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Abstract 

The Cox proportional hazards model is the most 

commonly used survival model in oncology; however, 

this semi-parametric model may not be the most 

appropriate survival model when the proportionality 

assumption does not hold. In this study, we consider 

the use of several types of accelerated failure time 

parametric survival techniques for modeling the 

benefit of adjuvant chemoradiotherapy for 

gallbladder cancer.  In comparing the Weibull, 

exponential, log-logistic, and log-normal models, we 

found that the log-normal had the most favorable 

Akaike Information Criterion, and additional 

analyses of this model indicated that our gallbladder 

cancer dataset exhibited a good fit with the log-

normal cumulative hazard function.  This log-normal 

survival model can be used to help predict which 

patients will benefit from adjuvant 

chemoradiotherapy. 

Introduction 

Oncologists must consider a large number of 

prognostic factors when making a recommendation 

on whether an individual cancer patient should 

receive adjuvant therapy. When possible, decisions 

for an individual patient are based on the results of 

randomized clinical trials, but for some rare cancers 

such as gallbladder cancer, large clinical trials have 

not been conducted, which leaves treatment 

recommendations unclear and sometimes 

controversial.
1
  In these settings, the use of 

multivariate survival models built from large 

observational databases may be helpful in providing 

guidance when more rigorous data are not available.  

Furthermore, multivariate models may yield insight 

into how specific patient demographic, clinical, and 

pathological characteristics may influence outcomes.   

The most commonly used multivariate survival 

model in oncology is the Cox proportional hazards 

(CPH) model.
2
  Its popularity stems from its 

mathematical elegance, semi-parametric nature, and 

simple intuitive interpretation.  In many clinical 

settings, however, its underlying premise of 

proportionality of hazards does not hold.  There are a 

number of alternative parametric survival modeling 

methods that have been shown in some settings to be 

more appropriate than the CPH model.
3-8

 For 

example, Chapman et al
7
 compared the performance 

of CPH and log-normal models for a series of node-

negative breast cancer patients and found that 

estimates of disease-specific survival varied by 

almost 6%. Royston
6
 compared CPH and log-normal 

models and found that the estimates of prognosis of 

breast cancer patients could vary up to 1 year.  Also, 

Tai et al
8
 compared the performance of 4 different 

types of survival models on a cohort of 244 limited 

stage small cell lung cancer patients and found that 3-

year disease-specific survival estimates varied up to 

12% depending upon whether a Cox model or a log-

normal model was used. 

The specific aim of this study was to evaluate the 

performance of several types of parametric 

accelerated failure time survival models for their fit 

for our gallbladder cancer dataset.  The long-term 

goal is to select the best performing survival model 

for future implementation as an interactive online 

tool to provide individualized outcome estimates for 

different therapy options to assist clinicians with 

adjuvant treatment decisions. 

Methods 

The study cohort for this project was taken from the 

SEER-Medicare database, 2007 release.
9
  We used 

the most recent 10 years of Medicare data available 

(1995-2005) linked to patients diagnosed between 

1995-2002.  The analysis was limited to patients who 

had equal and continuous Medicare Part A & B 

coverage during the first four months after diagnosis. 

Initial cases were selected using Site Recode = 31 for 

gallbladder cancer. Patients were included if they at 

least underwent a surgical resection with curative 

intent.   Patients with in situ or metastatic disease and 

those diagnosed with more than one primary cancer 

were not included. To account for post-operative 

mortality, patients who survived less than two 

months from surgery were also excluded.  In 

addition, patients were excluded if the exact dates of 

diagnosis or death were not known.  

AMIA 2010 Symposium Proceedings Page - 847



  

Using the SEER Extent of Disease 10 fields (EOD 

10) for Extent (e10ex1) and Nodes (e10nd1), we 

grouped patients according to AJCC 7th edition TNM 

staging. 

Patients who received adjuvant external beam 

radiotherapy within the first 4 months of diagnosis 

(PEDSF rad1 codes 1, 4, 5, or 6)  were coded has 

having received adjuvant RT.  To determine which 

patients received chemotherapy, the linked Medicare 

Carrier Claims (NCH) and Outpatient (OUTSAF) 

files were used.  Patients who who had a claims code 

for 5-FU (HCPCS J9190) within 4 months of 

diagnosis were coded as having received adjuvant 

chemotherapy.  Patients who had >3 lymph nodes 

resected were coded as having had an extended 

lymphadenectomy.   

All statistical analyses were performed using the "R" 

software package (http://www.r-project.org). 

Covariates to be included in the models were selected 

based on known clinically prognostic factors and 

availability in the SEER database.  Included 

covariates were age, sex, race (White, Black, 

Asian/Pacific Islander, Alaskan/American Indian), 

AJCC 7th edition TNM stage, extended 

lymphadenectomy (>3 nodes resected), and receipt of 

adjuvant chemoradiotherapy (CRT) (yes/no).  All 

covariates were treated as discrete and converted to 

binary variables, except for age, which was modeled 

as a continuous variable and fitted to a smoothed 

restricted cubic spline function.
10

  Stage groupings 

with less than 11 cases for analysis were grouped 

with the closest neighboring group.  Interaction terms 

were also included between CRT and certain other 

variables (stage and lymphadenectomy) to reflect 

their influence on the benefit of adjuvant CRT.  All 

covariates were included in the final model with no 

variable selection performed, since it has been shown 

that inclusion of non-statistically significant variables 

can still improve the accuracy of a predictive 

model.
10

 

The primary endpoint in this study was overall 

survival.  Multivariate regression survival analysis 

was performed using several survival modeling 

methods and results were compared.  We first built a 

CPH model and evaluated the proportional hazards 

assumption.  We then built several accelerated failure 

time parametric models: Weibull, exponential, log-

logistic, and log-normal.  All survival models were 

constructed using the "rms" R library by Harrell 

(http://cran.r-project.org/web/packages/rms/).  

Performance between models was compared using 

the Akaike information criterion (AIC), a measure of 

the goodness of fit for statistical models.
11

  The AIC 

is a measure of the goodness of fit of regression 

models that is based on the concept of entropy.  It can 

be viewed as the amount of information lost when a 

model is used to describe a set of observations.  The 

AIC includes a penalty for number of model 

parameters and thus represents the tradeoff between 

bias and variance.  Lower AIC values indicate a 

better model fit.  The formula for AIC is: 

   AIC = -2 log L + 2k 

where log L is the log likelihood of the proposed 

model, and k is the number of model parameters. 

Unlike the CPH model, parametric survival models 

assume a specific functional form for the hazard 

function of the underlying data.  We evaluated the fit 

of these models by plotting the appropriate 

transformed cumulative hazard vs time. 

Results 

A total of 870 patients met the inclusion criteria and 

were included in the study.  The baseline patient and 

tumor characteristics are shown in Table 1.  Overall, 

74% of the study population was female and 80% 

were white.  Twenty-six percent of patients had T2 

disease, and 39% had T3 disease.  Eighteen percent 

had node-positive disease. A total of 52 patients (6%) 

in this series received adjuvant CRT after surgical 

resection. 

A Kaplan-Meier (KM) overall survival plot for all 

patients by T-stage is shown in Figure 1.  The 

unadjusted median overall survival for all patients 

was 18 months.  Figure 2 shows a KM plot of 

survival grouped by receipt of adjuvant CRT.   

For the first analysis, a CPH model was constructed, 

and a test of proportionality of hazards using 

Schoenfeld residuals showed that the proportionality 

assumption was not satisfied for several covariates, 

including sex and T stage. When this occurs, it means 

that the hazard ratios are not constant over time, 

which is an underlying premise for use of the CPH 

model. 

We then constructed 4 types of parametric survival 

models---Weibull, exponential, log-logistic, and log-

normal---and compared their AIC (Table 2).  The 

log-normal model had the lowest AIC, indicating a 

better overall fit than the other models. To determine 

if the functional form of the log-normal model fit the 

observed distribution of our dataset, we plotted Φ
-1

[1-

S(t)] vs ln(t), where Φ
-1

 is the inverse of the standard 

normal cumulative distribution function, S(t) is the 

Kaplan-Meier estimate of the survival, ln(t) is the 

natural logarithm of time.  As can be seen in Figure 

3, a straight line fit of the data on this plot indicates 

that a log-normal distribution function can 

appropriately model this data. 

AMIA 2010 Symposium Proceedings Page - 848



  

Median Age (range) 76 (46-98)

Female Sex (%) 646 (74%)

Race

  White 697 (80%)

  African-American 69 (8%)

  Asian/Pacific Islander 90 (10%)

  American Indian/Alaskan 11 (1%)

  Other/Unknown 3 (0%)

TNM Stage

  T1 253 (29%)

  T2 227 (26%)

  T3 335 (39%)

  T4 55 (6%)

  N0 516 (59%)

  N1 136 (16%)

  N2 16 (2%)

Lymphadenectomy (>3 nodes) 43 (5%)

Chemoradiotherapy 52 (6%)

Table 1. Patient & Tumor Characteristics 

(N=870)

 

Figure 1. Kaplan-Meier Overall Survival by T stage. 

 

Because the log-normal model had the lowest AIC 

score and demonstrated a good fit of the hazard 

distribution, this parametric model was selected as 

the best model. 

Table 3 shows the beta coefficients for the log-

normal survival model.  The CRT interaction terms 

indicate how the influence of adjuvant CRT varies by 

stage and whether lymphadenectomy was performed.  

Figure 2. Kaplan-Meier Overall Survival by receipt 

of adjuvant chemoradiotherapy. 

 

Model  AIC 

Cox proportional hazards 5,037 

Weibull 3,683 

Exponential 3,700 

Log-logistic 3,628 

Log-normal 3,611 

Table 2. Comparison of survival 

models.  The Akaike Information 

Criterion (AIC) is a measure of 

goodness of fit of the model.  

Lower AIC values indicate a better 

fit.

 

 

Discussion 

In this study, we found that a log-normal parametric 

survival model demonstrated the best performance in 

fitting our gallbladder dataset as evidenced by the 

lowest AIC score compared to other parametric 

models tested and also compared to the traditional 

CPH survival model.   

The lognormal survival model is an accelerated 

failure time parametric survival model that has a long 

history of usage in cancer survival
3
 although it is not 

as popularly used as the semi-parametric CPH model.  
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Covariate

Beta 

Coefficient p-value

Intercept 5.7053 <0.001

age -0.0276 0.018     

age' -0.0347 0.286     

age'' 0.2145 0.123     

sex=male 0.0445 0.525     

race=African-American -0.3267 0.003     

race=Asian/Pacific Islander -0.0502 0.611     

race=American Indian/Alaskan -0.3163 0.305     

T stage=T2 -0.4292 <0.001

T stage=T3 -0.8574 <0.001

T stage=T4 -1.4002 <0.001

N stage=N1 -0.2779 0.002     

N stage=N2 -0.1842 0.469     

lymphadenectomy 0.6584 <0.001

CRT -1.0881 <0.001

T2 * CRT 1.8257 <0.001

T3 * CRT 1.2955 <0.001

T4 * CRT 1.1025 <0.001

N1 * CRT 0.6856 <0.001

N2 * CRT -0.2175 0.633     

lymphadenectomy * CRT -1.7721 <0.001

Log(sigma) -0.1581 <0.001

Table 3. Gamel Boag log-normal multivariate regression 

model parameters.

Age was modeled using a restricted cubic spline 

function with 4 knots, requiring 3 independent 

coefficients: age, age', age''.

Abbreviations: CRT=chemoradiotherapy

 

 

 

Figure 3. Plot of the log-normal transformed 

cumulative hazard function vs log time. 

 

Royston
6
 theorizes 2 reasons why the CPH model has 

become widespread in use despite the availability of  

other survival models.  One reason is the convenience 

and robustness of not needing to specify an 

underlying baseline survival distribution.  The second 

reason may be simply due to the timing of the 

publication of the seminal Cox paper
2
 in 1972 around 

the same time that computing software became 

widely available to easily implement this semi-

parametric model. 

In many settings where the proportionality 

assumption does not hold, however, the lognormal 

model has been shown to be a more appropriate 

survival model, such as for breast cancer
4,5,7

 and for 

lung cancer.
8
  Gamel and McLean

12
 developed an 

extension to the original Boag model that allows 

prognostic covariates to be incorporated into the 

lognormal model.  In this lognormal survival model, 

the log of the survival time has a normal distribution 

and is a linear function of covariates.  In this setting, 

the hazard function is not constant over time, but 

rather rises quickly to a peak and then declines over 

time.  We have previously demonstrated that this 

lognormal model performs well in modeling 

extrahepatic cholangiocarcinoma,
13

 thus it appears 

consistent that in the current study we found that a 

lognormal model also showed the best fit for this 

closely related hepatobiliary cancer. 

In the log-normal model, unlike the CPH, positive 

values for a beta coefficient depict better survival, 

and negative values depict worse survival.  This can 

be seen by examining the functional form of the 

Gamel-Boag
12

 log-normal survival model with 

covariates:  

 

 

Several insights can be gained from inspection of the 

log-normal beta coefficients in Table 3.  For 

example, the negative beta coefficient (-0.3267) for 

African-American race indicates that these patients 

are observed to have a worse prognosis compared to 

Whites.  As one would expect, increasing T stage 

shows increasingly negative beta coefficients, which 

indicates worse survival compared to T1 patients.  

Having an extended lymphadenectomy is associated 

with markedly improved survival (beta = +0.6584).  

While the negative beta for CRT may seem to imply 

a worse prognosis for patients who receive adjuvant 

CRT, it is important to note that the CRT interaction 

terms must also be added in to yield the overall 

influence of CRT.  Specifically, CRT is associated 

with a worse prognosis for T1 or N0-1 patients, but is 

associated with an improved prognosis for patients 

with T2 or greater stage disease.  Interestingly, while 
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patients who have undergone an extended 

lymphadenectomy have better survival than those 

who do not, our model predicts that these patients do 

not appear to obtain further benefit from adjuvant 

CRT. 

There are several limitations to this study.  This study 

was performed using SEER-Medicare data, and was 

therefore limited to predictive factors available in this 

database.  SEER does not have information on 

margin status or performance status so these 

potentially important prognostic factors could not be 

included in this model. 

We used the AIC to evaluate model performance, as 

this is one of the most widely used metrics.  

However, other criteria can be used, such as the 

Bayesian Information Criterion,
14

 which imposes a 

steeper penalty for model complexity.  There is 

ongoing debate as to the merits and tradeoffs between 

these metrics.
15

  Future work will entail the use of 

alternate metrics to determine if they yield similar 

results. 

While prediction models can never substitute for 

evidence from large prospective randomized clinical 

trials, these models can lend insight into potentially 

important prognostic factors, particularly in settings 

of rare tumors where no clinical trial data are 

available and where the optimal adjuvant therapeutic 

management is controversial.  The use of multivariate 

survival models are becoming increasingly important, 

enabling a "personalized medicine" approach to allow 

for individualized recommendations for a particular 

patient. The long-term goal of this project is to create 

interactive online tools from these types of survival 

models in order to assist clinicians in making 

treatment decisions for patients by comparing 

outcomes between different therapeutic options for 

an individual patient.  The next step in this project 

will be to incorporate this log-normal survival model 

into a browser-based online calculator that can be 

used by clinicians and patients to make 

individualized estimates of prognosis. 

 

Conclusion 

In conclusion, we have demonstrated that parametric 

survival models can be used to model outcomes for 

resected gallbladder cancer, and for our dataset the 

log-normal model demonstrated the best performance 

compared to other parametric models. 
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