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Abstract 
Many adverse drug effects (ADEs) can be attributed 
to drug interactions. Spontaneous reporting systems 
(SRS) provide a rich opportunity to detect novel post-
marketed drug interaction adverse effects (DIAEs), as 
they include populations not well represented in 
clinical trials. However, their identification in SRS is 
nontrivial. Most existing research have addressed the 
statistical issues used to test or verify DIAEs, but not 
their identification as part of a systematic large scale 
database-wide mining process as discussed in this 
work. This paper examines the application of a highly 
optimized and tailored implementation of the Apriori 
algorithm, as well as methods addressing data quality 
issues, to the identification of DIAEs in FDAs SRS.  

Introduction 

Drug interaction adverse effects (DIAEs) are ADEs 
caused by special combinations of drugs, when the 
pharmacokinetic or pharmacodynamic properties of 
one drug in the combination are altered by another.  

SRS are database resources encompassing reports of 

suspected ADEs. The availability of real-world data 

from SRS provides a rich opportunity to detect novel 

post-marketed ADEs, especially DIAEs, since in 

clinical trials patients on multiple drugs are usually 

excluded.  Among the major SRSs are: FDA’s 

Adverse Event Reporting System (AERS), and the 

World Health Organization (WHO) Programme for 

International Drug Monitoring, which are currently 

the main resources in post-marketed ADE detection.  

Present day SRS typically receive tens of thousands 

of reports each year, accumulating to this day millions 

of reports. Challenged by the vast size and 

complexity, the traditional manual case-by-case 

review by clinical experts, has been complemented by 

more efficient methods consisting of automated and 

quantitative approaches that are commonly referred to 

as data mining algorithms (DMAs). DMAs are 

generally designed to identify statistically strong 

associations between drugs and adverse effects (AEs). 

These associations, also referred to as signals, are not 

necessarily true ADEs but rather hypotheses that 

warrant further investigation to qualify them as 

credible ADEs. They allow evaluators to peruse the 

large volume of reports and focus their attention on 

potentially important safety issues. 

In recent years a wide range of DMAs have been 

developed to screen potential ADEs
1-3

. The majority 

of DMAs rely on the use of disproportionality 

measures, such as the relative reporting ratio (RR)
1
,  

which attempt to quantify the degree of 

“unexpectedness” of a drug-AE association
4
. 

Typically, a pre-defined disproportionality threshold 

will be used to screen potential ADEs for further 

review. Both the FDA and WHO use an adjusted 

version of RR that accounts for the uncertainty 

associated with small samples, as a basis for 

monitoring safety signals in their SRS
5, 6

.  

Due mostly to the voluntary nature of reporting, 

several issues related to data quality in SRS render the 

successful application of DMAs
1, 7

. Among the major 

issues identified are
3, 4, 7, 8

: granularity and variation in 

the terminology used to describe AEs/drugs, and 

duplicate reporting where the same ADE for the same 

patient is reported via different channels, or not 

properly linked to an earlier report as a follow-up. 

These data quality issues may introduce statistical 

biases that severely impact the results, e.g., dilution of 

signals across multiple similar events or drugs 

depending on the terminology used, or generation of 

spurious associations in the case of duplicate 

reporting. 

Although some DMAs such as MGPS
9
 and BPCNN

6
 

have the ability to identify ADEs attributed to 
multiple drugs, most studies have been designed to 
identify and analyze potential ADEs attributed to one 
drug only, e.g.,  

Avandia → heart attack 

while fewer studies focused on potential ADEs 
attributed to multiple drugs, e.g.,  

Fluoxetine + Tramadol → seizures, 

a pharmacodynamic drug interaction where Tramadol 

(pain reliever) adds to the effect of Fluoxetine 

(Prozac) increasing serotonin levels, which may cause 

seizures. The importance of and difficulty of DIAE 

detection  was emphasized in
1, 7

, noting that SRS 

databases provide an opportunity to uncover them as 

they contain populations that are not well represented 

in clinical trials. Additionally, a recent study
10

 

examining suspected ADEs signaled by abnormal 

laboratory tests in hospital patients, revealed that 

close to 50% of the true ADEs found were due to drug 

interactions. By analogy, this finding suggests that 

many of the ADEs reported to SRS are plausibly due 

to drug interactions despite them being attributed to 

one suspected drug.   
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The FDA rarely receives reports attributed to drug 

interactions and thus their identification is not trivial. 

FDA’s SRS contains reports which include tens of 

thousands of drugs and AEs. Enumerating all possible 

combinations of drugs and AEs for statistical analysis 

is not feasible using standard approaches. This is 

because the search space grows exponentially with the 

size of the combinations considered. For example, 

assuming  10,000 unique drugs and AEs are under 

consideration, then the number of possible DIAEs due 

to a combination of two drugs that need to be 

examined is approximately 10,000
3
 =10

12 
, and for 

each,  incidence rates and other association statistics 

need to be computed. 

Several publications in pharmacovigilance proposed 

methods designed to study potential DIAEs
11-13

. 

However, unlike this work, these studies all selected a 

small set of drugs and adverse effects prior to the 

mining, and addressed the statistical issues used to 

test or verify DIAEs. They did not address the 

identification of DIAEs as part of a systematic large 

scale mining process that is applied to the database as 

a whole. There are no reports of studies that mined the 

whole or a large subset of AERS in an attempt to 

identify all potential DIAEs, which we suspect is 

mainly due to the algorithmic complexity involved. In 

contrast, the work presented in this paper is on a 

larger scale and generality, is not confined to a 

specific set of drugs/AEs selected prior to mining, and 

focuses on the issues of mining AERS to identify all 

statistical associations that may correspond to 

potential DIAEs.   

Our approach was made possible partly due to a 
highly optimized, parallelized, and tailored 
implementation of a well established data mining 
technique referred to as  the Apriori algorithm

14
, that  

prunes the search space of possible associations.  

This work builds upon a previous study we 
conducted

15
 investigating the potential use of 

association rules mining in SRS, but this work  
specifically targets DIAEs. Other major challenges 
addressed in this work, include: drug name mapping 
to generics, which is used to eliminate some of the 
redundancy in drug naming, thereby reducing the 
association space and increasing signal strength, and 
duplicate reporting identification and removal, which 
eliminates spurious associations.    

Data Sources and Methods 

Data Sources: The FDA receives voluntary reports of 
suspected adverse drug events directly from health 
care professionals and consumers, as well as 
mandatory reports from manufacturers. Each report 
contains patient demographic information, drug 
information for as many medications as were reported 
for the event, including suspected drugs and 
concomitant drugs, coded adverse events using the 
MedDRA terminology (a terminology developed for 

ADE applications), patient outcomes, drug therapy 
dates, MedDRA coded indications for the reported 
drugs, and report sources. The data used in this work 
includes a large sample of individual safety reports 
published in 2008. This sample contained 169,040 
individual reports, 24,641 unique drug names, and 
8,025 unique AEs. When searching for drug 
interactions, we made no distinction between 
suspected and non-suspected medications, thus using 
all drugs available in each report.  

 
Figure 1. Overall DIAE mining process 

Methods: 

The overall mining process consisted of 4 steps 

depicted in Figure 1, and described in the following. 

Drug mapping. Unlike the suspected AEs and the 

indications coded using MedDRA, the drugs are 

entered as textual terms. Each drug obtained from a 

report was assigned a UMLS drug code using 

MedLEE
16

, an existing NLP system. If the drug name 

included a dose or route, e.g. “Avandia (2 milligram) 

tablets”, the more general UMLS code consisting of 

the drug name only was chosen over the more specific 

code,  e.g., C0875967 corresponding to “Avandia”. If 

the drug name could not be mapped, it was left as is. 

Finally, UMLS codes were mapped to generics using 

RXNORM. Hence, C0875967 corresponding to the 

brand name “Avandia”, would be mapped to 

C0289313 corresponding to the generic name 

“Rosiglitazone”.   

Duplicate reporting. If not addressed properly, 
duplicity in reporting will produce spurious 
associations. E.g., for a report that contains 10 drugs 
and 5 AEs (a common scenario) the number of 
possible two drug DIAE associations will be 
C(10,2)×5=225, and for three drugs is 600. If this 
report is duplicated several times then most statistical 
measures of association, such as the RR measure used 
in this paper, will likely report these 225 (600) 
associations as significant and strong associations, 
when in fact they are spurious and only an artifact of 
the reporting process. Thus, if hundreds of duplicates 
exist, tens of thousands of spurious associations will 
be generated. Our method for removing duplicate 
reports is based on searching through reports that 
contain at least 8 drugs/AEs (minimizing likelihood of 
duplication by chance), for pairs of reports that have 
an exact match of the reported drugs/AEs, and 
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demographic data (age, gender, dates). We also found 
that many duplicate reports did not demonstrate an 
exact match. This was due to missing data, e.g., 
gender might be included in one report but not in its 
duplicate, inconsistency in age, weight, and dates 
reported, or follow-ups which add or remove a small 
number of drugs/AEs. These types of duplicates were 
identified and removed semi-manually by repeated 
runs of our method. They were easy to identify as 
they produced highly suspicious associations with 
extremely large RR values. 

Apriori algorithm. The Apriori algorithm is a 
method designed to efficiently identify association 
rules in large databases, and thus provides a natural 
setting for DIAE detection in SRS. An association 
rule is an implication expression of the form A→B, 
where A and B are disjoint itemsets. In our case, A 
denotes a set of drugs and B an AE, e.g., A= 
Fluoxetine, Tramadol, B= seizures. The strength of an 
association rule in the Apriori context is determined 
by its support and confidence, but in our case 
confidence is substituted by RR. The support of an 
itemset S(A) is the number of records containing A. 
The support of an association rule S(A→B) is equal to 
S( BA∪ ), and determines how often a rule, the 
combination of drugs and an AE, is observed in the 
data. Low support may indicate that a rule has simply 
occurred by chance, and thus support is one of the 
parameters used to eliminate uninteresting rules.  The 
confidence of a rule which is calculated as 
C(A→B)=S( BA∪ )/S(A) determines how often items 
in B appear in records that contain A, and provides an 
estimate of Pr(B|A) the conditional probability of B 
given A. The inappropriateness of confidence to this 
case stems from the fact that frequent AEs such as 
nausea are likely to generate large confidence values 
regardless of the drugs associated with it, and 
infrequent AEs are likely to produce small confidence 
despite being strongly associated with certain drugs.  

In this study RR was used instead of confidence as a 

second parameter to qualify the worthiness or strength 

of an association rule. RR is defined as the ratio 

between a rule’s observed frequency to a baseline 

expected frequency, the later servings as a control. 

Formally, RR=N×S( BA∪ )/S(A)S(B), where N is the 

total number of records in the data. RR provides an 

estimate of Pr(AE,Drugs)/Pr(AE)Pr(Drugs), and can 

therefore be viewed as the amount of deviation of the 

joint probability of the drug/s and AE from statistical 

independence. Large values indicate that the 

occurrence of a drug/s-AE combination has unlikely 

occurred by chance and that a plausible reason is 

behind the association. It is also easy to see that RR 

can be viewed as confidence normalized by the 

probability of B, correcting the bias discussed earlier. 

The Apriori algorithm prunes the search space of 

associations based on the basic downward closure 

property of frequency. I.e, if a certain combination of 

drugs and AEs is infrequent, then any larger 

combination that builds upon the smaller infrequent 

one, will also be infrequent, and thus need not be 

considered. Despite this useful property, further 

optimizations were necessary in order to explore the 

reduced but still very large space of possible 

associations. These optimizations included: 

1. Parallelization (four processors) of the major parts 

of the algorithm, i.e., candidate association 

generation, and support determination. 

2. Hashing of reports based on drugs/AEs for more 

efficient support determination. Otherwise, a full 

scan of the database would be required to compute 

support for each candidate association. 

3. Imposing the constraint that each association must 

include one or more drugs and one AE, thereby 

further reducing the space of possible associations. 

The scale of computational gain achieved by these 

optimizations was several thousand folds, and without 

them the method was intractable. 

In summary, our modified Apriori algorithm is used 

to mine the sample of AERS reports and efficiently 

identify associations including at least two drugs and 

one AE, which are later filtered by statistical 

measures of association to produce the final set of 

potential DIAEs. 

Filtering. The strongest associations were filtered 

based on the following criteria: each association must 

have a support of at least 20, each association must 

have an RR of at least 2, a value suggested in a 

similar study
5
, and finally each association must have 

an RR larger than any of its subsets. The later rules 

out a potential DIAE that could better be explained by 

any of the drugs separately, and is similar to the 

approach proposed by Almenoff et al.
13

 We note that 

for large enough support, as in this case, an 

adjustment for RR that accounts for low variance as 

used by the FDA, would not be necessary
17, 18

 

(adjusted and unadjusted RR are almost equal). 

Evaluation. Due to lack of a gold standard (the set of 

all true DIAEs is unknown), evaluation in terms of 

sensitivity and specificity is not possible. Following 

common practice
3
, the full set of potential DIAEs 

identified by the method were ranked by their RR 

values, and a sample of 100 was given to two 

independent clinical experts for qualitative evaluation. 

Known drug interactions were validated by the 

experts using Micromedex and Epocrates. In addition, 

a hypothesis test was conducted to demonstrate that 

the method was not identifying drug-interactions just 

by chance. This was done by sampling 100 random 

pairs of drugs from the AERS drug distribution, and 

comparing the number of known drug interactions in 

the random sample with the number of known 

interactions identified by our method, using the 

binomial distribution. The p-value in this test is the 

AMIA 2010 Symposium Proceedings Page - 283



probability of observing at least as many interactions 

as identified by our method, given the number 

expected (identified) in a random sample of 100 drug 

pairs. 

Results 

Data and association statistics: the drug mapping to 

generics reduced the set of drug names from 24,641 to 

6,725. The number of duplicate reports found was 

4094, reducing the overall set of reports from 169,040 

to 163,944. Some of the reports were duplicated more 

than 8 times. The method produced 3402 drugs-AE 

associations with minimum support of 20. After 

filtering by RR 1868 potential DIAE remained, 1704 

containing 2 drugs and 164 containing 3 drugs. We 

note that without duplicate report removal the method 

produced approximately 30,000 potential DIAEs, i.e., 

more than 90% spurious DIAEs! The p-value 

obtained for the hypothesis that our method identified 

drug interactions by chance was 2.8e-06. 

Taxonomy of DIAEs: Extrapolating from our 
evaluation sample, the full set of potential DIAEs 
identified by the method can be described by the 
taxonomy and proportions shown in Table 1. Table 2 
provides representative examples of potential DIAEs 
classified according to the taxonomy, along with the 
support and RR value for each. 

Table 1. Taxonomy of potential DIAEs 

Drugs   

A1 
Drugs known to be given together/ treat 

same indication 
57% 

A2 Drugs with same active ingredient 2% 

A3 Supposedly unrelated drugs 41% 

Adverse effects  
B1 One of the drugs known to cause effect 22% 

B2 All drugs known to cause effect 21% 

B3 None of the drugs known to cause effect 27% 

B4 Confounded association, drugs given to 

treat the AE 

30% 

Interactions   
C1 Known drug interaction 35% 

C2 Unknown drug interaction 65% 

Discussion 

The examples above illustrate various combinations 
of drug-drug and drug-adverse events relationships. A 
substantial proportion (57%) of the drugs were paired 
either because they were given together, e.g., 
amoxicillin, clavulanate (antibiotics), or because they 
are used to treat the same disease, e.g.,  glimepiride, 
pioglitazone treating diabetes. A small number of 
cases (2%), e.g., insulin glargine, insulin lispro, 
included different preparations containing the same 
active ingredient. In some cases (21%) both of the 
paired drugs were associated with a particular known 
adverse event. For example, the pair insulin glargine, 
insulin lispro was associated with hypoglycemia (low 
glucose). In the majority of drug pairs, one or none of 
the two drugs was known to cause the associated AE. 
Confounding  was  identified  in  a  large  number   of  

Table 2. Classified Sample of potential DIAEs in AERS 

 Taxonomy DIAE S RR 

1 A1-B1-C2 glimepiride, pioglitazone -> nausea 20 2.6 

2 A1-B3-C2 amoxicillin, clavulanate -> anaemia 30 2.7 

3 A1-B4-C2 
acetaminophen, oxycodone -> back 
pain 

35 2.5 

4 A2-B2-C2 
Insulin glargine, insulin lispro -> 
blood glucose decreased 

40 26 

5 A3-B3-C1 metformin, thyroxine -> headache 21 2.8 

6 A3-B4-C1 
aspirin, furosemide -> cardiac 
disorder 

20 3.7 

7 A1-B3-C1 
digoxin, spironolactone -> drug 
interaction 
drug_interaction 

23 11 

associations (30%) where the reported AE was 
actually the indication for the drugs rather than a true 
AE. For example, the anti-diabetic agents glimepiride 
and pioglitazone were associated in the AERS reports 
with hyperglycemia, the indication for treatment, not 
an AE. Last, a significant proportion (35%) of drugs 
in a pair were known to interact with one another. For 
example, aspirin and furosemide were associated and 
known to interact since aspirin interferes with the 
diuretic action of furosemide. Another example is 
metformin which treats diabetes, and thyroxine which 
treats hypothyroidism; these two diseases are 
“autoimmune" and therefore occur together, but 
thyroxine decrease the effectiveness of the 
antidiabetic agent metformin. We also observed that 
in the majority of drug interactions cases where one of 
the drugs in the association was a known cause of the 
reported AE (B1-C1), the interaction was known to 
increase the risk of the reported AE. 

As mentioned earlier, AERS rarely receives reports of 

drug interactions. Example 7 illustrates one of these 

rare cases where the corresponding reports label one 

of the reported AEs as “drug interaction”. In this 

particular case Spironolactone was labeled as the 

“primary suspect” drug and digoxin as the 

“interacting”, both known to interact. Based on the 

corresponding reports therapeutic agent toxicity was 

likely the AE attributed to the interaction, as 

Spironolactone may interfere with some digoxin 

radioimmunoassays and cause digoxin toxicity. An 

additional 10 DIAEs labeled as drug interactions in 

AERS were identified. These findings demonstrate 

that our method is also able to identify DIAEs that 

were intentionally reported as such. 

Overall, the results demonstrate that a significant 
number of bone fide drug interactions were identified 
by our method. The very low p-value indicates that it 
is extremely unlikely that our method detected them 
just by chance, and thus is a valid approach. A large 
proportion of the associations were classified as 
unknown drug interactions. However, these do not 
necessarily indicate that the interactions do not exist, 
but they require further investigation. Granted, some 
of the unknowns can confidently be classified as 
spurious (drugs too long on the market for an 
interaction to be unknown).  These typically received 
a very low RR value, suggesting one potential 
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solution involving increasing the RR threshold, e.g., 
from 2 to 3, which could improve the filtering of 
spurious associations. Nonetheless, in future work we 
plan to investigate alternate statistical techniques to 
improve filtering, such as: (1) using a combination of 
association measures

19
, where the association must 

pass filtering by each of the measures in the 
combination separately (2) using logistic regression  
for each association to determine the statistical 
significance of interacting effects

11
. 

SRS, among them AERS, may be affected by 
confounding

1
, a pathology corroborated by the 

findings of this study. A significant number of 
associations (30%) identified by our method were due 
to confounding, and methods to identify and remove 
them would be an important contribution to this field. 
One approach we are currently implementing is the 
construction of a knowledge base of known drug-
disease and disease-side effect relationships, which 
can then be used to eliminate expected associations 
such as an AE which is actually a drug indication, or 
is closely associated with the disease treated by the 
drug.  

We were able to remove a large proportion of 
duplicate reports by using an exact match approach 
supplemented by manual removal. However, many 
duplicates still remain, potentially generating a large 
amount of spurious associations, specifically, reports 
containing a small amount of drugs/AEs which we did 
not consider, as well as reports that would have been 
detected by an inexact matching approach, such as 
follow-ups. A possible solution based on the hit-miss 
model has been proposed by Noren et al.

20
 However, 

their method was fit to the WHO SRS, and it is not 
clear how well it will generalize to AERS. In future 
work we plan to explore the applicability of latter as 
well as new approaches to the problem. 

Conclusion 

A data mining technique designed to identify potential 
DIAEs in FDA’s AERS was presented in this paper. 
Our findings demonstrate its efficacy for initial 
identification of DIAEs. In contrast to the few 
existing methods, our approach is general, purely 
statistical, uses as much data as possible, and gives as 
much freedom for the data to speak for itself, without 
posing any restrictions or expectations on its output. 
Several algorithmic, as well as other challenges 
related to data quality were addressed in this work. 
Despite its relative success, several shortcomings 
were identified, such as confounding, and additional 
duplicity of reporting, which render the approach 
from achieving its ultimate goal, but to which 
solutions are currently in the works. 
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