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Federal regulations require patient data to be shared 

for reuse in a de-identified manner.  However, 

disparate providers often share data on overlapping 

populations, such that a patient’s record may be 

duplicated or fragmented in the de-identified 

repository.  To perform unbiased statistical analysis 

in a de-identified setting, it is crucial to integrate 

records that correspond to the same patient.  Private 

record linkage techniques have been developed, but 

most methods are based on encryption and preclude 

the ability to determine similarity, decreasing the 

accuracy of record linkage.  The goal of this research 

is to integrate a private string comparison method 

that uses Bloom filters to provide an approximate 

match, with a medical record linkage algorithm. We 

evaluate the approach with 100,000 patients’ 

identifiers and demographics from the Vanderbilt 

University Medical Center.  We demonstrate that the 

private approximation method achieves sensitivity 

that is, on average, 3% higher than previous 

methods.   

 

INTRODUCTION 

The decentralized nature of healthcare systems 

creates fragmentation of a patient’s medical data 

across various institutions.  Without the existence of 

a universal patient identifier, record linkage, the 

automated process of resolving which records refer to 

the same patient, has become a critical process in the 

biomedical domain
1
.  In operations, record linkage 

can provide a more complete view of a patient’s 

medical information to increase patient safety and 

determine if certain examinations have already been 

rendered, thus minimizing replication of services.  

Beyond primary care, patient information 

collected or studied with federal research funds needs 

to be de-identified and shared for reuse
2
. In this 

setting, resolving which records refer to the same 

patient is essential to mitigate bias in statistical 

analyses.  For instance, when patient data is 

submitted from multiple institutions to a centralized 

repository, such as the database of Genotypes and 

Phenotypes (dbGaP), users would like to submit 

queries of the form “How many patients in the 

repository have DNA sequence X and disease Y?”  

However, an additional federal regulation requires 

that data be de-identified before it is shared to such a 

repository
2
.  This is often achieved by stripping 

records of identifiers in accordance with the Safe 

Harbor policy of the HIPAA Privacy Rule
3
.   

Removal of such data, however, prevents the 

resolution of a patient’s record within a centralized 

repository. Private record linkage (PRL) is not 

intended to be a de-identification technique, but 

rather a pre-processing step before de-identification 

and data sharing occurs. 

It is critical to integrate records in such a setting 

in a manner that obscures patient identity.  Notably, 

several PRL techniques have been proposed
4-6

 and 

are based upon the comparison of encoded features. 

Many of these approaches obscure identifiers and 

work in environments where identifying values are 

recorded consistently across disparate databases.  

Yet, variation and error can corrupt patient 

identifiers
7
.  In such cases, the application of 

traditional encode-and-compare models of PRL, 

which require that features match exactly across 

records, thwarts the ability to determine similarity 

between patient features and can results in less 

accurate record linkage.  For example, the hashed 

value of Jon is equally distant from the hashed values 

of John and Alice. 

Recent advances have yielded private string 

comparators that allow for approximate matching
4,8-9

 

and could be incorporated into PRL.  However, these 

approaches need to be integrated into a record 

linkage scheme and evaluated in the medical domain 

on a real world dataset in order to determine their 

usefulness and feasibility.  This paper performs such 

an evaluation.  Specifically, we modify a private 

approximate string comparator to compare eleven 

fields representing demographics from a medical 

record set.  We then adapt a widely used record 

linkage algorithm
10

, to work with the approximate 

similarity measure.  We compare the approximate 

approach to several existing approaches with 

identifiers and demographics from over 100,000 real 

patient records.  The results indicate a statistically 

significant increase in the performance of record 

linkage, which demonstrates that approximate PRL 

approaches are feasible for real world medical data 

integration.  
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BACKGROUND 

Notation and Problem Statement 

For this work, we assume each patient’s record is 

comprised of k fields that are useful for record 

linkage purposes.  For example, first name, last 

name, and date of birth (DOB) are fields included in 

each record. We let A denote a set of records, a 

indicates a record within set A, and a[i] refers to the 

value of the i
th

 field in record a, where i ∈ {1,…,k}. 

We use B, b, and b[i], to represent a second set of 

records. The goal of record linkage is to correctly 

classify all record pairs 〈a,b〉, into the class match or 

the class non-match. 

 

Record Linkage Background 

Binary Field Comparison and Deterministic Linkage 

(BIN-DET): A deterministic record linkage method 

uses a rule-based approach.  Specifically, a 

deterministic method was evaluated with patient 

identifiers from the Regenstrief Institute
11

, which 

identified Social Security Number (SSN), 

phonetically filtered first name, birth month, and 

gender as the best combination of fields for record 

linkage.  This method used binary field comparison 

(i.e. fields agree or disagree), such that when each of 

the four fields was equivalent between a pair of 

records, the pair was classified as a match.  

Otherwise, it was classified as a non-match.   

 

Binary field comparison and probabilistic linkage 

(BIN-PROB).  Further research showed that a 

probabilistic approach to record linkage can produce 

better results and did not require human review
12

.  

However, this method also relied on a binary 

perspective of field comparison and the notion of 

similar values in a field was not addressed. 
 

Approximate field comparison and probabilistic 

linkage (APPROX-PROB).  Recently, the 

probabilistic approach was extended to approximate 

discrete field comparators
13

.   Our approach builds on 

this technique and we defer further details of this 

approach to the Methods section. 

 

METHODS 

Materials 

To conduct this study, we selected identifiers and 

demographics from patient records in StarChart, the 

electronic medical record system of the Vanderbilt 

University Medical Center.  There were eleven fields 

used in our evaluation, which are depicted at the top 

of Figure 1.  To develop a clean, controlled dataset 

for evaluation and comparison purposes, we chose a 

subset of the records that agreed with expected 

format, contained only alphanumeric characters, and 

were devoid of missing data.  This provided 756,629 

clean records.  From these records, we randomly 

selected (without replacement) 100 datasets of 1000 

records each, which we refer to as A1, …, A100. 

In order to generate datasets B1, … , B100 to 

which we link the aforementioned sets, we 

implemented a “data corrupter” based on the research 

of Pudjijono
14

.  The corrupter introduced optical 

character recognition errors (e.g., S and 8), phonetic 

errors (e.g., ph and f), and typographic errors, such as  

insertions, deletions, transpositions, and substitutions.  

The probability with which the errors are introduced 

is consistent with the error rates seen in real 

datasets
14

.  Figure 1 provides an example of a record 

a, and its corrupted counterpart b.  Following 

generation of the corrupt dataset, all letters were 

converted to the same case.   

We performed record linkage for each Ai and Bi 

pair.  The goal for each linkage experiment was to 

identify the 1,000 out of the 1,000,000 record pairs 

that are true matches, which corresponds to 0.01% of 

the record pairs.  We assumed a centralized 

framework with a semi-trusted third party 

performing. 

 

Record Linkage Approaches 

In this study, we compare three record linkage 

approaches.  Each methods was implemented in the 

Perl programming language.  The approaches differ 

in the way they compute the similarity between 

records’ fields and the algorithm used to predict the 

linkage class. The following provides details 

regarding how each method was implemented and 

adapted. 

 

BIN-DET Method: The deterministic method 

proposed in Grannis et al.
11

 and described in the 

background section was evaluated.  

 

BIN-PROB Method: Fellegi and Sunter (FS)
10

 

First 

Name 

Last 

Name

 

Street 

Address SSN DOB Sex Race City State Zip Phone 

record b: 

record a: 123456789 John Smith 01012001 M H 2525 West Ave Nashville TN 37212 6159363237 

123456789 ohn Smtyh 01012001 X F 2525 West Avy Nashville LN 97212 61563653237 

Figure 1. Example of a record and its corrupted counterpart.  Values that changed during corruption are indicated in bold. 
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introduced a formal mathematical model for record 

linkage that is widely used today.  In this model, each 

record pair 〈a,b〉 is modeled as a vector γ〈a,b〉 of length 

k, where k is the number of fields contained in each 

record.  The field comparison vector, γ is filled in as 

follows: 

�〈�,�〉��	 =  �0, �� ������ ���	 ≠ ������ ���	   
1, �� ������ ���	 = ������ ���	  , � = 1, … , �� 

 

The field comparison vector for the sample record 

pair is shown in Figure 2.  The linkage score for each 

record pair γ〈a,b〉 is calculated according to: 
 

������� �������〈�,�〉 = 

                      ! log %&'
('

)
*〈+,,〉�'	

log %1 − &.
1 − (.

)
/0*〈+,,〉�'	1

'2/
 

 

where mi is the probability that field i matches given 

the record pair is a match, and ui is the probability 

that field i matches given the pair is a nonmatch.   

The FS algorithm requires knowledge of the 

conditional probabilities that a feature agrees given 

the match status of the record pair.  A test set for 

which the true match status has been manually 

determined can be used to estimate these conditional 

probabilities for each field.  Alternatively, the 

Expectation Maximization algorithm, a probabilistic 

method that determines maximum likelihood 

estimates for unknown parameters can be used to 

estimate these conditional probabilities
16

.  As the true 

match status is known, we are able to calculate the 

conditional probabilities of the FS algorithm exactly.   

 

 

 

APPROX-PROB Method: Recent work
13

 incorporates 

field similarity (rather than just their binary 

agreement or disagreement) into the FS algorithm 

using the following field comparison and linkage 

score equations:  
 

�〈�,�〉��	 =  ��&�����345���	, ���	6   , � = 1, … , � 
 

������� �������〈�,�〉 =  !  log %&5δ6'
(5δ6.

)
8

.2/
 

 

where mi is the probability of similarity score δ 

amongst values in field i, given the record pair is a 

match, and ui is the probability of similarity score δ 

amongst values in field i, given the record pair is a 

non-match.  Any metric that determines the similarity 

of two strings can be used.  See Figure 2 for an 

example comparison vector. 
 

For feature comparison, we selected a Bloom 

filter method, recently proposed by Schnell et al
4
, due 

to its simplicity and its ability to determine the 

similarity between strings in a manner that preserves 

privacy.  This method hashes all bigrams of a string, 

padded with spaces on both ends, into a bit vector, 

initialized with all zeroes, using i hash functions. The 

similarity between the set of bigrams in filters X and 

Y is assessed via the Dice coefficient:  
 

9��� ����������35:, ;6 =  2 ∗  5|: ∩ ;|6 5|:| + |;|6⁄  

where |•|  is the number of bits in the filter set to 1.  

Figure 3 provides an example.  
 

Since the Dice coefficient corresponds to a similarity 

score in the range [0,1], we discretized the scores into 

10 bins based on the 10
th

 percentiles of the similarity 

scores over all record pairs.  

For the Bloom filter, we used a 1000-bit vector 

with 30 hash functions for each field, except gender 

and race.  The latter are a single character each and 

were hashed and compared for binary agreement. All 

hash functions were variations of SHA-1. 

 

Evaluation Metrics 
We evaluated the performance methods from several 

perspectives.  First, we evaluated the ability of the 

methods to separate the record pairs into the match 

and non-match classes.  We adopted several 

information retrieval metrics
15

 for this analysis. In 

particular, we use sensitivity, specificity, precision, 

and recall, which are defined as: 

�����3�B�34 = ������ =  CD
CD + EF       

�G�������34 =  HI
HIJKL                  G�������� =  HL

HLJKL   
 

where TP is the number of true matches, TN is the 

number of true non-matches, FP is the number of 

b) 1 .69 .57 1 0 0 .89 1 .36 .69 .82 

a)  1 0 0 1 0 0 0 1 0 0 0 

Figure 2. Comparison vector of record pair (a,b) 

shown in Figure 1 from a) binary matching of fields

and b) approximate field comparison filter. 

0 0 1 1 0 1 0 1 1 0 

1 0 0 0 0 1 0 1 1 0 

_J Jo oh hn n_ 

_o oh hn n_ 

dice coefficient = 2 * 3 / 55 + 46 = 9 
Figure 3. The first names from records a and b

shown in Figure 1 hashed into 10-bit Bloom filters 

with one hash function.  
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false matches, and FN is the number of false non-

matches.  Sensitivity and specificity provide a 

general overview of the effectiveness of the 

classification, while precision and recall allow us to 

“zoom in” on the relatively small class of matches. 

Second, we investigated the runtime of the 

methods, considering the field comparison and 

linkage times individually, in order to evaluate the 

tradeoff between classification exactness and speed. 

 

RESULTS 

Table 1 summarizes the comparison of the 

classification capability by classifying the record 

pairs with the top 1,000 highest linkage scores as 

matches (as it is known that 1,000 true matches exist 

in each dataset).  While BIN-DET correctly classified 

all non-matches (specificity = 1), it rarely correctly 

identified the majority of true matches (sensitivity = 

0.14).  This supports our intuition as this approach 

only considers four fields and classifies a record pair 

as a match when all four fields agree.  BIN-PROB 

still correctly identified most of the non-matches, but, 

by contrast, was much more effective at identifying 

matches (sensitivity = 0.97).  Due to the large number 

of fields within each record, many features are still 

likely to match exactly, even if several features 

disagree.  This is in contrast to the number of fields 

that one would expect to match by coincidence 

among record pairs that are non-matches which 

enabled BIN-PROB to achieve strong separation in 

the linkage scores of matches and non-matches. 
 

Table 1. Average performance of the methods (± 1 

standard deviation).  

Measure BIN-DET BIN-PROB APPROX-PROB 

Sensitivity .14 ±.01 .97 ± .007 1.0 ± .001 
Specificity 1 ± 0 1 ± 6

-6
 1 ± 1

-6
 

 

APPROX-PROB was able to correctly classify (on 

average) 30 out of the 37 record pairs that BIN-PROB 

misclassified as false negatives (non-matches).  As an 

example, consider the γ comparison vectors shown in 

Figure 4 for a record pair that BIN-PROB 

misclassified as a false negative that APPROX-PROB 

correctly classified as a true positive.  In this case, 

many of the fields disagreed slightly.  BIN-PROB 

was not able to use this information in classifying the 

record pair whereas APPROX-PROB was. 

We expect that APPROX-PROB would perform 

more effectively if the Bloom filter parameters 

(length of Bloom filter and number of hash functions 

used) are tuned to each field based on expected size 

of the field. For example, fewer bits are set when 

comparing 2-digit state abbreviations than lengthier 

street addresses.   

 

 
 

Table 2. Average runtime in seconds (±1 standard 

deviation). 
Computation BIN-DET BIN-PROB APPROX-PROB 

Field 

Comparison 
216 ± 3 644 ± 9 808 ±141 

Linkage 28 ± 3.1 132 ± 3 874 ± 51 

Total 244 ± 4.5 775 ± 10 1682 ± 152 
 

Table 2 summarizes the runtime analysis. The 

comparison of fields with APPROX-PROB requires 

slightly longer runtime due to the additional hash and 

Bloom filter calculations.  However, handling data in 

a private manner always requires additional 

computation, and the comparison times are on the 

same order as the other approaches.  The matching 

also takes longer for APPROX-PROB due to the fact 

that 10
th

 percentiles must be calculated, and that 10 

(rather than 2) parameters must be estimated for all 

features compared with approximate comparison.  

We believe that the computational times are 

reasonable for the private nature of the process and 

the increase in performance.  
 

 

 

Table 1 is based on knowledge that 1,000 matches 

exist, which provided insight on where to draw the 

classifying line between matches and non-matches.  

However, in practice a user may want to draw the 

classification line elsewhere based on their 

requirements.  Figure 5 addresses this by considering 

the precisions of BIN-PROB and APPROX-PROB 

with recall held constant.  Note the x-axis begins at 

0.95 as precision values for both methods prior to this 

point are ~1.0, indicating the ease with which both 

methods are correctly to able to classify the majority 

0.0
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BIN-PROB
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Figure 4. The comparison vectors for a record pair that was 

a match.  a) BIN-PROB incorrectly classified the pair, 

whereas b) APPROX-PROB correctly classified it. 

a)  

b)  .82 .69 .79 .95 1 1 .89 0.68 1 .80 .89 

0 0 0 0 1 1 0 0 1 0 0 

Figure 5. Precision for the BIN-PROB and APPROX-

PROB methods with recall held constant. 
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of non-matches.  These results show that for a given 

recall value, APPROX-PROB has greater precision 

than BIN-PROB. 

 

DISCUSSION AND CONCLUSION 

This work adapted and compared several privacy 

preserving record linkage methodologies with data 

from a real world medical record system.  Our 

findings indicate a method that incorporates an 

approximate field comparison with a probabilistic 

linkage algorithm outperforms existing approaches 

that rely on deterministic and binary comparisons. 

Our evaluation demonstrates that approximate match 

PRL techniques can be applied to medical datasets 

and the runtimes are practical for real world use. 

Despite the merits of this research, there are 

several limitations and opportunities for extensions 

that we wish to point out.  First, from a technical 

perspective, this work is limited in that it examined 

controlled datasets, such that we could control the 

parameterization of the probabilistic record linkage 

algorithms.  In particular, we were able to calculate 

the conditional probabilities required for the FS 

algorithm because we knew the true match status for 

each record pair.  This provides a best case scenario 

for tuning the parameters of the algorithm and before 

we implement such a solution in a live setting, we 

will need to investigate the accuracy of such 

parameters in an environment when such knowledge 

is not available.  In addition, we acknowledge that the 

corruption incorporated into the patient identifiers 

and demographics were systematically generated in 

accordance with known typographical errors.  Yet, 

there are many more types of errors that can arise in 

electronic medical record systems and are likely to be 

found in real datasets submitted to privacy-enhanced 

repositories.  For example, our approach does not 

consider how nicknames and changes to last name 

(e.g., due to marriage) would be addressed.   

Second, we recognize that, in practice, datasets 

generated in the medical domain are often much 

larger.  As a result, in practice, record linkage is 

almost always complemented by blocking, a 

technique to reduce the number of comparisons that 

need to be made together and compared only to 

records within this block
10

.  We assume that larger 

datasets could, in practice, be blocked to record sets 

of size 1000×1000.  The datasets we used are 

intended to be representative of a single block.   The 

integration of blocking into a PRL method is an open 

research question. 
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