sample standard deviation values used to 

normalize the training data were also used to 

normalize the testing data to ensure consistent 

scaling.  

Due to the large number of predictor variables, it was 

important to identify a subset of predictor variables 

which maximizes the performance of the predictor 

and results in an improved classification rate. The 

feature selection was done using an SVM-based 

criterion, SVM-RFE (SVM-Recursive Feature 

Elimination)
15

. SVM-RFE is a simple, efficient and 

established algorithm that performs feature selection 

via a sequential backward elimination procedure. The 

SVM-RFE algorithm returns a ranking of all the 

features. SVM-RFE ranks features based on the 

weights of a linear SVM. 

RESULTS 

In this study, we used all the ADNI participants 

whose MRI scans passed both VBM and FreeSurfer 

processing pipelines. Each subject has 142 imaging 

ROI variables (56 from FreeSurfer and 86 from 

VBM). All the imaging ROI features were adjusted 

for the baseline age, gender, education, handedness, 

and intracranial volume (ICV) using the regression 

weights derived from the HC participants. In addition 

to 142 imaging features, family history for dementia 

and the status of APOE (presence or absence of 
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Table 2 Classification results of AD from HC 
 

Date set Accuracy Sensitivity Specificity 

FreeSurfer 89.7 85.3 93.2 

VBM 84.4 77.5 89.5 
 

 
APOE ε4 (or ε2) allele) were included in our models. 

Table 1 displays the number of subjects used in this 

study for each diagnosis group. We used the 

diagnosis results at baseline, 12 month (1 year), 24 

month (2 year), and at the last visit as of January 23, 

2010 (3 year).  

Classification between AD and HC 

First, SVM was applied to the ADNI imaging ROI 

data to train the classifier for distinguishing AD from 

HC at baseline. All analyses were performed using 7-

fold cross-validation to avoid over-training of 

classifiers. In each run, the accuracy, sensitivity, and 

specificity were calculated as a function of the 

number of selected features in descending order from 

the ranked feature list.  The 7-fold cross-validation 

process was repeated 3 times using randomly divided 

data sets in each iteration. The classification accuracy 

is shown in Table 2. As expected, the best 

classification was obtained by using both the 

FreeSurfer and VBM features, giving a correct 

classification rate of 90.4%, a sensitivity of 85.0%, 

and a specificity of 94.8%. 

Prediction of MCI conversion to probable AD 

based on the AD-HC classification model 

After a classification model was constructed from the 

AD and HC groups, the same model was applied to 

the classification of MCI-C versus MCI-S. The 

classification accuracy rate was calculated at three 

different longitudinal time points: 1, 2 years after 

baseline, and January 23, 2010 (3 year). Since the 

testing data (MCI-C and MCI-S) is different from the 

training data (HC and AD), no resampling cross-

validation process was necessary. The classification 

results are shown in Table 3. The MCI conversion to 

probable AD until 1 year after baseline can be 

predicted using the VBM ROIs with an accuracy rate 

of 65.0% which is better than the other data sets 

(FreeSurfer and FreeSurfer+VBM). The MCI 

conversion to probable Alzheimer’s disease 2 or 3 

years later was best predicted using all ROIs from 

both FreeSurfer and VBM yielding accuracy rates of 

72.3% and 71.6%, respectively. A ranked feature list 

was determined using SVM-RFE. Figure 1 shows the 

prediction accuracy as a function of the number of 
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Specificity 55.8 65.5 66.8 62.6 69.4 69.8 61.2 68.2 68.8 

 

selected features in descending order from the ranked 

features. The data points in Fig. 1 were calculated 

using all the features of both FreeSurfer and VBM 

and most recent diagnosis (01/23/2010). The best 

prediction of MCI conversion to probable AD was 

obtained for a number of features between 24 and 26. 

The most important feature identified by SVM-RFE 

is left entorhinal cortical thickness. Left entorhinal 

cortical thickness can predict the MCI conversion to 

probable AD at accuracy of 61.4%. The 25 best 

features consisted of 7 FreeSurfer ROIs, 16 VBM 

ROIs, and the status of APOE ε4 and ε2 genotypes. 

We obtained a prediction accuracy of 69.3% using 

the first 5 of these features: thickness of left 

entorhinal cortex, right hippocampal volume, APOE 

ε4 status, mean temporal lobe thickness (of inferior, 

middle, and superior temporal gyri), and gray matter 

density of left hippocampus. 

DISCUSSION AND CONCLUSION 

Using automatic whole-brain MRI analysis 

techniques and pattern classification methods, we 

predicted conversion from mild cognitive impairment 

to probable AD based on a classification model 

learned from AD and HC data. In this study, we used 

MRI scans from 797 participants in the ADNI cohort. 

We obtained better results when we combined 

cortical thickness, volume, and gray matter density 

measures determined from two automatic whole-

brain analysis techniques. In addition, the best 

prediction accuracies were obtained using a subset of 

features identified and ranked by a feature reduction 

algorithm. The most important three features are left 

entorhinal cortical thickness, right hippocampal 

volume, and APOE ε4 status
1
. It has been shown that 

regional brain atrophy occurs initially and most 

severely in the entorhinal cortex and hippocampus 

before spreading throughout the neocortex
16

. APOE 

ε4 is a well established genetic risk factor for 

Alzheimer’s disease. We conclude that a classifier 

trained to classify AD from HC has substantial 

potential for predicting MCI conversion to AD. 

These results encourage further investigation of 
 

                     
 

Figure 1 Classification of MCI-C from MCI-S based on the classification model of AD vs. HC. The 

prediction accuracy rate is shown as a function of the number of selected features in descending order 

from a ranked feature list. 

 

 

Table 3 Classification results of MCI-C from MCI-S based on the classifier of AD from HC 

 

FreeSurfer VBM FreeSurfer + VBM Data set 

1 year 2 year 3 year 1 year 2 year 3 year 1 year 2 year 3 year 

Accuracy 60.3 69.7 71.5 65.0 67.8 70.7 63.8 72.3 71.6 

Sensitivity 80.6 75.5 78.0 75.8 65.5 72.0 75.8 78.2 75.3 
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algorithms for determining those at greatest risk for 

disease progression. This is important for identifying 

those patients who might benefit most from a clinical 

trial or as a stratification approach within clinical 

trials. 
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