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Abstract

Integrating easy-to-extract structured information such
as medication and treatments into current natural lan-
guage processing based systems can significantly boost
coding performance; in this paper, we present a system
that rigorously attempts to validate this intuitive idea.
Based on recent i2b2 challenge winners, we derive a
strong language model baseline that extracts patient
outcomes from discharge summaries. Upon incorpo-
rating additional clinical cues into this language model,
we see a significant boost in performance to F1 of 88.3
and a corresponding reduction in error of 23.52%.

Introduction

The modern hospital generates large volumes of
data, which include discharge summaries, records of
medicines administered, laboratory results and treat-
ments provided. With the recent ubiquity of electronic
medical record (EMR) databases, all of this patient in-
formation is often documented within a single storage
system. Automated extraction of patient outcomes
from this rich data source can serve as infrastructure
for clinical trial recruitment, research, bio-surveillance
and billing informatics modules. Previous works have
harnessed state of the art natural language process-
ing (NLP) techniques in extracting patient outcomes
from discharge summaries [1-3]. Although these sys-
tems perform reasonably well, performance is limited
by complex language structure in the dictated sen-
tences. While majority of the current work is focusing
on building increasingly sophisticated language mod-
els, we take a complementary approach to this prob-
lem by incorporating simple cues extracted from struc-
tured EMR data when available. For example, treat-
ments and medications are prescribed by clinicians to
specifically manage patient complications; thus, pres-
ence or absence of relevant treatments can provide in-
dependent indicators to disambiguate cases where cur-
rent NLP approaches fail. Similarly, clinical events can
also provide markers for specific complications.

Methods

Data Characteristics
We built and evaluated our system on the records of
275 premature infants born or transferred within the
first week of life to the Stanford Lucile Packard Chil-

dren Hospital’s Neonatal Intensive Care Unit (NICU)
after March 2008 and discharged before October 2009.
We extracted discharge summaries, as well as labora-
tory reports of urine (188 reports) and blood cultures
(590), radiology reports of ECHO (387) and head ul-
trasounds (534), medication events, and clinical events
such as ventilator settings and tube placements. This
study is approved under a Stanford IRB protocol.

Our task is to identify, for each infant, any compli-
cations that occurred during their length of stay in
the hospital. Administrative data such as ICD9 codes
are known to have poor granularity and accuracy for
identifying patient outcomes [4,5]. To remedy this,
two expert neonatologists formulated a list of all ma-
jor complications observed in the NICU (Table 1). The
data was annotated for these and any additional un-
listed complications and subsequently reviewed by a
team of three nurses and a physician. Overall, there
were 628 unique complication-patient pairs marked as
positive and 4872 complication-patient pairs marked
as negative.

Language Features
In constructing a baseline language model over dis-
charge summaries, our aim is to achieve the highest
classification accuracy possible so as to accurately eval-
uate the incremental contribution of incorporating ad-
ditional structured data from EMRs. Recent work
has shown the success of rule-based models in this
domain, in particular those employing hand-crafted
string matching patterns to identify relevant lexical
items and shallow semantic features [1,8]. While these
models are not optimal on account of their inability
to generalize, they usually have better performance
than models which use general NLP strategies [11].
We modeled our language based feature set off the
context-aware approach employed by the i2b2 Obesity
Challenge winners, Solt et al [1]. This approach aims
to identify and categorize typical linguistic contexts in
which patient disease outcomes are mentioned. The
types of contexts which suggest a positive, negative,
or uncertain result are fairly consistent within the do-
main of medical records, making it possible to engineer
regular expressions that capture and categorize a ma-
jority of these mentions correctly. Four basic types of
language based feature comprise our baseline system.

Disease Mentions: In addition to complication /

AMIA 2010 Symposium Proceedings Page - 712



disease names, this category includes patterns to cap-
ture abbreviations (e.g., UTI and NEC ), alternate
spellings (e.g., haemorrhage and hemorrhage), com-
plication subclasses (e.g., germinal matrix hemorrhage
and intracranial hemorrhage for IVH), and synonyms
(e.g., cardiac arrest for arrhythmia.) Expert opin-
ion was sought in increasing feature coverage, akin to
querying UMLS. The deterministic model using just
this set of rules maps most closely to the baseline bi-
nary classifier in [1].

Negations: We use a Negex inspired strategy to iden-
tify both sentential and noun-phrase negations that
indicate a negative result pertaining to one of the
above disease name mentions. General patterns such
as no|never MENTION and (no|without) evidence of
MENTION are used across all disease types, but dis-
ease specific negation patterns are also allowed where
appropriate, e.g., r/o SEPSIS.

Uncertainty modifiers: Uncertain contexts are
identified by patterns of similar construction to the
negation patterns but include templates such as
(possible|suspected) MENTION and history of MEN-
TION. It is important for the system to identify re-
gions of uncertainty in order to avoid overvaluing many
disease name mentions. Disease specific uncertainty
patterns may also be used to recognize information
that is most likely unrelated to patient outcome, e.g.,
family death or pregnancy related UTI.

Correlated Words and phrases: This final cate-
gory of language features came from reviewing with
experts words that showed high correlation with the
outcome label. Similar to the process of automati-
cally extracting symptoms, medications, and related
procedures from the description of ICD-9 codes, we re-
viewed our data with medical professionals and arrived
at pattern matches for names and abbreviations of rel-
evant antibiotics, treatments (antibiotics discontinued
for sepsis ruled out), symptoms (PAC for arrhythmia)
and tests (head ultrasound).

A total of 285 language features were extracted. We
experimented with several ways of combining these
language features in our baseline model; we delay this
discussion to the results section.

Clinical features
Structured information in the patient EMR can be ex-
tracted from sources other than the discharge sum-
mary, including records from diagnostic tests, medica-
tion and treatments administered. We refer to such
features as clinical features. These features were de-
veloped with guidance from a neonatologist in two half
hour sessions. For each complication, we listed vari-
ous treatment options, medications provided, diagnos-
tic tests used or other clinical events that are synony-

mous with the complication. Table 1 lists the various
classes of clinical features that were used for each com-
plication. Our overarching principle in implementing
clinical features was simplicity of extraction. While
more fine-tuned models can be built to improve sensi-
tivity/specificity of features extracted from these dif-
ferent sources, our experiments show that even these
relatively simple features are enough to significantly
improve performance of the overall system.

Medications (M): The EMR stores the medication
name, dosage, along with the time at which the med-
ication was administered as structured events. Rules
of the form (medication name(s), minimum length of
prescription) were obtained from the neonatologist for
all relevant complications. Such a rule is activated if
a medication in the rule is administered to the infant
for at least the minimum time.

Clinical Events (E): For various clinical events as-
sociated with complications, we obtained rules of the
form (event name, minimum event duration, threshold
event value). Events include therapies (for example,
infants with respiratory distress syndrome are often on
oxygen therapy) as well as lab measurement (for ex-
ample, extended increase in creatinine measurements
is indicative of a renal malfunction in infants).

Culture Reports (C): Culture status is relevant to
various complications. A vast majority of the cultures
have a section that summarizes the result of the cul-
ture, where “No growth” is mentioned unless any bac-
terial growth is observed. We note that the presence
of growth may be a result of a contaminant, which is
further discussed in the unstructured text section of
the report. For our current study, we do not make
this correction.

Radiology Reports (R): Our approach is based on
prior work that placed second in a recent CMC chal-
lenge [8]. For each type of report, we extract sections
in decreasing order of relevance until a non-empty sec-
tion is available. The section is parsed for indications
of the complication or symptom mentioned in a posi-
tive, negated or uncertain context using the language
rules described earlier.

Learning Technique
For outcome label prediction, we use a penalized logis-
tic regression model that combines all features. While
a broad set of classifiers can be deployed, penalized
logistic regression is known to perform well in the low
data regime [6]. The weights for this model are learned
using maximum likelihood regularized with ridge re-
gression, which trades off fit to data with model com-
plexity, as measured by the sum of the learned weights.
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Complication M E C R
Respiratory Distress Syn (RDS) X X
Sepsis X
Patent Ductus Arteriosus (PDA) X X
Bronchopulmonary Dyslapsia (BPD) X X
Intraventricular Hemorrhage (IVH) X
Died
Pneumothorax (PNE)
Adrenal Insufficiency (ADR) X
Coagnegative Stahylococcus (BCS) X X
Necrotizing Enterocolitis (NEC) X X
Bacterimia (BAC) X X
Arrhythmia (ARR) X
Hydrocephalus (HYD) X
Pulmonary Hemorrhage (PUL)
Urinary Tract Infection (UTI) X
Adrenal Renal Failure (ARF) X
Pneumonia (PNA)
Pulmonary Hypertension (PPHN)
Seizure (SEI) X
Chronic Renal Failure (CRF) X

Table 1: List of complication-specific clinical features
used. Complications are listed in order of decreasing
frequency in our data set. Features are extracted from
medications (M), clinical events (E), culture reports
(C) and radiology reports (R). Overall, 33 clinical fea-
tures are extracted.

That is, we optimize the training objective:

arg max
w

∑

i=1:N

[−yiw
T fi+ln(1+exp(wT fi)]+

1

2σ2
||w||2

where N is the number of training examples; fi and
yi ∈ {0, 1} are the features and label of the ith exam-
ple, w is the weight vector, and σ controls the magni-
tude of the ridge penalty.

Similar to [7], we develop transfer features that repre-
sent patterns that repeat across multiple complications
and allow us to generalize from one label to another
without having seen mentions of that feature in the
training data. For example, without sepsis and with-
out pneumonia both suggest the mention of the disease
in a negated context. With a transfer feature without
(disease name), a negative weight learned from sepsis
is applied in the context of pneumonia. Other exam-
ples of transfer features include (disease name) ruled
out, concern for (disease name). Of particular interest
is the feature PosMention (infrequent disease name)
which encodes sharing only amongst infrequently oc-
curring complications. Complications like sepsis that
are rampant in the population are discussed in al-
most every discharge summary and are ruled out us-
ing tests. Infrequent complications are only discussed
when the patients show complication-specific symp-

toms and thus, their mention alone is strongly cor-
related with having the complication. Each feature is
encoded by a set of regular expressions that capture
varying mentions in the data. Weight sharing was sim-
ilarly introduced for clinical features that were com-
mon to multiple complications (e.g., a positive blood
culture is a diagnostic test used for both BAC and
BCS).

To learn the feature weights, in the training objective
for each example we combine all the disease specific
and transfer features that are activated. Thus, the in-
clusion of both transfer and disease specific features
with a ridge penalty allows the model to learn speci-
ficity when there are large number of examples and
generality for rare outcomes.

Results

We compute precision, recall, and F1 for each condi-
tion, and then compute overall precision, recall, and
F1 using micro-averaging. All results reported are
based on average test performance over 100 trials of
randomized 70/30 train/test split. Significance values
are computed using the bootstrap method on the 100
trials.

Baseline Language Model
Our aim in developing the language model (LM) was
to maximize its performance, so as to best evaluate
the incremental contribution obtained from the clin-
ical features. Thus, the LM development was done
on the entire dataset using random 70/30 train/test
splits. The cross-validation parameter σ was set to 0.8
to optimize test performance of the LM in the hold-out
set, and not subsequently adjusted for the inclusion of
the clinical features.

We experimented with several approaches for com-
bining the language features to derive a strong base-
line (see Table 2). Similar to past winners [8], we
experimented with pre-fixed weighting schemes. A
hand-tuned model was derived as follows: for a given
patient-complication pair, all sentences from the dis-
charge summary that matched language features for
that complication were extracted. Each sentence was
allowed at most one vote; a “Yes” vote was assigned
if only disease mentions without negations or uncer-
tainty matched the sentence or a “No” vote if any
negated mentions of the disease matched. To com-
bine all votes, a model that counted “No” votes twice
as much as “Yes” votes gave the best results. DLM,
deterministic language model, shows the performance
of this fixed weighting scheme model. LLM, learned
language model, shows performance of the model
with weights learned assuming the bag of all matched
features using the learning technique described ear-
lier. We also show contributions of component feature
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classes to the baseline by adding them incrementally.
We use the LLM (all features), with F1 of 84.7, as the
baseline for comparison with the EMR model.

Model Feature Set Prec. Recall F1
DLM All features 73.5 86.1 79.4

LLM

Disease Mentions 88.7 72.8 79.9
+ Negations 90.7 78.2 83.9
+ Uncertain 90.8 77.8 83.7
+ Correlated 90.6 79.5 84.7

Table 2: Baseline: language model performance

Integrated EMR Model
The EMR model contains all language features as well
as the clinical features. Unlike the language model,
the clinical features did not have an iterative feature
development phase and were determined apriori using
expert medical knowledge. The model weights were
trained using a bag of words assumption with weight
sharing for the transfer features as detailed earlier.
In Table 3, we report test performance of the EMR
model against our best language model. Overall, the
EMR model with average F1 score of 88.3 performs sig-
nificantly (p-value = 0.007) better than the language
model. Additionally, the complications for which the
EMR model does not outperform are those for which
there were no clinical features included. From Table 1,
note that for each complication, clinical features were
extracted from only one or two sources.

A post-hoc analysis of the results was done to under-
stand the performance of our augmented model. We
identify three distinct sources of error: (1) medical am-
biguities, (2) feature error, i.e., failure of a language or
clinical feature match on a specific instance, and (3)
data extraction.

A significant source of error within the dataset is inher-
ent ambiguity in the process of medical diagnosis. Be-
yond cases that are simply complex to code, there are
patients for which even medical experts disagree about
the underlying diagnosis. This is especially true in our
patient population, who tend to have a multitude of
secondary and tertiary complications stemming from
their initial underlying condition. The highest achiev-
able F1 score in our data with these examples included
as errors is 96.3.

Feature errors in the language model (LM) can arise
when context patterns fail to match because a lexi-
cal cue is separated from the disease mention by too
much intervening text, but this turned out to be a rel-
atively rare occurrence in our dataset. There were just
four instances of error where syntactic parsing could
have identified a modifier that was missed by regular
expressions. A second type of language error, which

Language Model EHR Model
Comp Pr. Re. F1 Pr. Re. F1
RDS 96.2 93.8 95.0 96.8 94.5 95.6
SEPSIS 82.3 69.8 75.5 92.5 79.5 85.5
PDA 92.4 85.6 88.9 94.7 87.0 90.7
BPD 90.5 73.3 81.0 92.9 82.2 87.2
IVH 92.9 79.0 85.4 96.2 78.5 86.5
DIED 95.0 93.9 94.5 94.7 93.7 94.2
PNE 100.0 85.9 92.4 100.0 84.1 91.4
ADR 90.4 56.8 69.8 91.4 64.2 75.4
BCS 93.6 88.6 91.0 99.7 87.5 93.2
NEC 76.5 59.5 66.9 74.6 61.5 67.4
BAC 69.6 11.3 19.5 100.0 68.6 81.3
ARR 98.5 50.2 66.5 98.1 61.0 75.2
HYD 88.3 79.7 83.8 88.8 91.2 90.0
PUL 100.0 99.5 99.8 100.0 90.5 95.0
UTI 59.0 58.5 58.7 55.7 57.0 56.3
ARF 67.7 28.2 39.8 71.2 33.3 45.4
PNA 100.0 2.0 4.0 100.0 2.7 5.3
PPHN 58.3 59.6 58.9 58.6 60.3 59.4
SEI 54.8 43.8 48.6 60.9 48.6 54.1
ALL 90.6 79.5 84.7 93.5 83.6 88.3

Table 3: Performance comparison between the lan-
guage model and the EMR model. For visual clarity,
the winning model is bolded for each complication.
Complications in gray are those for which no clinical
features were available.

occurs mainly with our most frequent complications,
SEPSIS and RDS, are spans that contain atypical con-
texts and/or require inference. In the sentence, “The
workup was entirely negative and antibiotics were dis-
continued in approximately four days”, there is no ex-
plicit mention of the complication, yet we can infer
the patient most likely underwent a workup for sep-
sis. The addition of our ‘Correlated Words’ rule set
helps mitigate these errors. In this case, for example,
the rule antibiotics discontinued after X hrs/days cor-
rectly matched. In the full model, there were five er-
rors of this type for RDS, one for SEPSIS, and one for
PDA. The final type of feature error in the LM model
is the most common, with at least ten instances in our
complete dataset. It results when multiple mentions
of a disease occur in conflicting contexts throughout
the document or even within a single sentence. Tem-
poral event resolution might improve performance in
such cases.

Feature errors can also arise in clinical features, al-
though less frequently due to the simplicity of their
extraction. Such errors do occur mainly because com-
binations not covered by our feature set were admin-
istered. For example, cefotaxime or vancomycin are
administered for at least four days when a patient has
sepsis. However, some patients were switched from one
to the other midway through their course, a feature not
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covered by our initial set.

A final source of error was due to errors in the data
extraction software we used, which is still in the first
cycle of development. For more than 10 patients, sub-
sets of their clinical records such as ultrasound reports,
culture reports or clinical events were missing in our
extracted dataset. Furthermore, for textual reports,
occasionally missing word boundaries resulted in fea-
ture match errors.

Overall, an improved clinical feature set with more
coverage and better extraction software should bring
performance much closer to the achievable F1-ceiling.

Discussion and Conclusion

In this paper, we present a system that rigorously val-
idates an intuitive idea: integrating easy-to-extract
structured information such as medications, treat-
ments and laboratory results into current NLP-based
information extraction systems can significantly boost
coding accuracy. With the recent ubiquity of EMR
systems, this data is broadly available in many con-
texts [9]. We believe this study opens several exciting
avenues for future work.

Exploiting dependencies between the related tasks of
predicting individual disease outcomes might improve
performance; the application of Conditional Random
Fields (CRFs)[10] towards this end would be an in-
teresting extension to the current formulation. Richer
features that encode dependencies between multiple
features can also help improve precision. For exam-
ple, the medication hydrocortisone can be given for
many reasons; however, if it is administered soon af-
ter a cortisol stimulation test, then it is most likely
given for adrenal insufficiency (ADR). Modeling such
dependencies can improve feature specificities.

Our current implementation is limited by the need to
obtain expert opinion similar to other rule-based sys-
tems. While rule-based systems have been very suc-
cessful in recent challenges [11], they are more cumber-
some to scale due to the information acquisition bot-
tleneck. Moreover, there may be valuable rules that
did not occur to the expert in the development cycle.
To remedy this, in combination with existing medi-
cation indication dictionaries [12], techniques such as
boosting [13] can be used to automatically construct
candidate rules. Such feature induction can also be
integrated into an interactive system that uses experts
to evaluate proposed rules for medical plausibility.

Knowledge representation is a difficult and an open
research area in NLP. Our system mitigates shortcom-
ings of current NLP techniques by encoding additional
independent sources of information that provide rein-
forcement where entirely language based systems err.

This has the additional benefit of building a more com-
prehensive case for each patient providing the health
experts with a transparent system where the evidence
supporting each decision can be verified holistically.
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