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ABSTRACT  
Physicians have access to patient notes in volumes 
far greater than what is practical to read within the 
context of a standard clinical scenario. As a 
preliminary step toward being able to provide a 
longitudinal summary of patient history, methods are 
examined for the automated extraction of relevant 
patient problems from existing clinical notes. We 
explore a grounded approach to identifying 
important patient problems from patient history. 
Methods build on existing NLP and text-
summarization methodologies and leverage features 
observed in a relevant corpus. 

INTRODUCTION  
Advances in medical informatics have led to the 
capture of high volumes of medical data in coded 
form, but a significant percent of crucial patient 
information remains embedded in clinical narratives. 
Physicians regularly have access to a far greater 
collection of notes than may readily be reviewed 
before or during the patient encounter. We have 
proposed1 that an automatically generated 
longitudinal patient summary would go far to helping 
physicians understand key aspects of patient history. 
The patient’s clinical problems are likely to be at the 
core of the summary. This is not surprising; since 
Larry Weed’s problem-oriented medical record2, 
clinicians and researchers have espoused the logic of 
organizing medical documentation around the 
patient’s clinical problems. Furthermore, the Institute 
of Medicine and JCAHO place great importance on 
the relevance of the clinical problem list. If it is 
accepted that the first step in summarizing patient 
information is to extract a problem list from the 
notes, the challenge remains to identify the subset of 
problems, which are actually relevant for the patient 
at present day, among the large number of all the 
problems mentioned in the notes. This study 
examines methods for best selecting such relevant 
problems from the notes. 
Advances in Natural Language Processing (NLP) 
have facilitated the parsing of text-based information 
into structured output, however little work has been 
carried out in the application of high-level NLP 
applications, such as summarization, to this genre of 
texts. In this study, we investigate how to identify the 
problems that are mentioned in the patient notes and 

that are relevant to a physician seeing a new patient 
at present day. Given a corpus of patient records, 
each consisting of a set of NLP-parsed notes, we 
investigate corpus-based, bottom-up approaches to 
the selection of clinical problems for a patient 
summary. In particular, we explore a novel set of 
features for identifying relevant problems and cast 
our task as a classification model. The resulting 
model is robust and generalizable, applicable to any 
clinical specialty. 

RELATED WORK 
Past research on problem list extraction/generation 
has investigated identifying active patient problems 
from clinical notes3,4, though much of it relies on a 
fixed set of problems, determined in a top-down 
fashion. As shown by Rassinoux et al.5, there is great 
power in the combination of medical knowledge 
stored in clinical terminologies with information 
mined from clinical narrative. This research leverages 
knowledge in the UMLS6, including SNOMED7 and 
MEDCIN in particular. We augment the knowledge-
based approach employed in previous work on 
problem list extraction with a machine learning 
approach, to learn rules for a context-aware problem 
selection tool expected to be generalizable to other 
specialties. 
Problem list extraction methods have drawn on work 
in the broader field of clinical NLP, which has been 
approached in numerous research projects including 
medSYNDIKATE8, MENELAS9 and the NLM’s 
MetaMap10 with modifications such as NegEx11. In 
this work, we rely on MedLEE12, a context-aware 
clinical natural language processor developed at 
Columbia, for the initial pre-processing of our 
dataset. MedLEE results are used to identify UMLS 
codes for identifiable clinical concepts and semantic 
indicators for negation in the source text. 
Application of machine learning techniques to 
medical text summarization has focused primarily on 
associating relevant external literature to a current 
patient13,14. 

METHODS  
This research approaches the selection of clinical 
problems relevant to a patient summary as a 
classification problem. The general architecture of 
the problem selection is as follows: concepts and 
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their associated semantic types are identified in the 
notes of a patient. For every problem mentioned in 
the notes, a binary classifier determines whether the 
problem should be included in the patient summary. 
The classifier is trained on a collection of patient 
notes and their corresponding problem lists. We 
describe next the data used to train and test the 
classifier, the features we propose for the task, the 
learning models we experimented with, and our 
evaluation methodology. 

Data Collection: In order to train a classifier to 
predict the relevance of a problem for a clinical 
summary, we experimented with two datasets.  

Renal Note Corpus: As in-depth patient summaries 
are rarely authored in clinical medicine, the model 
was trained on the closest surrogate to a patient 
summary available in standard clinical notes: the 
patient’s last available past medical history (PMH). 
While the PMH is by no means a comprehensive, 
longitudinal patient history, it is the closest thing 
available on a large scale.  The PMH may not always 
contain the immediate chief complaint, however for a 
summary we were interested in problems with lasting 
relevance, so this is, if anything, a benefit. To focus 
on problems with lasting relevance, we required that 
the last PMH have three or more problems listed and 
that the preceding two (or more if occurring within a 
week) notes were omitted from the patient corpus in 
order to focus on problems with lasting value. 
The corpus analyzed under this model included 1618 
patients having visited the NewYork-Presbyterian 
outpatient renal service from November 2007 
through September 2009, with an average 14.3 notes 
per subject. This is referred to as the Renal Corpus. 
Expert Summaries: Nephrologists were asked to 
review existing notes for four renal patients and 
compose free-text summaries containing information 
relevant to a physician trying to acquaint him/herself 
with each patient’s medical history. The source notes 
used in summarizing these four patients did overlap 
with the Renal Corpus but were not a subset as notes 
were assessed from 2000 through September 2009. 
For these four patients the corpus contained an 
average of 49.5 notes per patient. These expert 
summaries served as the gold standard against which 
we evaluated the relevance of problems selected for 
the summary. Problems occurring in expert 
summaries not observed in the notes were ignored.  
Problem Identification: The unit of processing for 
the classifier is a clinical problem. We now describe 
how we define a problem.  Medical concepts are first 
extracted using the MedLEE natural language 
processor and tagged using Concept Unique 
Identifiers (CUIs) defined in the National Library of 

Medicine’s Unified Medical Language System 
(UMLS). MedLEE labels concepts into types, 
including “problem,” based on several criteria, 
among them their UMLS types. The MedLEE 
problem labeling, however, can be overly broad (e.g., 
the top-level concept C0013428 Disease is tagged a 
problem). Thus, we also relied on the SNOMED-CT 
Problem List Subset (PLS) developed by the 
Veterans Health Administration and Kaiser 
Permanente. The PLS contains a list of manually 
selected problems, and has been shown to be 
adequate for representing medical conditions15. To 
avoid missing specific problems, concepts which do 
not occur in the PLS but have a SNOMED parent in 
the PLS, were included.  

Once the concepts are labeled and problems are 
identified, we aggregate problems across the dataset.  

The SNOMED terminology can represent terms to a 
finer level of granularity than is required for a 
summary. To improve likelihood of identifying 
trends from similar, overly granular problem 
descriptions, as well as to avoid having virtually 
synonymous problems repeated in the summary, 
CUIs were clustered according to their SNOMED 
proximity. For example, without any grouping 
method, problems such as C0340305 Inferior Wall 
Myocardial Infarction, and C0340312 Lateral 
myocardial infarction NOS are considered by the 
classifier independently from C0027051 Myocardial 
Infarction. With grouping, references to the first two 
are rolled into the standard MI for purposes of 
content selection. For each problem in the Renal 
Corpus, the Expert Summary Note Corpus, or the 
Expert Summaries, the SNOMED parent problems 
are identified also existing in the corpora and the 
PLS. The process was repeated until reaching a 
concept that was not in the PLS. Optionally, upward 
mapping was terminated if the parent problem’s 
frequency of use was less than that of the child. Upon 
arrival at a terminal ancestor, the original problem is 
mapped to the ancestor for all analyses. For a 
summary, the highest problem occurring in the 
patient corpus would be presented. 
Features: We experimented with a wide range of 
features. Several were based on traditional 
information retrieval statistics, such as inverse 
document frequency (IDF) and patient term 
frequency (TF). Others we derived based on 
hypotheses of usage patterns in patient data. For 
example, short duration problems like a mild 
bacterial infection or low-grade trauma will be not 
have lasting relevance, whereas a chronic problem 
such as diabetes mellitus or a highly relevant acute 
problem such as a myocardial infarction are more 
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likely to be carried forward from old notes into a 
summary. Therefore assessing note usage features 
such as persistence should be generally indicative of 
problem relevance, whether acute or chronic in 
nature. 
Content selection features are based on problem 
usage observed within the corpus, either at the patient 
level or patient-independent features. A few features 
are assessed both at the patient level and corpus-
wide. For example, the duration of a CUI for a 
patient may provide insight to how severe the 
problem has been for the patient. Problem duration is 
also averaged across all patients and included in the 
classifier features as an indicator of how complex the 
problem tends to be, to provide insight to the 
classifier that it may be relevant, even if it has not 
been present for long in the current patient. Some 
additional features are based on external datasets. 

Patient-Independent Features 
• UMLS CUI: the simplest feature assessed on any 

problem, the CUI string itself 
• IDF: average inverse document frequency of the 

problem in notes containing it 

  
idfcui = log

notes
probscui

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

• Corpus duration: days from the first reference to 
the last, averaged across all patients 

• Corpus duration percent: duration over days to 
last patient note, averaged across all patients 

• Corpus persistence: percent of following notes 
referring to the problem, across all patients 

• Corpus TF: percent of problem references in a 
note to this particular CUI, across all patients 

• Corpus PMH frequency: percent of PMHs 
mentioning the problem, across all patients 

• Semantic types: all UMLS types to which the CUI 
is classified 

Patient-Specific Features 
• Patient frequency: term frequency calculated on 

positive problem references across patient’s notes 

  

pfcui,patient =
probscui,patient

probspatient

 

• Duration: days from the first instance to the last 
• Duration percent: duration divided by days from 

the first instance to the date of the last patient note 
• Persistence: the percentage of notes from the first 

referencing the CUI to the last patient note which 
mention the CUI 

• Term frequency: much like Patient Frequency, 
but note centric as standard TF would be calculated 

  
tfcui,note =

probscui,note

probsnote
   tfcui,patient =

tfcui,note
notes
∑

notes
 

• Average TF-IDF: average TF-IDF across all notes 

  
tf ⋅ idfcui,note = tfcui,note × idfcui    tfcui,patient =

tf ⋅ idfcui,note
notes
∑

notes
 

• Average TF-IDF density: average TF-IDF of the 
CUI across only notes containing it 

• Days since first mention: CUI age - simply the 
number of days elapsed from the first note the CUI 
was mentioned until the date of the last note 

• Percent negated: the percent of CUI instances 
MedLEE found to be negated 

• Last negated: if the last instance was negated 
• First section: the first section where seen 
• Most common section: the most common section 

in which the CUI was seen 
• Sections: sections in which the problem was seen 
• Note types: note types where the problem is seen 

Model Evaluation: Patient problems and features 
were used to build classifiers using two Weka16 
algorithms: Naïve Bayes and J48, Weka’s 
implementation of the C4.517 decision tree. These 
were selected in advance as both are generally 
accepted as meaningful and accurate classifiers with 
different strengths. Both classifiers were trained on 
problem instances observed in the Renal Note 
Corpus. Expert Summaries then served as an 
independent test set for evaluation. For each of the 
four evaluation patients, the patient’s notes were 
filtered from the Renal Corpus, the classifier was 
trained in all remaining patients, and then for each 
problem of the evaluated patient the classifier was 
queried for problem inclusions and the result was 
compared with problem inclusion. 
Standard information retrieval metrics were used for 
assessing the classifier built: precision, recall, f-
measure. The 95% Confidence Interval (CI) were 
calculated to ensure statistically significant 
differences. From this, we report an adjusted TCR, 
which is forced to 0 if the error rate of the results 
shows no significant difference to the baseline.  

Input Section Analysis: This experiment was 
performed to assess whether the summary could be 
improved by limiting assessed problems to instances 
from particular source sections. For each of the 12 
primary sections used, classifiers were built on 
problems referenced at least once in the section in 
question of the current patient’s notes. Results were 
based on using a Naïve Bayes classifier and problems 
were filtered with the PLS and grouped using the 
frequency-limited PLS grouper. 
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To show whether a concept’s source section has a 
major effect on the relevance of the summary, corpus 
data and model representations are built with 
concepts extracted only from specific source sections 
or combinations of sections. 

Feature Selection: Chi-Square (χ2) ranking was used 
to evaluate the relative importance of each feature, 
and classifiers were built using the top five and top 
ten features. Best-first and Genetic feature selection 
algorithms were also assessed for identification of 
optimal feature sets. 

Negated Finding Filtering: To evaluate removing 
negated problems, problems where over 50% of 
instances were negated or where the final instance 
was negated (as proposed by Meystre18) were filtered 
and classifiers were rerun. 

RESULTS  
Input Section Analysis: Limiting the sections from 
which classifier training data were drawn was 
performed on 11 individual sections, the combination 
of the top five performing sections. In all cases, 
analysis yielded significant decreases to F-Measure. 
Feature Selection: χ2 ranking ordered top features as 
follows: Patient Frequency, TF, IDF, UMLS CUI, 
Corpus Duration Percent, Corpus Persistence, Corpus 
PMH Frequency, Duration Pct, Duration, and Corpus 
TF. Models with the top five and top ten features 
were incorporated into analyses along with best-first 
and genetic search feature selection algorithms. 
Error-rate, precision, recall, F-measure and F2-
measure for each of these are compared against using 
no feature selection algorithm in Figure 1. 
Filtering Negated Findings: As shown in Figure 2, 
the application of a simplistic filter to remove 
negated problems resulted in increased precision and 
recall using both classifiers as well as the baseline. 
Overall Evaluation: Preceding analyses showed 
input section restrictions to be unhelpful, while our 
method for negated problem filtering was.  Which 
feature selection method is best is dependant on the 
cost of omission. Figures 3 and 4 compare selection 
rates, error rates, precision, recall, F-measure and F2-
Measure for the baseline of selecting 100% of 
problems as well as filtering problems with the Naïve 
Bayes and C4.5 classifiers. If we assume equal 
importance of precision and recall, using Best-First 
feature selection helped to omit extraneous problems 
from the summary, the results of which are shown in 
Figure 3. When recall is assumed to be twice as 
important as precision and we optimize on the F2-
Measure, results were better when not using any 
feature selection. Results without feature selection 
are shown in Figure 4. 

 
Figure 1: Evaluation with different feature-selection methods 

 
Figure 2: Findings when applying a basic filter for omitting 
generally negated problems 

 
Figure 3: Evaluation with the best parameter using Best-First 
feature selection 
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Figure 4: Evaluation with the best parameter set discovered above 

DISCUSSION 
The input section analysis suggested that problem 
extraction may not be limited to particular sections. 
Our method for filtering generic problems and 
grouping granular problems had little effect, though 
this warrants additional research. Feature evaluation 
with the χ2 ranking showed the importance of a few 
features on the success of this model. The model 
included some attributes for assessing note-based 
usage patterns as would be done in traditional 
information retrieval, while others assessed time-
based usage patterns such as Duration. Note-based 
usage patterns performed significantly better, though 
this may well be a consequence of a relatively short 
time span of the Renal Corpus. It was found that 
patient-specific and patient-independent features 
were both relevant. 
Issues of coding granularity created problems such 
that two concepts seen in text with very similar 
meaning were meaning were given different codes 
and therefore treated independently in the model. 
This served to distract the classifier and evaluation by 
confounding reference matching between notes and 
expert summaries. A detailed experiment was 
performed to group related concepts, but results were 
inconclusive. This problem warrants significant 
additional research. 

CONCLUSIONS 
We presented an approach to selecting problems 
relevant for a clinical summary in patient notes. 
Evaluation shows relevance classification accuracy as 
high as 82% and an F-measure of 0.62. These results 
are promising and suggest that patient summaries can 
be reliably generated for clinical purposes. 
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