
Abstract 

Capturing how a patient's medical problems change 

over time is important for understanding the progres-

sion of a disease, its effects, and response to treat-

ment. We describe two prototype tools that are being 

developed as part of a data processing pipeline for 

standardizing, structuring, and visualizing problems 

and findings documented in clinical reports associ-

ated with neuro-oncology patients. Given a list of 

problems and findings identified using a natural lan-

guage processing (NLP) system, we have created a 

mapping tool that assigns an observation of a prob-

lem to one of nine classes that describe change. The 

second tool utilizes iconic representations of the nine 

classes to generate a timeline interface, enabling 

users to pan, zoom, and filter the data. The result of 

this preliminary work is an automated approach for 

understanding and summarizing the evolution of a 

problem within the patient electronic medical record. 

Introduction 

Time is an important notion in medicine; much of the 

medical data collected during clinical care are time-

stamped, and patient documents are typically 

reviewed chronologically. However, given the large 

amounts of data being generated, following how 

problems advance during a patient's treatment 

becomes increasingly time-consuming and obscured. 

Having tools to automatically summarize trends and 

relationships for reported medical problems from past 

clinical reports would assist practitioners with 

understanding the interplay between interventions 

and reported problems. 

We explore the creation of software tools that address 

two challenges: 1) how to automatically characterize 

change in a problem at each observation; and 2) how 

to graphically represent this characterization so that 

trends can be readily interpreted visually. To address 

these issues, we first developed a mapping tool that 

helps users: 1) validate problems, findings, and 

attributes extracted using a natural language 

processing (NLP) tool; 2) automatically map each 

problem to a class that describes the change in a 

problem when compared to the previous observation 

(of the same problem); and 3) assign classes to iconic 

graphical representations. We then implemented a 

user interface that allows users to: 1) select which 

medical problems are presented on the display; 2) 

view every observation for the selected problems 

plotted on a timeline; 3) zoom, pan, and filter 

observations by source (e.g., radiology report), 

severity (e.g., significantly worse), and temporal 

attributes; and 4) review the details and underlying 

clinical data when specific observations are selected. 

Background 

While approaches for dealing with time-related 

concepts have been widely explored, particularly 

with structured medical data (e.g., numerical 

laboratory data [1-2]), researchers have only recently 

examined trends in unstructured clinical reports [3]. 

Recent efforts have automated the discovery of 

temporal patterns by: structuring the data using NLP 

[4]; abstracting events and patterns from the 

structured data [5]; and encoding the event sequences 

using a temporal representation (e.g., TimeML) [6]. 

The goal is to leverage NLP to automatically 

enumerate states of attributes (e.g., size, location) at 

each time point associated with a problem (e.g., 

tumor). Change could then be characterized by events 

that alter the states of these attributes over the course 

of multiple time points [7]. An ongoing challenge, 

however, is being able to automatically interpret the 

temporal order of events from free-text; this 

challenge is not directly addressed here but is part of 

our ongoing effort to create a robust structuring tool. 

Time-oriented information has traditionally been 

presented using a timeline to show the temporal 

distribution of observations in relation to one another 

[8] or to some sentinel event [9]. To extend the 

timeline metaphor, several works have incorporated 

other visual properties such as color and height to 

convey additional information (e.g., severity, 

abnormality) about the patient's condition [10]. Other 

works have examined how to quantify and visualize 

change in imaging data: LesionViewer [11] visually 

summarizes changes in tumor size across multiple 

imaging studies.  

Our goal is to create an automated processing 

pipeline that characterizes and visualizes medical 

problems along the dimensions of time, space 

(location), existence, and causality. Building upon 

our work reported in [12], this paper represents initial 

efforts to create a more granular characterization of 

change in neuro-oncology patients.  
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Methods 

With prior institutional review board approval, we 

created a set of 20 de-identified neuro-oncology 

patient cases previously seen at UCLA Medical 

Center. The dataset contains a total of 717 documents 

capturing events from date of diagnosis to death; we 

divided the cases into 10 training and 10 testing 

cases. After manually reviewing the training cases, 

we decided to target problems and findings 

mentioned in admission, inpatient, and discharge 

summaries, (outpatient) neuro-oncology notes, and 

radiology reports as they contained the majority of 

documented observations, which have assessments of 

change. 

Extraction of Findings 

A semi-automated toolkit for standardizing, 

extracting, and structuring problems and findings 

from clinical reports is being developed concurrently 

[13]. The toolkit: 1) identifies spatially where the 

problem is anatomically located; 2) resolves intra- 

and inter-document co-reference; 3) characterizes 

finding attributes; and 4) defines existence attributes 

for each observation of a problem. Considering the 

sentence, "since the prior examination, there has been 

a decrease in the transverse diameter of the 

heterogeneously enhancing tumor," the generated 

attributes and values are: 

Location. Anatomical (spatial) location describes the 

affected regions of the body; signs and symptoms can 

be inferred from this information based on the effect 

of the problem on surrounding structures. The toolkit 

extracts two attributes: location (e.g., brain) and 

spatial relation (e.g., involving). 

Existence. Existence indicates whether a problem is 

observed at a point in time. Our toolkit characterizes 

existence using multiple attributes, as listed in Table 

1. Existence attributes for the example sentence 

include: "certainty" is "definite"; "relevancy" is 

"significant"; "newness" is "not stated"; and 

"multiplicity" is "not stated". 

Finding. A finding represents anything observable 

about a problem. The structuring tool utilizes a data 

model built for the domain of neuro-oncology to 

guide the identification of pertinent findings, 

attributes, and values. The initial set of targeted 

findings was defined based on input from a neuro-

oncologist. Attributes for the example sentence 

include: "size change" is "decreasing"; "contrast 

enhancement" is "present"; and "solid contrast" is 

"heterogeneous". 

The output of the structuring tool is a frame 

representation encoded in eXtensible Markup 

Language (XML); the output is used as input by the 

mapping and visualization tools. 

Mapping and Interpretation 

We have created a mapping tool that: 1) provides a 

user interface to view and validate how problems and 

findings are extracted by the NLP structuring tool; 2) 

utilizes contextual rules to identify when changes 

occur in the data and assign descriptive labels for 

categorizing how problems change; and 3) associates 

labels with user-defined iconic representations that is 

used to summarize the label graphically. 

Requirements analysis. Problems typically have a 

starting state (new, recurrent, existing), stopping state 

(resolved, not present), and intermediate states 

(improving, worsening, unchanged, not stated). The 

labels (classes) are summarized in Table 2. These 

labels are derived based on a combination of domain 

expert input and manual examination of the training 

records. Some label assignments can be made 

explicitly: the sentence, "the patient’s hydrocephalus 

has worsened," can be directly mapped to the class 

"worsening". However, most assignments require the 

incorporation of some contextual information. In the 

sentence, "hydrocephalus has decreased," domain 

knowledge is needed to understand that a decrease in 

hydrocephalus implies reduced swelling of the 

ventricles and hence, an improvement. In addition, a 

single observation may be insufficient to perform an 

assignment. For example, one report may describe 

"severe hydrocephalus" followed by another report 

stating "moderate hydrocephalus." A rule can be 

defined to interpret the change from severe to 

moderate as being an improvement in the context of 

hydrocephalus. Additionally, values may be 

expressed in multiple ways: mass effect can be 

Existence Attributes 

Certainty Definite, appears to be, less likely, 
unlikely, does not exist 

How determined Observation, inference 

Multiplicity Single, a few, multiple, not stated 

Newness Previously seen, newly diagnosed, 
recurrent, resolved, not stated 

Relevancy Significant, incidental, not stated 

Study quality Okay, poor 

Visibility Clearly seen, appears, difficult 

Finding Attributes 

Presence Yes, no, not stated 

Severity None, mild, moderate, severe, not 
stated 

Change Improved, worsened, increased, de-
creased, stable, not stated 

Degree Slightly, significantly, not stated 

Table 1: Attributes and possible values for exis-

tence and findings that are identified by the struc-

turing tool for each problem. 
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described using terms such as "more", "mild", 

"minimal", "reduced", "stable", or "not significant". 

Finally, words such as "slightly", "significantly", and 

"much" provide information about the degree of 

change. 

Design and implementation. The initial task is to 

supplement the existing neuro-oncology data model 

(developed as part of the structuring tool) to include a 

mapping between possible values for attributes such 

as severity, change, and degree for each problem 

(e.g., increasing hydrocephalus) and the predefined 

classes (e.g., worsening). This expanded model is 

then used as the contextual knowledge base. A set of 

rules categorizing each observation into one of nine 

classes (Table 2) can be generalized as follows: 

� If value for change is stated as worsening, 

improving, or stable, map to the respective 

classes; 

� If value for change is stated as either increasing 

or decreasing, use the contextual knowledge base 

to determine which class to assign; 

� If a value for degree or severity is provided (e.g., 

significant, moderate), annotate the assigned 

class with this value;  

� If value for change is not stated but a value for 

degree or severity is, compare the value with the 

previous time point to make a mapping; 

� Based on values for newness and certainty, 

assign whether the problem is existing, new, not 

present, recurrent, or resolved; and 

� For all other problems that do not meet the 

aforementioned rules, map to the unassigned 

class. 

The aforementioned rules are implemented as regular 

expressions. We also incorporate negation detection 

using NegEx [14] for two reasons: 1) sentences in 

which the finding is negated (e.g., hydrocephalus is 

not present) should be assigned to the class "not 

present" and 2) sentences in which change has been 

negated (e.g., has not improved) should be labeled as 

"unchanged." 

Rather than present a list of textual labels for each 

observation, labels are represented as icons to 

visually convey the information. In our prototype, we 

represent "improving" as a green arrow pointing 

upwards and "worsening" as a red arrow pointing 

downwards. Degree or severity information, if 

available, is used to annotate the icon: for problems 

that are moderately or significantly different between 

two time points, two or three arrows are shown in 

place of a single arrow. Problems observed as 

"unchanged" are denoted as gray circles with a text 

label stating "No ∆". "Resolved" and "not present" 

classes are represented as green icons. When a 
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Class  Description 

Existing 

  

Assigned to problems that are known 
to have existed prior to the start of 
available documentation. 

Improving 

  

Given to a problem that has changed 
for the better based on context. # of 
arrows denote greater improvement. 

New 

  

Assigned to the first mention of a 
problem that has never previously 
been observed. 

Not stated 

  

Given to problems that are not de-
scribed in a report. 

Recurrent 

  

Given to the first mention of a prob-
lem that has already been observed 
and resolved in the past. 

Resolved 

  

Assigned to problems that have been 
mentioned in the past but explicitly 
observed to be not present or re-
solved in the current report. 

Unassigned 

  

Given to a problem that is mentioned 
but does not contain sufficient con-
text to make a class assignment. 

Unchanged 

  

Assigned to a problem that has 
remained in the same state as the 
last observation. 

Worsening 

  

Given to a problem that has changed 
for the worse based on context. # of 
arrows denote greater decline. 

Table 2: A listing of the possible classes and as-

signed icons that are used to label observations. 
roblem is not explicitly mentioned, a graphical 

epresentation is not assigned to that observation. If a 

roblem is unassigned, it is represented as a white 

ircle. Users can customize how each label is 

raphically represented. 

ntegration and Visualization 

he objective of the visualization tool is to provide: 

) an integrative, temporal view that summarizes 

hanges in problems across available observations; 

nd 2) the supporting tools to navigate and query this 

ata. 

equirements analysis. Two physicians, an 

ncologist and a radiologist, defined a set of desired 

eatures for the user interface. Based on their initial 

eedback, we determined that the primary 

unctionality should include: 1) showing the temporal 

istribution of problems; 2) visualizing how 

roblems change in the course of the entire patient 

ecord; and 3) providing the ability to overlay other 

ata such as significant events (e.g., surgery), 

maging studies (e.g., magnetic resonance imaging, 

omputed tomography), and treatments (e.g., 

edications) on the display. 

esign and implementation. The user interface is 

hown in Fig. 1. The interface consists of four 

omponents: a master problem list, a query panel, a 

imeline, and a detail panel. The master problem list 
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(Fig. 1a) serves as the primary method of navigating 

the patient record: users select which problems to 

display in the timeline. The query panel (Fig. 1b) 

provides additional options for customizing the 

display. The timeline (Fig. 1c) visually summarizes 

each observation and any changes in comparison to 

previous observations. Additional timelines can be 

added to present other treatment information (e.g., 

medication dosages, durations), facilitating visual 

comparison between problems and interventions. The 

detail panel (Fig. 1d) provides a view of the raw data. 

Users can select a specific time point when a problem 

is observed: along with the selected time point, the 

detail panel shows NLP-extracted information in a 

table for observations immediately preceding and 

following the selected time point. Key image slices 

identified from the imaging study are also displayed 

alongside the extracted attributes. 

Results 

We first used the structuring tool to identify all 

problems and findings in the ten test cases. Accuracy 

and completeness of identifying problems and 

findings are being evaluated as part of the structuring 

tool; for the purposes of our evaluation, we assume 

that the output of the structuring tool is the gold 

standard. We then used the mapping tool to 

automatically assign each observation to a class. 

Combined, the ten patient cases had 1,960 

observations; our approach assigned 965 of the 

observations (49.2%) to a class other than 

"unassigned". We found that observations were 

labeled as "unassigned" for primarily two reasons: 1) 

it did not contain any attributes that could be used to 

assess change: for instance, the phrase, "the patient 

has a clinical history of glioblastoma multiforme" 

notes the presence of the tumor but provides no 

information about how it has changed (920 instances, 

95%); or 2) change could not be interpreted based on 

the available attributes: for example, a change in 

"midline shift direction" would be difficult to label as 

either improving or worsening (40 instances, 4%). 

Examining the 965 labeled observations, we 

determined that 921 (95.4%) were labeled 

appropriately. Observations were given incorrect 

labels due to difficulty in differentiating among new, 

recurrent, existing, and resolved problems. Currently, 

the system solely relies on the sentence in which a 

problem is mentioned to obtain context: one approach 

would be to expand the window of sentences that are 

examined to neighbors. 

A version of the visualization tool was demonstrated 

at the Radiological Society of North America 

(RSNA) 2009 scientific meeting as an interactive 

informatics education exhibit. Feedback was 

informally solicited from the attendees, recorded, and 

used to guide further revisions. 

Discussion 

In this paper, we present a tool that utilizes attributes 

and values characterized using a NLP-assisted 

structuring tool as context for determining which 

class related to change is assigned to each 

 
Figure 1: A screen capture of the temporal visualization, which consists of four components: (a) the master prob-

lem list; (b) the querying panel; (c) the timeline and (d) the detail panel. 
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observation of the problem. Both tools are 

implemented in Java; the visualization tool 

incorporates a modified version of Jaret Timebars to 

render the timeline. 

One challenge is to address the vagueness and 

inconsistency of how change is reported in clinical 

documents. Additional data sources such as 

quantitative imaging features (e.g., tumor size) may 

be utilized to supplement the text to label 

observations. This information would also be helpful 

in discerning the true state of observations that are 

currently unassigned. Another issue is being able to 

accommodate variations in how attributes are 

reported (e.g., "mild to moderate") that are not 

explicitly encoded in the knowledge base. As a 

limitation of the rule-based approach, we are 

attempting to explore more sophisticated modeling 

techniques (e.g., hidden Markov models) that would 

enable training the model on available data to 

estimate probabilities for each class assignment. In 

this paper, we have addressed the task of 

characterizing change for individual problems. 

However, ultimately, we intend to address the 

broader problem of how multiple problems contribute 

to the overall status of a patient as part of future 

work. We also intend to perform a study of the 

interface using the multiple-reader multiple-case 

experimental design (MRMC) [15], which allows 

assessment and comparison of decision accuracy and 

latency time comparing our visualization with 

existing tools. Our framework is also generalizable to 

domains beyond neuro-oncology if a disease-specific 

ontology and appropriate logic for mapping feature 

states to change labels are provided. 
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